Supplemental material for "Towards establishing Lepton Flavour Universality violation in $\bar{B} \to \bar{K}^* \ell^+ \ell^-$ decays"

Andrea Mauri,^{*} Nicola Serra,[†] and Rafael Silva Coutinho[‡]

Physik-Institut, Universität Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland

An extension of the physics case of the proposed method is to investigate the sensitivity to the chirality-flipped counterparts of the usual Wilson coefficients, *i.e.* $C_{9}^{\prime(\mu)}$ and $C_{10}^{\prime(\mu)}$. Following the formalism discussed in this letter, the primed WCs are examined by considering in addition to the BMP_{C_{9,10}} three different modified NP scenarios for the muon only: $C_{9,10}^{\prime(\mu)} = C_{9,10}^{\prime SM} = 0$; $C_{9}^{\prime(\mu)} = C_{10}^{\prime(\mu)} = 0.3$; and $C_{9}^{\prime(\mu)} = -C_{10}^{\prime(\mu)} = 0.3$. Notice that for the electron mode the $C_{9,10}^{\prime(e)}$ is set and fixed to the SM value $C_{9,10}^{\prime SM} = 0$.

Figure 1 shows the fit results for different order of the analytic expansion for the non-local hadronic contribution for a NP scenario with $\mathcal{C}_{9}^{\prime(\mu)} = \mathcal{C}_{10}^{\prime(\mu)} = 0.3$ and yields corresponding to the LHCb Run II expected

FIG. 1. Two-dimensional sensitivity scans for the pair of Wilson coefficients $C_{9}^{\prime(\mu)}$ and $C_{10}^{\prime(\mu)}$ for different non-local hadronic parametrisation models for a NP scenario with $C_{9}^{\prime(\mu)} = C_{10}^{\prime(\mu)} = 0.3$. The contours correspond to 99% confidence level statistical-only uncertainty bands evaluated with the expected statistics after LHCb Run II.

statistics. The dependency on the determination of $C_9^{\prime(\mu)}$ and $C_{10}^{\prime(\mu)}$ on the order of the expansion clearly saturates after $\mathcal{H}_{\lambda}[z^3]$ and allows a measurement of the primed Wilson coefficients for the muon decay channel $B^0 \to K^{*0}\mu^+\mu^-$ independent on the theoretical hadronic uncertainty. Figure 2 shows the prospects for the sensitivity to the $C_9^{\prime(\mu)}$ and $C_{10}^{\prime(\mu)}$ Wilson coefficients corresponding to the expected statistics at the LHCb upgrade with 50 fb⁻¹ and 300 fb⁻¹. Note that only with the full capability of the LHCb experiment it is possible to start disentangling the different NP hypotheses.

FIG. 2. Two-dimensional sensitivity scans for the pair of Wilson coefficients $C_9^{\prime(\mu)}$ and $C_{10}^{\prime(\mu)}$ for three NP scenarios: (blue) $C_9^{\prime(\mu)} = C_{10}^{\prime(\mu)} = 0$, (orange) $C_9^{\prime(\mu)} = C_{10}^{\prime(\mu)} = 0.3$ and (magenta) $C_9^{\prime(\mu)} = -C_{10}^{\prime(\mu)} = 0.3$. The contours correspond to 99% confidence level statistical-only uncertainty bands expected for the LHCb Upgrade (dotted) 50 fb⁻¹ and (solid) 300 fb⁻¹ statistics.

^{*} a.mauri@cern.ch

[†] nicola.serra@cern.ch

[‡] rafael.silva.coutinho@cern.ch