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Rare semileptonic b→ s`
+
`
−

transitions provide some of the most promising framework to search
for new physics effects. Recent analyses of these decays have indicated an anomalous behaviour in
measurements of angular distributions of the decay B

0 → K
∗
µ
+
µ
−

and lepton-flavour-universality
observables. Unambiguously establishing if these deviations have a common nature is of paramount
importance in order to understand the observed pattern. We propose a novel approach to indepen-
dently and complementary probe this hypothesis by performing a simultaneous amplitude analysis
of B̄

0 → K̄
∗0
µ
+
µ
−

and B̄
0 → K̄

∗0
e
+
e
−

decays. This method enables the direct determination
of observables that encode potential non-equal couplings of muons and electrons, and are found to
be insensitive to non-perturbative QCD effects. If current hints of new physics are confirmed, our
approach could allow an early discovery of physics beyond the Standard Model with LHCb Run-II
datasets.

Flavour changing neutral current processes of B me-
son decays are crucial probes for the Standard Model
(SM), since as-yet undiscovered particles may contribute
to these transitions and cause observables to deviate
from their SM predictions [1–4]. The decay mode B̄ →
K̄∗`+`− is a prime example (i.e. ` = µ, e), which of-
fers a rich framework to study from differential decay
widths to angular observables. An anomalous behaviour
in angular and branching fraction analyses of the decay
channel B̄0 → K̄∗0µ+µ− has been recently reported [5–
8], notably in one of the observables with reduced the-
oretical uncertainties, P ′5 [9, 10]. Several models have
been suggested in order to interpret these results as new
physics (NP) signatures [11–17]. Nonetheless, the vector-
like nature of this pattern could be also explained by non-
perturbative QCD contributions from b→ scc̄ operators
(i.e. charm loops) that are able to either mimic or cam-
ouflage NP effects [18–20]. Non-standard measurement

in ratios of b → s`+`− processes - such as of RK [21]
and RK∗ [22] - indicate a suppression of the muon chan-
nel which is also compatible with the P ′5 anomaly. In this
case an immediate interpretation of lepton flavour univer-
sality (LFU) breaking is suggested due to the small theo-
retical uncertainties in their predictions [23, 24]. Whilst
the individual level of significance of the present anoma-
lies is still inconclusive, there is an appealing non-trivial
consistent pattern shown in global analysis fits [25–29].

The formalism of b decays is commonly described
within an effective field theory [30], which probes dis-
tinct energy scales; with regimes classified into short-
distance (high energies) perturbative and non-calculable
long-distance effects. These can be parametrised in the
weak Lagrangian in terms of effective operators with dif-
ferent Lorentz structures, Oi, with corresponding cou-
plings Ci - referred to as Wilson coefficients (WC). Only
a subset of the operators that are most sensitive to NP
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is examined in this work [31], i.e. O7 (virtual photon
exchanges), O9,10 (vector and axial currents) and corre-
sponding right-handed couplings with flipped helicities.
In this framework NP effects are incorporated by intro-
ducing deviations in the WCs [32] from their SM predic-

tions, i.e. Ci = CSM
i + CNP

i . For instance, the anomalous
pattern seen in semileptonic decays can be explained by
a shift in the coefficient C9 only, or C9 and C10 simultane-
ously [25–27]. A direct experimental determination of the
WCs is currently bounded by sizeable uncertainties that
arise from non-factorisable hadronic matrix elements that
are difficult to assess reliably from first principles. Some
promising approaches suggest to extract this contribu-
tion from data-driven analyses [33, 34] and by exploit-
ing analytical properties of its structure [31]. However,
these models still have intrinsic limitations, in particular
in the assumptions that enter in parametrisation of the
di-lepton invariant mass distribution.

In this Letter we propose a new model-independent
approach that from a simultaneous unbinned amplitude
analysis of both B̄0 → K̄∗0µ+µ− and B̄0 → K̄∗0e+e−

decays can, for the first time, unambiguously determine
LFU-breaking from direct measurements of WCs. This
work builds on the generalisation of Ref. [31], but it is
insensitive to the model assumptions of the parametrisa-
tion. This effect relies on the strong correlation between
the muon and electron modes imposed by the lepton-
flavour universality of the hadronic matrix elements. Fur-
thermore, in this method the full set of observables (e.g
RK∗ , P ′5 and branching fraction measurements) available

in B̄ → K̄∗`+`− decays is exploited, providing unprece-
dented precision on LFU in a single analysis.

Consider the differential decay rate for B̄ → K̄∗`+`−

decays (dominated by the on-shell K̄∗0 contribution)
fully described by four kinematic variables; the di-lepton

squared invariant mass, q2, and the three angles ~Ω =
(cos θ`, cos θK , φ) [30]. The probability density function
(p.d.f.) for this decay can be written as

p.d.f. =
1

Γ

d4Γ

dq2d3Ω
, with Γ =

∫
q
2

dq2 dΓ

dq2 , (1)
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with different q2 intervals depending on the lepton flavour
under study. For a complete definition of d4Γ/(dq2d3Ω)
we refer to [30, 35] and references therein. It is conve-
nient to explicitly write the WC dependence on the decay
width by the transversity amplitudes (λ =⊥, ‖, 0) as [31]

A(`)L,R
λ = N (`)

λ

{
(C

(`)
9 ∓ C

(`)
10 )Fλ(q2) (2)

+
2mbMB

q2

[
C

(`)
7 F

T
λ (q2)− 16π2MB

mb

Hλ(q2)

]}
,

where N (`)
λ is a normalisation factor, and F (T )

λ (q2) and

Hλ(q2) are referred to “local” and “non-local” hadronic

matrix elements, respectively. The F (T )
λ (q2) are form

factors, while Hλ(q2) encode the aforementioned non-
factorisable hadronic contributions and are described us-
ing two complementary parametrisations [31, 34] - for
brevity only a subset of results is shown for the latter
approach. In the following this function is expressed in
terms of a “conformal” variable z(q2) [31, 36, 37], with
an analytical expansion truncated at a given order zn

(herein referred to as Hλ[zn]), after removing singulari-
ties related to the J/ψ(1S) and ψ(2S). Further informa-
tion about the formalism is given in appendix A. Some
of the drawbacks of this expansion is that a-priori there
is no physics argument to justify the order of the poly-
nomial to be curtailed at - which in turn currently limits
any claim on NP sensitivity.

In order to overcome these points, we investigate the
LFU-breaking hypothesis using direct determinations of
the difference of Wilson coefficients between muons and
electrons, i.e.

∆Ci = C̃(µ)
i − C̃(e)

i , (3)

where the usual WCs C(µ,e)
i are renamed as C̃(µ,e)

i , since
an accurate disentanglement between the physical mean-

ing of C(µ,e)
i and the above-mentioned hadronic pollution

cannot be achieved at the current stage of the theory [38].
The key feature of this strategy is to realise that all
hadronic matrix elements are known to be lepton-flavour
universal, and thus are shared among both semileptonic
decays. This benefits from the large statistics available
for B̄0 → K̄∗0µ+µ− decays that is sufficient to enable
the determination of these multi-space parameters. Note
that an amplitude analysis of the electron mode only has
been previously disregarded, given the limited dataset in
either LHCb or Belle experiments. In a common frame-
work the hadronic contributions are treated as nuisance
parameters, while only the Wilson coefficients C̃(µ,e)

9 and

C̃(µ,e)
10 are kept separately for the two channels. For con-

sistency the WC C̃7 is also shared in the fit and fixed to
its SM value, given its universal coupling to photons and
the strong constraint from radiative B decays [39]. In the
following, all the right-handed WCs are fixed to their SM

values, i.e. C′ (µ,e)i = 0, while sensitivity studies on the

determination of the WCs C′ (µ)
9 and C′ (µ)

10 are detailed in
appendix B.

Signal-only ensembles of pseudo-experiments are gen-
erated with sample size corresponding roughly to the
yields foreseen in LHCb Run-II [8 fb−1] and future up-

grades [50 - 300 fb−1] [40], and Belle II [50 ab−1]. These
are extrapolated from Refs. [5, 6, 22] by scaling respec-
tively with luminosity and σbb̄ ∝

√
s for LHCb, where

s denotes the designed centre-of-mass energy of the b-
quark pair, and exclusively with luminosity for Belle II.
Note that for brevity most of the results are shown for
the representative scenario of LHCb Run-II. The stud-
ied q2 range corresponds to 1.1 GeV2 ≤ q2 ≤ 8.0 GeV2

and 11.0 GeV2 ≤ q2 ≤ 12.5 GeV2 for the muon mode
and 1.1 GeV2 ≤ q2 ≤ 7.0 GeV2 for the electron mode
in LHCb; while in Belle II the same kinematic regions
are considered for both semileptonic channels, namely
1.1 GeV2 ≤ q2 ≤ 8.0 GeV2 and 10.0 GeV2 ≤ q2 ≤
13.0 GeV2. This definition of q2 ranges are broadly
consistent with published results, and assumes improve-
ments in the electron mode resolution for LHCb [41].

Within the SM setup the Wilson coefficients are set to

CSM
9 = 4.27, CSM

10 = −4.17 and CSM
7 = −0.34 (see [31] and

references therein), corresponding to a fixed renormalisa-
tion scale of µ = 4.2 GeV. This baseline model is mod-
ified for two NP benchmark points (BMP), ∆C9 = −1
and ∆C9 = −∆C10 = −0.7, referred respectively to as
BMPC9 and BMPC9,10 , where NP is inserted only in the case

of muons, i.e. C(e)
i = CSM

i . These points are favoured by
several global fit analyses with similar significance [25–
27].

An extended unbinned maximum likelihood fit is per-
formed to these simulated samples, in which multivariate
Gaussian terms are added to the log-likelihood to incor-
porate prior knowledge on the nuisance parameters. In
order to probe the model-independence of the framework,
the non-local hadronic parametrisation is modified in sev-
eral ways (see appendix A for a detailed discussion), i.e.

i. baseline Hλ[z2] SM prediction [31] included as a
multivariate Gaussian constraint;

ii. no theoretical assumption on Hλ[z2] and with free-
floating parameters;

iii. higher orders of the analytical expansion of Hλ[zn]

up to z3 and z4 - free floating;

iv. and re-parametrisation of the non-local hadronic
matrix elements as proposed in Ref. [34], i.e. in-
cluding them as multiplicative factors to the corre-
sponding leading hadronic terms.

On the other hand, form factors parameters are taken
from [42] and, in order to guarantee a good agreement
between Light-Cone Sum Rules [43, 44] and Lattice re-
sults [45, 46], their uncertainties are doubled with respect
to Ref. [42].

Figure 1 shows the fit results for several alternative
parametrisations of the non-local hadronic contribution
for the BMPC9 hypothesis, with yields corresponding to
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FIG. 1. Two-dimensional sensitivity scans for the pair of Wil-

son coefficients C̃(µ)9 and C̃(e)9 for different non-local hadronic
parametrisation models evaluated at BMPC9 , and with the ex-
pected statistics after LHCb Run II. The contours correspond
to 99% confidence level statistical-only uncertainty bands and
the dotted black line indicates the LFU hypothesis.

LHCb Run-II scenario. We observe that the sensitivity

to C̃(µ,e)
9 is strongly dependent on the model assumption

used for the non-local matrix elements. Nonetheless, it is

noticeable that the high correlation of the C̃(µ)
9 and C̃(e)

9

coefficients is sufficient to preserve the true underlying
physics at any order of the series expansion Hλ[zn] and
without any parametric theoretical input, i.e. the two-
dimensional pull estimator with respect to the LFU hy-
pothesis is unbiased. We note that, as commonly stated
in the literature (see e.g. recent review in Ref. [47]), the

determination of C(µ,e)
10 is insensitive to the lack of knowl-

edge on the non-local hadronic effects. Nevertheless, its
precision is still bounded to the uncertainties on the form
factors, that are found to be the limiting factor by the
end of Run-II.

The sensitivity to the two benchmark-like NP scenar-
ios using the proposed pseudo observables ∆Ci is shown
in Fig. 2. We quantify the maximal expected signifi-
cance with respect to the SM to be 4.6 and 5.3σ for
BMPC9 and BMPC9,10 , respectively. Realistic experimental

effects are necessary to determine the exact sensitivity
achievable. Nevertheless, these results suggest that a first
observation (with a single measurement) of LFU break-
ing appears to be feasible with the expected recorded
statistics by the end of LHCb Run II. Furthermore, it
is interesting to examine the prospects for confirming
this evidence in the upcoming LHCb/Belle upgrades [48].
Figure 3 summarises the two-dimensional statistical-only
significances for the designed luminosities. Both LHCb
Upgrade and Belle II experiments have comparable sen-
sitivities (within 8.0 − 10σ), while LHCb High-Lumi
has an overwhelming significance. These unprecedented
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FIG. 2. Two-dimensional sensitivity scans for the proposed
observables ∆C9 and ∆C10 for different non-local hadronic
parametrisation models evaluated at (top) BMPC9 and (bot-
tom) BMPC9,10 , and with the expected statistics after LHCb

Run II. The contours correspond to 99% confidence level
statistical-only uncertainty bands.

datasets will not only yield insights on this phenomena
but also enable a deeper understanding of the nature of
NP - insensitive to both local and non-local hadronic un-
certainties.

Experimental resolution and detector accep-
tance/efficiency effects are not considered in this
work, as these would require further information from
current (non-public) or planned B -physics experiments.
Nevertheless, the precision on this measurement can
remain unbiased either by parametrising these effects
in the amplitude model and/or even re-computing the

angles or the q2 variables constraining the B invariant
mass [41]. Moreover, the differential decay width can
receive additional complex amplitudes from signal-like
backgrounds, e.g. Kπ S-wave from a non-resonant decay
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FIG. 3. Two-dimensional sensitivity scans for the proposed
observables ∆C9 and ∆C10 for the two considered NP sce-
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respond to 99% confidence level statistical-only uncertainty
bands expected for the (dashed) Belle II 50 ab

−1
and LHCb

Upgrade (dotted) 50 fb
−1

and (solid) 300 fb
−1

statistics.

and/or a scalar resonance [49]. These contributions are
determined to be small [5, 50], and in the proposed for-
malism they benefit from the same description between
the muon and electron mode (see detailed discussion in
Ref. [38]). Therefore, such contribution does not dilute
the expected sensitivity of the measurement.

Another important test to probe the stability of the
model consists in analysing potential issues that can rise
if the truncation Hλ[zn] is not a good description of na-
ture. We proceed as follows: we generate ensembles with
non-zero coefficients for Hλ[z3] and Hλ[z4], and we per-

form the fit with Hλ[z2]. Despite the mis-modelling of
the non-local hadronic effects in the fit, we observe that
the determination of ∆C9 and ∆C10 is always unbiased,
thanks to the relative cancellation of all the shared pa-
rameters between the two channels. It is worth mention-
ing that a hypothetical determination of the individual

C̃(µ,e)
9 and C̃(µ,e)

10 WCs can also produce a shift in their
central values that mimics the behaviour of NP [38].

In conclusion, we propose a clean and model-
independent method to combine all the available infor-
mation from B̄ → K̄∗`+`− decays for a precise determi-
nation of LFU-breaking differences of WCs, i.e. ∆C9 and
∆C10. This relies on a shared parametrisation of the local
(form-factors) and non-local (Hλ[zn]) hadronic matrix el-
ements between the muonic and electronic channels, that
in turn enables the determination of the observables of in-
terest free from any theoretical uncertainty. In addition,
this simultaneous analysis is more robust against exper-
imental effects such as mismodeling of the detector reso-
lution, since most parameters are effectively determined
from the muon mode. This would be an important bene-
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FIG. 4. Sensitivity to BMPC9,10 scenario for the expected statis-

tics after the LHCb Run II. The relative contribution (68, 95,
99% confidence level contours) of each step of the analysis
is shown in different colours, together with the result of full
amplitude method proposed in this letter.

fit for LHCb where the electron resolution is significantly
worse than that of muons. Figure 4 illustrates the use-
fulness of the newly-proposed observables by combining
the different information from angular analysis to branch-
ing ratio measurements. Due to the inclusiveness of the
approach, the expected sensitivity surpasses any of the
projections for the foreseen measurements of e.g. RK∗ or
P ′5 alone - given the benchmark points. Therefore, this
novel formalism can be the most immediate method to
observe unambiguously NP in B̄ → K̄∗`+`− decays.

A promising feature of this framework is the possibility
to extend the analysis to include other decay channels in-
volving flavour changing neutral currents. For instance,
the charged decay B̄+ → K̄∗+`+`− undergoes the same
physics and is easily accessible at the B-factories, while
other rare semi-leptonic decays such as B+ → K+`+`−

and Λb → Λ(∗)`+`− have a different phenomenology but
access the same NP information in terms of WC descrip-
tion. Thus, an unbinned global simultaneous fit to all
data involving b → s`+`− transitions is a natural and
appealing extension of this work. Moreover, the parame-
ter space of the investigated WCs can also be broadened
to incorporate direct measurement of the right-handed C′i
- currently weakly constrained by global fits [25–27].

ACKNOWLEDGMENTS

We acknowledge useful contributions from Michele
Atzeni, Gino Isidori, Danny van Dyk and Patrick Owen.
This work is supported by the Swiss National Science
Foundation (SNF) under contracts 173104 and 174182.



5

Appendix A: Formalism

The non-local hadronic matrix elements Hλ(q2) are
investigated using two complementary parametrisa-
tions [31, 34].

The nominal parametrisation [31] is obtained through
the mapping

q2 7→ z(q2) ≡

√
t+ − q

2 −√t+ − t0√
t+ − q

2 +
√
t+ − t0

, (A1)

where t+ = 4M2
D and t0 = t+−

√
t+(t+ −M

2
ψ(2S)), which

leads to the functionsHλ(z) that are characterised by two
singularities at zJ/ψ and zψ(2S). These can be expressed
as

Hλ(z) =
1− zz∗J/ψ
z − zJ/ψ

1− zz∗ψ(2S)

z − zψ(2S)

Ĥλ(z) , (A2)

where the functions Ĥλ(z) are analytical and can be
Taylor-expanded around z = 0 as

Ĥλ(z) =
[ n∑
k=0

α
(λ)
k zk

]
Fλ(z) . (A3)

Several orders of the polynomials are studied in the text.
Note that any additional order k introduces a complex

parameter, α
(λ)
k , for each of the polarisations λ =⊥, ‖, 0.

These nuisance parameters can be either free floated in
the fit (nominal configuration labelled as Hλ[z2, ..., z4])
or Gaussian constrained to their SM prediction (labelled

as Hλ[z2] with theo. priors in the plots).
Finally, the non-local hadronic matrix elements are

reparametrised following Ref. [34], in which these non-
local hadronic contributions are included as multiplica-
tive factors, leading to a reformulation of the amplitudes
of Eq. 2 as

A(`)L,R
λ = N (`)

λ

{
(C

(`)
9 ∓ C

(`)
10 )Fλ(q2)

[
1 + aλ + bλ

q2

6 GeV2

]
+

2mbMB

q2 C
(`)
7 F

T
λ (q2)

}
, (A4)

where aλ and bλ are complex coefficients Gaussian con-
strained around zero.

Appendix B: Right-handed Wilson coefficients

An extension of the physics case of the proposed
method is to investigate the sensitivity to the chirality-
flipped counterparts of the usual Wilson coefficients, i.e.

C′(µ)
9 and C′(µ)

10 . Following the formalism discussed in
this letter, the primed WCs are examined by consider-
ing in addition to the BMPC9,10 three different modified

)µ(
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C
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FIG. 5. Two-dimensional sensitivity scans for the pair of

Wilson coefficients C′(µ)9 and C′(µ)10 for different non-local
hadronic parametrisation models for a NP scenario with

C′(µ)9 = C′(µ)10 = 0.3. The contours correspond to 99% confi-
dence level statistical-only uncertainty bands evaluated with
the expected statistics after LHCb Run II.

NP scenarios for the muon only: C′(µ)
9,10 = C′SM

9,10 = 0;

C′(µ)
9 = C′(µ)

10 = 0.3; and C′(µ)
9 = −C′(µ)

10 = 0.3. Notice

that for the electron mode the C′(e)9,10 is set and fixed to

the SM value C′SM
9,10 = 0.

Figure 5 shows the fit results for different order of
the analytic expansion for the non-local hadronic con-

tribution for a NP scenario with C′(µ)
9 = C′(µ)

10 = 0.3,
and yields corresponding to the LHCb Run II expected

statistics. The dependency on the determination of C′(µ)
9

and C′(µ)
10 on the order of the expansion clearly sat-

urates after Hλ[z3] and allows a measurement of the
primed Wilson coefficients for the muon decay channel
B0 → K∗0µ+µ− independent on the theoretical hadronic
uncertainty. Figure 6 shows the prospects for the sen-

sitivity to the C′(µ)
9 and C′(µ)

10 Wilson coefficients corre-
sponding to the expected statistics at the LHCb upgrade
with 50 fb−1 and 300 fb−1. Note that only with the full
capability of the LHCb experiment it is possible to start
disentangling the different NP hypotheses.
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[19] S. Jäger and J. Martin Camalich, Phys. Rev. D93,

014028 (2016), arXiv:1412.3183 [hep-ph].
[20] M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul,

L. Silvestrini, and M. Valli, JHEP 06, 116 (2016),
arXiv:1512.07157 [hep-ph].

[21] R. Aaij et al. (LHCb), Phys. Rev. Lett. 113, 151601
(2014), arXiv:1406.6482 [hep-ex].

[22] R. Aaij et al. (LHCb), JHEP 08, 055 (2017),
arXiv:1705.05802 [hep-ex].

[23] G. Hiller and F. Kruger, Phys. Rev. D69, 074020 (2004),
arXiv:hep-ph/0310219 [hep-ph].

[24] M. Bordone, G. Isidori, and A. Pattori, Eur. Phys. J.
C76, 440 (2016), arXiv:1605.07633 [hep-ph].

[25] B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias,
and J. Virto, JHEP 01, 093 (2018), arXiv:1704.05340
[hep-ph].

[26] W. Altmannshofer, P. Stangl, and D. M. Straub, Phys.
Rev. D96, 055008 (2017), arXiv:1704.05435 [hep-ph].

[27] T. Hurth, F. Mahmoudi, D. Martinez Santos, and
S. Neshatpour, Phys. Rev. D96, 095034 (2017),

http://dx.doi.org/10.1016/S0370-2693(97)00068-3
http://dx.doi.org/10.1016/S0370-2693(97)00068-3
http://arxiv.org/abs/hep-ph/9612269
http://dx.doi.org/10.1142/S0217751X97001432
http://arxiv.org/abs/hep-ph/9612446
http://dx.doi.org/10.1016/S0370-2693(97)00695-3
http://arxiv.org/abs/hep-ph/9704277
http://dx.doi.org/ 10.1103/PhysRevLett.79.978
http://arxiv.org/abs/hep-ph/9704274
http://arxiv.org/abs/hep-ph/9704274
http://dx.doi.org/ 10.1007/JHEP02(2016)104
http://arxiv.org/abs/1512.04442
http://arxiv.org/abs/1612.05014
http://arxiv.org/abs/1612.05014
http://dx.doi.org/ 10.1007/JHEP07(2013)084
http://arxiv.org/abs/1305.2168
http://dx.doi.org/ 10.1007/JHEP06(2014)133
http://arxiv.org/abs/1403.8044
http://dx.doi.org/ 10.1103/PhysRevLett.111.191801
http://dx.doi.org/ 10.1103/PhysRevLett.111.191801
http://arxiv.org/abs/1308.1707
http://dx.doi.org/10.1007/JHEP06(2016)092
http://arxiv.org/abs/1510.04239
http://dx.doi.org/10.1007/JHEP01(2014)069
http://dx.doi.org/10.1007/JHEP01(2014)069
http://arxiv.org/abs/1310.1082
http://dx.doi.org/10.1007/JHEP12(2013)009
http://arxiv.org/abs/1309.2466
http://dx.doi.org/10.1140/epjc/s10052-013-2646-9
http://dx.doi.org/10.1140/epjc/s10052-013-2646-9
http://arxiv.org/abs/1308.1501
http://dx.doi.org/ 10.1103/PhysRevD.92.054013
http://arxiv.org/abs/1504.07928
http://dx.doi.org/10.1103/PhysRevD.90.054014
http://dx.doi.org/10.1103/PhysRevD.90.054014
http://arxiv.org/abs/1408.1627
http://dx.doi.org/ 10.1007/JHEP02(2015)142
http://dx.doi.org/ 10.1007/JHEP02(2015)142
http://arxiv.org/abs/1409.0882
http://dx.doi.org/10.1007/JHEP05(2015)006
http://dx.doi.org/10.1007/JHEP05(2015)006
http://arxiv.org/abs/1412.1791
http://dx.doi.org/10.1007/JHEP05(2013)043
http://arxiv.org/abs/1212.2263
http://dx.doi.org/10.1103/PhysRevD.93.014028
http://dx.doi.org/10.1103/PhysRevD.93.014028
http://arxiv.org/abs/1412.3183
http://dx.doi.org/10.1007/JHEP06(2016)116
http://arxiv.org/abs/1512.07157
http://dx.doi.org/ 10.1103/PhysRevLett.113.151601
http://dx.doi.org/ 10.1103/PhysRevLett.113.151601
http://arxiv.org/abs/1406.6482
http://dx.doi.org/ 10.1007/JHEP08(2017)055
http://arxiv.org/abs/1705.05802
http://dx.doi.org/10.1103/PhysRevD.69.074020
http://arxiv.org/abs/hep-ph/0310219
http://dx.doi.org/10.1140/epjc/s10052-016-4274-7
http://dx.doi.org/10.1140/epjc/s10052-016-4274-7
http://arxiv.org/abs/1605.07633
http://dx.doi.org/10.1007/JHEP01(2018)093
http://arxiv.org/abs/1704.05340
http://arxiv.org/abs/1704.05340
http://dx.doi.org/10.1103/PhysRevD.96.055008
http://dx.doi.org/10.1103/PhysRevD.96.055008
http://arxiv.org/abs/1704.05435
http://dx.doi.org/10.1103/PhysRevD.96.095034


7

arXiv:1705.06274 [hep-ph].
[28] M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco,

A. Paul, L. Silvestrini, and M. Valli, Eur. Phys. J. C77,
688 (2017), arXiv:1704.05447 [hep-ph].

[29] A. K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Ku-
mar, and D. London, Phys. Rev. D96, 095009 (2017),
arXiv:1704.07397 [hep-ph].

[30] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras,
D. M. Straub, and M. Wick, JHEP 01, 019 (2009),
arXiv:0811.1214 [hep-ph].

[31] C. Bobeth, M. Chrzaszcz, D. van Dyk, and J. Virto,
(2017), arXiv:1707.07305 [hep-ph].

[32] A. Ali, G. F. Giudice, and T. Mannel, Z. Phys. C67,
417 (1995), arXiv:hep-ph/9408213 [hep-ph].

[33] T. Blake, U. Egede, P. Owen, G. Pomery, and K. A.
Petridis, (2017), arXiv:1709.03921 [hep-ph].

[34] T. Hurth, C. Langenbruch, and F. Mahmoudi, JHEP
11, 176 (2017), arXiv:1708.04474 [hep-ph].

[35] C. Bobeth, G. Hiller, and G. Piranishvili, JHEP 07, 106
(2008), arXiv:0805.2525 [hep-ph].

[36] C. G. Boyd, B. Grinstein, and R. F. Lebed, Phys. Lett.
B353, 306 (1995), arXiv:hep-ph/9504235 [hep-ph].

[37] C. Bourrely, I. Caprini, and L. Lellouch, Phys. Rev. D79,
013008 (2009), [Erratum: Phys. Rev.D82,099902(2010)],
arXiv:0807.2722 [hep-ph].

[38] M. Chrzaszcz, A. Mauri, N. Serra, R. Silva Coutinho,
and D. van Dyk, (2018), arXiv:1805.06378 [hep-ph].

[39] A. Paul and D. M. Straub, JHEP 04, 027 (2017),

arXiv:1608.02556 [hep-ph].
[40] R. Aaij et al. (LHCb Collaboration), Expression of In-

terest for a Phase-II LHCb Upgrade: Opportunities in
flavour physics, and beyond, in the HL-LHC era, Tech.
Rep. CERN-LHCC-2017-003 (CERN, Geneva, 2017).

[41] F. Lionetto, N. Serra, O. Steinkamp, and K. Mueller,

“Measurements of Angular Observables of B
0 →

K
∗0
µ
+
µ
−

and B
0 → K

∗0
e
+
e
−

Decays and the
Upgrade of LHCb,” https://cds.cern.ch/record/

2624938 (2018), presented 22 Mar 2018.
[42] A. Bharucha, D. M. Straub, and R. Zwicky, JHEP 08,

098 (2016), arXiv:1503.05534 [hep-ph].
[43] P. Ball and V. M. Braun, Phys. Rev. D58, 094016 (1998),

arXiv:hep-ph/9805422 [hep-ph].
[44] A. Khodjamirian, T. Mannel, and N. Offen, Phys. Rev.

D75, 054013 (2007), arXiv:hep-ph/0611193 [hep-ph].
[45] D. Becirevic, V. Lubicz, and F. Mescia, Nucl. Phys.

B769, 31 (2007), arXiv:hep-ph/0611295 [hep-ph].
[46] R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Phys.

Rev. D89, 094501 (2014), arXiv:1310.3722 [hep-lat].
[47] B. Capdevila, S. Descotes-Genon, L. Hofer, and J. Ma-

tias, JHEP 04, 016 (2017), arXiv:1701.08672 [hep-ph].
[48] J. Albrecht, F. Bernlochner, M. Kenzie, S. Reichert,

D. Straub, and A. Tully, (2017), arXiv:1709.10308 [hep-
ph].

[49] D. Becirevic and A. Tayduganov, Nucl. Phys. B868, 368
(2013), arXiv:1207.4004 [hep-ph].

[50] R. Aaij et al. (LHCb), JHEP 11, 047 (2016), [Erratum:
JHEP04,142(2017)], arXiv:1606.04731 [hep-ex].

http://arxiv.org/abs/1705.06274
http://dx.doi.org/ 10.1140/epjc/s10052-017-5270-2
http://dx.doi.org/ 10.1140/epjc/s10052-017-5270-2
http://arxiv.org/abs/1704.05447
http://dx.doi.org/ 10.1103/PhysRevD.96.095009
http://arxiv.org/abs/1704.07397
http://dx.doi.org/ 10.1088/1126-6708/2009/01/019
http://arxiv.org/abs/0811.1214
http://arxiv.org/abs/1707.07305
http://dx.doi.org/10.1007/BF01624585
http://dx.doi.org/10.1007/BF01624585
http://arxiv.org/abs/hep-ph/9408213
http://arxiv.org/abs/1709.03921
http://dx.doi.org/10.1007/JHEP11(2017)176
http://dx.doi.org/10.1007/JHEP11(2017)176
http://arxiv.org/abs/1708.04474
http://dx.doi.org/10.1088/1126-6708/2008/07/106
http://dx.doi.org/10.1088/1126-6708/2008/07/106
http://arxiv.org/abs/0805.2525
http://dx.doi.org/10.1016/0370-2693(95)00480-9
http://dx.doi.org/10.1016/0370-2693(95)00480-9
http://arxiv.org/abs/hep-ph/9504235
http://dx.doi.org/10.1103/PhysRevD.82.099902, 10.1103/PhysRevD.79.013008
http://dx.doi.org/10.1103/PhysRevD.82.099902, 10.1103/PhysRevD.79.013008
http://arxiv.org/abs/0807.2722
http://arxiv.org/abs/1805.06378
http://dx.doi.org/10.1007/JHEP04(2017)027
http://arxiv.org/abs/1608.02556
http://cds.cern.ch/record/2244311
http://cds.cern.ch/record/2244311
http://cds.cern.ch/record/2244311
https://cds.cern.ch/record/2624938
https://cds.cern.ch/record/2624938
https://cds.cern.ch/record/2624938
https://cds.cern.ch/record/2624938
https://cds.cern.ch/record/2624938
http://dx.doi.org/10.1007/JHEP08(2016)098
http://dx.doi.org/10.1007/JHEP08(2016)098
http://arxiv.org/abs/1503.05534
http://dx.doi.org/10.1103/PhysRevD.58.094016
http://arxiv.org/abs/hep-ph/9805422
http://dx.doi.org/10.1103/PhysRevD.75.054013
http://dx.doi.org/10.1103/PhysRevD.75.054013
http://arxiv.org/abs/hep-ph/0611193
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.032
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.032
http://arxiv.org/abs/hep-ph/0611295
http://dx.doi.org/ 10.1103/PhysRevD.89.094501
http://dx.doi.org/ 10.1103/PhysRevD.89.094501
http://arxiv.org/abs/1310.3722
http://dx.doi.org/10.1007/JHEP04(2017)016
http://arxiv.org/abs/1701.08672
http://arxiv.org/abs/1709.10308
http://arxiv.org/abs/1709.10308
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.016
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.016
http://arxiv.org/abs/1207.4004
http://dx.doi.org/ 10.1007/JHEP11(2016)047, 10.1007/JHEP04(2017)142
http://arxiv.org/abs/1606.04731

	Towards establishing Lepton Flavour Universality violation in *+- decays
	Abstract
	Acknowledgments
	Formalism
	Right-handed Wilson coefficients
	References


