import pickle from ROOT import gStyle from ROOT import TColor from ROOT import gROOT import ROOT as R #import statistics from TTMapping import TTMapping from TTMapping import TTNumberOfSensors from TTMapping import PlotTTBoxes from TTMapping import PlotTTLabels from Create_Maps import TT_Map as TT_Map_func from config import TTMeanRange from config import TTWidthRange from config import TTEffRange from config import TTclusterSizeRange from config import TTSNratioRange from config import TTnoiseFractionRange from config import TToccupancyRange from config import UsePredefinedRanges from config import UsePredefinedTitles from config import TTMeanTitle from config import TTWidthTitle from config import TTEffTitle from config import TTclusterSizeTitle from config import TTSNratioTitle from config import TTnoiseFractionTitle from config import TToccupancyTitle from config import IncudeMissingSectorsToSummary from array import array from config import extra_name from config import final_eff_window def CreateTTHist(data, variable, mode, suffix, address="Plots/", test_mode = False): """ This finction creates map of the TT from given dictionary. Dictionary whould have a form: data = {<st_id1>:{ <variable>:<number or TH1> }, <st_id2>:{}, ...} depending on mode, the function will create a map according to the: - Number ("Value" mode) - Mean of the histogram ("Mean" mode) - R.M.S. of the histogram ("Sigma" mode) st_id is a 3-digit ID of a sector, which is defined in STTrackTuple algorithm. The map between st_id and sector name can be found it Create_Maps.py file (or be obtained with TT_Map_func()) """ global TTMeanRange global TTWidthRange global TTEffRange global UsePredefinedRanges global UsePredefinedTitles global TTMeanTitle global TTWidthTitle global TTEffTitle global IncudeMissingSectorsToSummary first_lower = lambda s: s[:1].lower() + s[1:] if s else '' #Check if requested variable is in collection. variable_in_collection = False for st_id in data: if variable in data[st_id]: variable_in_collection = True break if not variable_in_collection: return False TT_Map = TT_Map_func() stations = ["a", "b"] regions = ["A","B","C"] layers = ["X", "U", "V"] gROOT.SetStyle("Modern") gROOT.ForceStyle() gStyle.SetOptStat(0) gStyle.SetOptFit(0) gStyle.SetPadRightMargin(0.2) gStyle.SetTitleX(0.5) gStyle.SetTitleAlign(23) gStyle.SetTitleBorderSize(0) gStyle.SetPaintTextFormat("5.0f") gStyle.SetStatFormat("5.5f") gStyle.SetTitleFontSize(0.07) gStyle.SetPadTickY(1) gStyle.SetPadTickX(1) nColors=52 MyPalette = [0]*nColors stops = [0.00, 0.50, 1.00] red = [0.80, 1.00, 0.00] green = [0.00, 1.00, 0.00] blue = [0.00, 1.00, 0.80] s = array('d', stops) r = array('d', red) g = array('d', green) b = array('d', blue) FI = TColor.CreateGradientColorTable(3, s, r, g, b, nColors); for k in range(0, nColors): MyPalette[k] = FI+k gStyle.SetNumberContours(nColors) gStyle.SetPalette(nColors, array('i',MyPalette)) gROOT.ForceStyle() m_mapping={} m_nSensors={} for st_id in TT_Map: m_mapping[st_id]=TTMapping(TT_Map[st_id]) m_nSensors[st_id] = TTNumberOfSensors(TT_Map[st_id]) nBinsX = 43 nBinsY = 40 lowX = -21.5 upX = 21.5 lowY = -20 upY = 20 if (mode =="Mean") or (variable == "mean"): maximum = TTMeanRange[1] minimum = TTMeanRange[0] if UsePredefinedTitles: title = TTMeanTitle else: title = "Bias distribution, [mm]" elif (mode =="Sigma") or (variable == "width"): maximum = TTWidthRange[1] minimum = TTWidthRange[0] if UsePredefinedTitles: title = TTWidthTitle else: title = "Resolution, [mm]" elif variable == "efficiency": maximum = TTEffRange[1] minimum = TTEffRange[0] if UsePredefinedTitles: title = TTEffTitle else: title = "Hit efficiency" elif variable == "clusterSize_mean": maximum = TTclusterSizeRange[1] minimum = TTclusterSizeRange[0] title = TTclusterSizeTitle elif variable == "SNratio_max": maximum = TTSNratioRange[1] minimum = TTSNratioRange[0] title = TTSNratioTitle elif variable == "noise_fraction": maximum = TTnoiseFractionRange[1] minimum = TTnoiseFractionRange[0] title = TTnoiseFractionTitle elif variable == "occupancy": maximum = TToccupancyRange[1] minimum = TToccupancyRange[0] title = TToccupancyTitle masked_sectors = [] vals = [] hist = R.TH2D("hist", title, nBinsX, lowX, upX, nBinsY, lowY, upY) if not test_mode: for st_id in data: for i in range (0, m_nSensors[st_id]): if mode =="Mean": hist.Fill(m_mapping[st_id][0], m_mapping[st_id][1]+i, data[st_id][variable].GetMean()) if (i==0): if IncudeMissingSectorsToSummary: vals.append(data[st_id][variable].GetMean()) else: if (data[st_id][variable].GetMean()<maximum) and (data[st_id][variable].GetMean()>minimum): vals.append(data[st_id][variable].GetMean()) if (i==0) and((maximum<data[st_id][variable].GetMean()) or (minimum>data[st_id][variable].GetMean())): masked_sectors.append(TT_Map[st_id]) print "Atention, hit bias of sector "+TT_Map[st_id]+" is out of hist range. The value is "+str(data[st_id][variable].GetMean()) elif mode =="Sigma": hist.Fill(m_mapping[st_id][0], m_mapping[st_id][1]+i, data[st_id][variable].GetRMS()) if (i==0): if IncudeMissingSectorsToSummary: vals.append(data[st_id][variable].GetRMS()) else: if (data[st_id][variable].GetRMS()<maximum) and (data[st_id][variable].GetRMS()>minimum): vals.append(data[st_id][variable].GetRMS()) if (i==0) and((maximum<data[st_id][variable].GetRMS()) or (minimum>data[st_id][variable].GetRMS())): masked_sectors.append(TT_Map[st_id]) print "Atention, resolution of sector "+TT_Map[st_id]+" is out of hist range. The value is "+str(data[st_id][variable].GetRMS()) elif mode =="Value": hist.Fill(m_mapping[st_id][0], m_mapping[st_id][1]+i, data[st_id][variable]) if (i==0): if IncudeMissingSectorsToSummary: vals.append(data[st_id][variable]) else: if (data[st_id][variable]<maximum) and (data[st_id][variable]>minimum): vals.append(data[st_id][variable]) if (i==0) and((maximum<data[st_id][variable]) or (minimum>data[st_id][variable])): masked_sectors.append(TT_Map[st_id]) if variable == "efficiency": try: print "Hit efficiency of sector "+TT_Map[st_id]+" is not shown since it is out of range ($\epsilon = "+str(data[st_id]["efficiency"]) + " \pm "+str(data[st_id]["err_efficiency"])+"$)." except: print "Atention, "+variable+" of sector "+TT_Map[st_id]+" is out of hist range. The value is "+str(data[st_id][variable]) else: print "Atention, "+variable+" of sector "+TT_Map[st_id]+" is out of hist range. The value is "+str(data[st_id][variable]) else: print "Please use one of the following modes: Mean, Sigma, Value" c = R.TCanvas("c","c",600,600) if UsePredefinedRanges: hist.SetMaximum( maximum) hist.SetMinimum( minimum) #if variable == "occupancy": # c.SetLogz() hist.Draw("COLZ") #if test_mode: PlotTTBoxes(hist,nBinsX, lowX, upX, nBinsY, lowY, upY, masked_sectors) PlotTTLabels(hist) gStyle.SetOptStat(1111110) gStyle.SetOptFit(1111110) gROOT.ForceStyle() if not test_mode: if variable == "efficiency" or variable == "noise_fraction": mode = "wind"+str(final_eff_window)+"_"+mode c.SaveAs(address+variable+"_"+mode+"_TT_"+suffix+extra_name+".pdf") c.SaveAs(address+variable+"_"+mode+"_TT_"+suffix+extra_name+".C") #gROOT.ProcessLine(".x lhcbStyle.C") #gStyle.SetPadRightMargin(0.1) #gStyle.SetPadLeftMargin(0.1) gStyle.SetOptStat('erm') gROOT.ForceStyle() #lhcbStyle() try: from config import nBins_in_summary nBins = nBins_in_summary except: nBins = 50 if (mode =="Mean") or (variable == "mean"): hist_summary = R.TH1D("hist_summary", "TT "+first_lower(title)+"; Bias [mm];Number of sectors", nBins, min(vals), max(vals)) elif (mode =="Sigma") or (variable == "width"): hist_summary = R.TH1D("hist_summary", "TT "+first_lower(title)+"; Resolution [mm];Number of sectors", nBins, min(vals), max(vals)) elif variable == "efficiency": hist_summary = R.TH1D("hist_summary", "TT "+first_lower(title)+";Hit detection efficiency;Number of sectors", nBins, min(vals), max(vals)) elif variable == "clusterSize_mean": hist_summary = R.TH1D("hist_summary", "TT "+first_lower(title)+";Cluster size;Number of sectors", nBins, min(vals), max(vals)) elif variable == "SNratio_max": hist_summary = R.TH1D("hist_summary", "TT "+first_lower(title)+";S/N ratio;Number of sectors", nBins, min(vals), max(vals)) elif variable == "noise_fraction": hist_summary = R.TH1D("hist_summary", "TT "+first_lower(title)+";Noise fraction;Number of sectors", nBins, min(vals), max(vals)) elif variable == "occupancy": hist_summary = R.TH1D("hist_summary", "TT "+first_lower(title)+";Occupancy;Number of sectors", nBins, min(vals), max(vals)) else: hist_summary = R.TH1D("hist_summary", title, nBins, min(vals), max(vals)) #hist_summary.GetYaxis().SetTitleOffset(1.2) #hist_summary.GetYaxis().SetLabelSize(0.03) #hist_summary.GetXaxis().SetLabelSize(0.03) for v in vals: hist_summary.Fill(v) c_s = R.TCanvas("c_s","c_s",800,800) hist_summary.Draw() R.gPad.Update() if variable == "efficiency": st = hist_summary.FindObject("stats") st.SetX1NDC(0.15) st.SetX2NDC(0.35) st.SetY1NDC(0.65) st.SetY2NDC(0.85) elif variable == "mean": st = hist_summary.FindObject("stats") st.SetX1NDC(0.65) st.SetX2NDC(0.85) st.SetY1NDC(0.65) st.SetY2NDC(0.85) elif variable == "width": st = hist_summary.FindObject("stats") st.SetX1NDC(0.78) st.SetX2NDC(0.98) st.SetY1NDC(0.65) st.SetY2NDC(0.85) R.gPad.Update() if not test_mode: c_s.SaveAs(address+"Summary_"+variable+"_"+mode+"_TT_"+suffix+extra_name+".pdf") c_s.SaveAs(address+"Summary_"+variable+"_"+mode+"_TT_"+suffix+extra_name+".C") # print "Mean : "+str(statistics.mean(vals))+" +/- "+str(statistics.stdev(vals)) # print "Median : "+str(statistics.median(vals)) gROOT.SetStyle("Modern") gROOT.ForceStyle() return c if __name__ == "__main__": c = CreateTTHist(True, "unbiased_residual","Mean", "suffix","Plots/", True)