#NETWORK ARCHITECTURES import numpy as np import os import math import tensorflow as tf import matplotlib.pyplot as plt from datetime import datetime from architectures.utils.NN_building_blocks import * def lrelu(x, alpha=0.1): return tf.maximum(alpha*x,x) # some dummy constants LEARNING_RATE = None LEARNING_RATE_D = None LEARNING_RATE_G = None BETA1 = None BATCH_SIZE = None EPOCHS = None SAVE_SAMPLE_PERIOD = None PATH = None SEED = None rnd_seed=1 #untested yet class DNN(object): """ Builds densely connected deep neural network. Regularization implemented with dropout, no regularization parameter implemented yet. Minimization through AdamOptimizer (adaptive learning rate) Constructor inputs: -Positional arguments: - dim: (int) input features - sizes: (dict) python dictionary containing the size of the dense layers and the number of classes for classification sizes = {'dense_layer_n' :[mo, apply_batch_norm, keep_probability, act_f, w_init] 'n_classes': n_classes } mo: (int) size of layer n apply_batch_norm: (bool) apply batch norm at layer n keep_probability: (float32) probability of activation of output act_f: (function) activation function for layer n w_init: (tf initializer) random initializer for weights at layer n n_classes: number of classes -Keyword arguments -lr: (float32) learning rate arg for the AdamOptimizer -beta1: (float32) beta1 arg for the AdamOptimizer -batch_size: (int) size of each batch -epochs: (int) number of times the training has to be repeated over all the batches -save_sample: (int) after how many iterations of the training algorithm performs the evaluations in fit function -path: (str) path for saving the session checkpoint Class attributes: - X: (tf placeholder) input tensor of shape (batch_size, input features) - Y: (tf placeholder) label tensor of shape (batch_size, n_classes) (one_hot encoding) - Y_hat: (tf tensor) shape=(batch_size, n_classes) predicted class (one_hot) - loss: (tf scalar) reduced mean of cost computed with softmax cross entropy with logits - train_op: gradient descent algorithm with AdamOptimizer """ def __init__(self, dim, sizes, lr=LEARNING_RATE, beta1=BETA1, batch_size=BATCH_SIZE, epochs=EPOCHS, save_sample=SAVE_SAMPLE_PERIOD, path=PATH, seed=SEED): self.seed=seed self.n_classes = sizes['n_classes'] self.dim = dim self.sizes=sizes self.X = tf.placeholder( tf.float32, shape=(None, dim), name = 'X_data' ) self.X_input = tf.placeholder( tf.float32, shape=(None, dim), name = 'X_input' ) self.batch_sz=tf.placeholder( tf.int32, shape=(), name='batch_sz', ) self.Y = tf.placeholder( tf.float32, shape=(None, self.n_classes), name='Y' ) self.Y_hat = self.build_NN(self.X, self.conv_sizes) cost = tf.nn.softmax_cross_entropy_with_logits( logits= self.Y_hat, labels= self.Y ) self.loss = tf.reduce_mean(cost) self.train_op = tf.train.AdamOptimizer( learning_rate=lr, beta1=beta1 ).minimize(self.loss ) #convolve from input with tf.variable_scope('classification') as scope: scope.reuse_variables() self.Y_hat_from_test = self.convolve( self.X_input, reuse=True, is_training=False, keep_prob=1 ) self.accuracy = evaluation(self.Y_hat_from_test, self.Y) #saving for later self.lr = lr self.batch_size=batch_size self.epochs = epochs self.path = path self.save_sample = save_sample def build_NN(self, X, sizes): with tf.variable_scope('classification') as scope: mi = self.dim self.dense_layers = [] count = 0 for mo, apply_batch_norm, keep_prob, act_f, w_init in sizes['dense_layers']: name = 'dense_layer_{0}'.format(count) count += 1 layer = DenseLayer(name,mi, mo, apply_batch_norm, keep_prob, act_f, w_init) mi = mo self.dense_layers.append(layer) #readout layer readout_layer = DenseLayer('readout_layer', mi, self.n_classes, False, 1, tf.nn.softmax, tf.random_uniform_initializer(seed=self.seed)) self.dense_layers.append(readout_layer) return self.propagate(X) def propagate(self, X, reuse=None, is_training=True): print('Propagation') print('Input for propagation', X.get_shape()) output = X for layer in self.dense_layers: output.layer.forward(output, reuse, is_training) print('Logits shape', output.get_shape()) return output def set_session(self, session): for layer in self.dense_layers: layer.set_session(session) def fit(self, X_train, Y_train, X_test, Y_test): """ Function is called if the flag is_training is set on TRAIN. If a model already is present continues training the one already present, otherwise initialises all params from scratch. Performs the training over all the epochs, at when the number of epochs of training is a multiple of save_sample prints out training cost, train and test accuracies Plots a plot of the cost versus epoch. Positional arguments: - X_train: (ndarray) size=(train set size, input features) training sample set - X_test: (ndarray) size=(test set size, input features) test sample set - Y_train: (ndarray) size=(train set size, input features) training labels set - Y_test: (ndarray) size=(test set size, input features) test labels set """ seed = self.seed N = X_train.shape[0] test_size = X_test.shape[0] n_batches = N // self.batch_size print('\n ****** \n') print('Training CNN for '+str(self.epochs)+' epochs with a total of ' +str(N)+ ' samples\ndistributed in ' +str(n_batches)+ ' batches of size '+str(self.batch_size)+'\n') print('The learning rate set is '+str(self.lr)) print('\n ****** \n') costs = [] for epoch in range(self.epochs): train_acc = 0 test_acc =0 train_accuracies=[] test_accuracies=[] seed += 1 train_batches = supervised_random_mini_batches(X_train, Y_train, self.batch_size, seed) test_batches = supervised_random_mini_batches(X_test, Y_test, self.batch_size, seed) for train_batch in train_batches: (X_train, Y_train) = train_batch feed_dict = { self.X: X_train, self.Y: Y_train, self.batch_sz: self.batch_size, } _, c = self.session.run( (self.train_op, self.loss), feed_dict=feed_dict ) train_acc = self.session.run( self.accuracy, feed_dict={self.X_input:X_train, self.Y:Y_train} ) c /= self.batch_size costs.append(c) train_accuracies.append(train_acc) train_acc = np.array(train_accuracies).mean() #model evaluation if epoch % self.save_sample ==0: for test_batch in test_batches: (X_test_batch, Y_test_batch) = test_batch feed_dict={ self.X_input: X_test_batch, self.Y: Y_test_batch, } test_acc = self.session.run( self.accuracy, feed_dict=feed_dict ) test_accuracies.append(test_acc) test_acc = np.array(test_accuracies).mean() print('Evaluating performance on train/test sets') print('At iteration {0}, train cost: {1:.4g}, train accuracy {2:.4g}'.format(epoch, c, train_acc)) print('test accuracy {0:.4g}'.format(test_acc)) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iteration') plt.title('learning rate=' + str(self.lr)) plt.show() print('Parameters trained') def predicted_Y_hat(self, X): pred = tf.nn.softmax(self.Y_hat_from_test) output = self.session.run( pred, feed_dict={self.X_input:X} ) return output