(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 51212, 1034] NotebookOptionsPosition[ 49458, 995] NotebookOutlinePosition[ 49816, 1011] CellTagsIndexPosition[ 49773, 1008] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"F", "[", "x_", "]"}], ":=", RowBox[{"Max", "[", RowBox[{"0", ",", RowBox[{"Min", "[", RowBox[{"6.12", ",", "x"}], "]"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"F", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "10"}], ",", RowBox[{"+", "20"}]}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.7577667925285053`*^9, 3.7577668149383297`*^9}, { 3.7577668506074743`*^9, 3.757766903098508*^9}, {3.757767602410262*^9, 3.757767602568593*^9}, {3.757768148554263*^9, 3.7577682153801622`*^9}, { 3.7577691601019487`*^9, 3.7577691603141003`*^9}, {3.757828473700638*^9, 3.7578285421007557`*^9}, {3.757828693918935*^9, 3.75782869541588*^9}, { 3.757828761767972*^9, 3.757828762019991*^9}, {3.7578354214131813`*^9, 3.757835497958188*^9}, {3.7582826826943827`*^9, 3.758282706258882*^9}, { 3.758282745491208*^9, 3.758282817357716*^9}, {3.758285016173664*^9, 3.758285024088009*^9}}, CellLabel->"In[45]:=",ExpressionUUID->"b345f780-c762-422b-bb72-4f3dcbf7d3d9"], Cell[BoxData[ FormBox[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDQAWIQbX275PX//8oHGKDgxs6F7z1/I/hlM859nvwNwd8Q qvFH/S2Cr3LhNk/ALQSf56iT3oItCP69dQKFDpkIfmPTmm8Nl5Tg/E7x7NNL uxXhfLkjGouLoxTg/J+eF7Rq4uTgfKvnMYsirkrD+dM3P5dvL5eE8yuiGwz+ PhOD899ky5TlJInA+TWrtx3U5RSC8+V79zrk/uKD8+sUubiULbngfOb2WNvT /axw/sTFZ6YxNTLA+attCn7snvh9P4zf4fBXTmntKzh/u0LYu+MxCP4zhvV7 c3kQfNeDCTE7s1/C+UxOR2YGaL2A82ucu0Xqlz+F8/PdJLnuLHwA589TK7rZ GIjgn2M7vUKdEcGP6PvZ9+zAPTj/Uv8BTlG7O3D+sUl+/wstrsP5UYZXr4RH nYLzl5w0F52hdxLOf584K/QG0wk4v2VS/LWI1Ufh/PWfX16P/HMAzhe48Ss7 v3IdnG9l2ZpbcGolnJ86iz+/UHopnF+y0+PJs6rpcP6k77vOXbTsQYSfyJ45 TdOb4XwA5ba/ag== "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAwBGIQ/Uxkz5ym6c32MNo9Zm5LW8wCOP1pZkdjy66VcHpJ 13pbB+ttcJo/6tWe/ZN2wOkqTVUb+1e74LT/iVlWdjP3w+m/TIel51UfgdMr HNZJzLl5Fk7/j3XiPON1A07/mOXLEvUWQX+6HvH/ef9NOP0sMP8r89VbcPqM 65yH1vF34fRZsd93rlo+hNOz/4VsdfV7Bqel01k2T7L+AKc9qvZ7a23/Cac3 9yueufiP0QFGS02M4ZDhYofT3iazLQ7t44bTVgLxC3NyBOC0cXiRgto5ITg9 07Qp65myKJxeYhvny6GHoDe4WhloWSDoE6Gfvub6IOhvpUmNX0sQdNA2pxks xxA0lznzMaUMMTgtZn9/hUsRglZ0392dVoOgLcKLA1dNQNBp5Y/vGO5E0Ie2 H/7swCUOp6stWhTj1yDoU+4eey5vRdBS4TzhHvsR9I7SKT2GlxD0l01LvjP/ QNDOhzImVTBKwOlJF3V033IhaIMPW5KuySLoHN2jZ1c4I+jdNp0Zsr4ImsvH l3lSGIKOjBacx5aAoFdkXbWozkTQhdvi20QLETQAzllQ5A== "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQBWIQ3Vr0h2Nti4RDtcg694dVEg5KT7/yKWxF8OOU2Ko+ 3ULwA8Td1WyKJOF8R56OS62cUnB+EkdzYmmgNJzfzFL3IWWmDJxvNKXgppes PEJ9lVHc+10KcP7LPaptUxmU4PxHzyVXTzJQhvMnxfWYTo5SgfMbnpd/ez9X Fc5/EJGyZfFpNTi/7s7JFZuFNOD8Pg+DWVIumnB+CIPox5Z8LTg/4lRRnfcW bTj/fM1FjszHOnB+i+PKk4+09eD894H/38fn6cP56aqrOWf5GsD5X7Umm236 gODvWfL74dcOQ0T4uig7WMsZwfnyue079Q4g+JJcORt9w43h/DvWky8vW43g z8vd9fX/fwQfAHVfwT4= "]]}, Annotation[#, "Charting`Private`Tag$3800#1"]& ], {}}, {{}, {}, {}}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-10, 20}, {0., 6.12}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], TraditionalForm]], "Output", CellChangeTimes->{ 3.758282757552134*^9, {3.758282788914091*^9, 3.758282817859563*^9}, { 3.758285017755877*^9, 3.7582850250071774`*^9}}, CellLabel->"Out[46]=",ExpressionUUID->"2780a80e-bda8-45c2-b1b0-3eb6caa89a36"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"D", "[", RowBox[{ RowBox[{"F", "[", "x", "]"}], ",", "x"}], "]"}]], "Input", CellChangeTimes->{{3.757769150843001*^9, 3.757769154243264*^9}}, CellLabel-> "In[109]:=",ExpressionUUID->"8e07609f-09e3-40d7-af74-38b08a5e8f91"], Cell[BoxData[ FormBox[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ {"0", RowBox[{"x", "<", "0"}]}, {"1", RowBox[{"0", "<", "x", "<", FractionBox["153", "25"]}]}, {"0", RowBox[{"x", ">", FractionBox["153", "25"]}]}, {"Indeterminate", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}, Selectable->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False], TraditionalForm]], "Output", CellChangeTimes->{{3.757769154558042*^9, 3.7577691626113*^9}, { 3.757769617898608*^9, 3.7577696533545313`*^9}, 3.7578287200170727`*^9, 3.757828765494636*^9, 3.757835435982698*^9, 3.7578355211607018`*^9}, CellLabel-> "Out[109]=",ExpressionUUID->"368b90c4-a174-42ff-88ff-fa878b289f90"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "10"}], ",", RowBox[{"+", "20"}]}], "}"}], ",", RowBox[{"PlotRange", "\[RuleDelayed]", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.757769607871423*^9, 3.757769651885653*^9}}, CellLabel-> "In[110]:=",ExpressionUUID->"755b5a3a-b723-4917-b599-cbfec71b6ba8"], Cell[BoxData[ FormBox[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAwAGIQbX275PX//8oHGKDgxs6F7z1/I/hlM859nvwNwd8Q qvFH/S2Cr3LhNk/ALQSf56iT3oItCP69dQKFDpkIfmPTmm8Nl5Tg/E7x7NNL uxXhfLkjGouLoxTg/J+eF7Rq4uTgfKvnMYsirkrD+dM3P5dvL5eE8yuiGwz+ PhOD899ky5TlJInA+TWrtx3U5RSC8+V79zrk/uKD8+sUubiULbngfOb2WNvT /axw/sTFZ6YxNTLA+attCn7snvh9P4zf4fBXTmntKzh/u0LYu+MxCP4zhvV7 c3kQfNeDCTE7s1/C+UxOR2YGaL2A82ucu0Xqlz+F8/PdJLnuLHwA589TK7rZ GIjgn2M7vUKdEcGP6PvZ9+zAPTj/Uv8BTlG7O3D+sUl+/wstrsP5UYZXr4RH nYLzl5w0F52hdxLOf584K/QG0wk4v2VS/LWI1Ufh/PWfX16P/HMAzv8sPtPA ZOF+RPh4xG3c4rkXzt+88sWmrbN2wPkCN35l51eug/OtLFtzC06thPNTZ/Hn F0ovhfMn/J5ZUJSzAM4v2enx5FnVdDh/0vdd5y5a9iDCX2TPnKbpzXA+AJlv 0nk= "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQBWIQ/Uxkz5ym6c32DGDwwf7TzI7Gll0r4fwlXettHay3 wfkrHNZJzLl5Fs7/H+vEecbrBpw/+1/IVle/Z3C+dDrL5knWH+B8j6r93lrb f8L5m/sVz1z8x+gA40tNjOGQ4WKH871NZlsc2scN51sJxC/MyRGA843DixTU zgnB+TNNm7KeKYvC+VzmzMeUMsTg/GqLFsX4NeJw/pdNS74z/0Dwc3SPnl3h LIHQ7+PLPCkMwV+RddWiOhPBL9wW3yZaiOADAJ1uYBo= "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCwBWIQ3Vr0h2Nti4QDAxQ8Xf50sW8/gm+yfaXdoRkIfsux 3JtmixB8padf+RS2IvhxSmxVn24h+GsNT4mkP0Hw/zj0rb/9FsGfFS/29AiD JJx/fY5awHQ1BD9A3F3NpgjBd+TpuNTKKYWw/8l/v6PCCD7LnvLTLHII/rHs 9CPNRgi+12m3bY3RCH5QF+us2rUIfhJHc2JpoDSc38xS9yFlpgycbzSl4KaX rDxCfZVR3PtdCnD+yz2qbVMZlOD8R88lV08yUIbzJ8X1mE6OUoHzG56Xf3s/ VxXOfxCRsmXxaTU4v+7OyRWbhTTg/D4Pg1lSLppwfgiD6MeWfC04P+JUUZ33 Fm04/3zNRY7MxzpwfovjypOPtPXg/PeB/9/H5+nD+emqqzln+RrA+V+1Jptt +oDg71ny++HXDkM4P85F2cFazgjOl89t36l3AMGX5MrZ6BtuDOevcK6t+hCJ 4JvV9jlPjkHwgz5suHojEcHvuvb1Z3IOgv9rUb1TVSOCf8d68uVlqxH8rNIl czzXIfg/1m1NfbMBwRdRuvHdcBuC78MhK7P3AIK/98qylMtXkeT5duiW3UDw b7mf/CZxG8H/tut1R9wDBF9vocHal68Q/D23HMt63iL4XiLB9vofEPy09tKL JV8R/C8H2maJ/0Dwm35NT971C8EXMFmpE/sXwZ+Xu+vr//8IPgCTLNpW "]]}, Annotation[#, "Charting`Private`Tag$66113#1"]& ], {}}, {{}, {}, {}}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], TraditionalForm]], "Output", CellChangeTimes->{{3.757769608419174*^9, 3.7577696543386173`*^9}, 3.757828721891801*^9, 3.757828766940044*^9, 3.757835437374585*^9, 3.7578355225401373`*^9}, CellLabel-> "Out[110]=",ExpressionUUID->"57c09952-dd78-4249-b11e-a32c2dddede6"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"G", "[", "x_", "]"}], ":=", " ", FractionBox["6120", RowBox[{"1", "+", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "x"}], "+", "5"}], "]"}]}]]}]], "Input", CellChangeTimes->{{3.758276129142617*^9, 3.758276147298856*^9}, { 3.758276184070009*^9, 3.758276226521646*^9}, {3.758276282501145*^9, 3.758276285868677*^9}, {3.75828118360719*^9, 3.758281185012753*^9}, { 3.7582847078689938`*^9, 3.758284710918268*^9}, {3.758285046311775*^9, 3.7582850466003857`*^9}}, CellLabel->"In[47]:=",ExpressionUUID->"31e3dfa2-15a7-4036-b188-62331ca14f94"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"G", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "10"}], ",", RowBox[{"+", "20"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.75827615586591*^9, 3.7582761561554623`*^9}, { 3.758281196739649*^9, 3.758281202092382*^9}, {3.758281304164719*^9, 3.75828132617336*^9}, 3.75828137114268*^9, {3.758284712194335*^9, 3.758284717316959*^9}}, CellLabel->"In[48]:=",ExpressionUUID->"89e2d575-eabc-4561-9cef-87861999c7e7"], Cell[BoxData[ FormBox[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwd13c8Ve8fAHAzI9l7c+19SYXyfIooyYpIRimjCMnIHllpkCR8W0ays28k 9yibhi0hyoiEhJDxO/f3zzmv9+vznM95zuc84xwJJy8LZxoqKqpZ/EA563zx /bmzQ8CsRn/FQJEDGqzJXDj+j4D9yxo407fsgPzTPvy5v0rAjobm/eLRdUSl VnKbsr8ImFuNS/mzbkck9ekLi9kQAcNuH2KijzqHWJqOqDyrJGD0ZnYM3Y3n UX62l/rsSwJmquD6a2T+PDKIerRvbyEBa6kQsjgp4IQi0KpuayYBi5LxMLT1 ckIrNfmmi3cJ2M5jTiVD8QtotIT9KlzC44tijw1SL6LgO4f8Ei4SsIxJ1vKt 5ouI3+NyYK8jATvdZb9Hbu0ispBvjHQ7TcDoJmuHh846o5bsgOQkPQJGBFPL ATkXVJo2WjEmQsDStx4tyA65osiootWIbknMVzRz8r8sd9QfsnPT+b0kxpGr gsXNuCOFAAsRo1ZJrCTlwyN5ogfqdl/T46qXxEixlsWpbz2QpJX+vef5kliP zRt3o/kr6J3ssGJ7hCSmF3Raw1nTG/FLqpJLgnGPlqxsOXgjD+Eoi/v+klj2 e5vr1De9ETeHXKCdhyT2YXAf08lRb3Rx41rzvLUkVridsM199yqif7/7PJeq JBbedaTNhfYasm1xWP4rL4ldmpckqu+9hkoayuKGpSSxt6HK3UHO19DpauuS 54KS2MAB79b4tmso92n2v/27JLFTDAXXXz/0RYY+Oql2IxJYs5RXbO5Jf3ST z73j+S0JbPq0jUCOfBA6yNpOMx4rgUmvi8uZuQWheTp5beEoCWymm9Mm+UUQ sliayku+LoG1tFq9GZUNRsLvnWLDnSUw8/j2VrJqCCqJsj18BklgXFa8rxfs w9C5wJrrKdoSGLW/AUNJbhji8uYv/agpgTE1vEoRXAxD1+37RQ2UJDBW3c1N uphwdPiAxaa6gARW8yawK/dsBOr9dZzE8kcc09nlbpz2NBLFTuTNG86LY5mx 6TUf2yLRgS8MMjdmxLGjHuWGHsuR6HFrU8r6V3HMd2n63qBRFHLJPuwz1SmO Hdi88CttMwqt22gpY7nimMwb2ZU032gk2iiXfc1WHGOP4ZYWqo9DWQ2/O5ut xLH2UyeIwytxSJpcuypgLo492+2jIK4Sj5RqjY0wQ3FsdlahUvNZPNIu9f7N oimOuT6bv16TcBOdfvQK5bKJY7aOEzQQdAsNpUdeWmcWxzYH5K2ba28h+4dG 9413iWM+X0bVJv7dQq1SNe8n18WwLwICDHPht9F3dmrh8F4xjBd9WDuVeAcJ ziS9KrsphkUfjfv2vjMRSUxIsthEiGGKsTpn3uxOQnJfKx23/cWwMJ1RT3di EtrXN7jrxEUxzGT14XBXaBKyaBC3mtAVw8yW39WPCt5DCemlv3mXRTE6+/WV apdktH78k0KIgyh2SuH1noYTD5BnSMkja0tRrF3XvYI+6gGaKLnNqmEkihnr XM/uffUAfeA6vjSjKYrx0zdN88qloqyRhhrrPaLY4nkrd8s9D5HR1YpjGnUi 2JQXb+nGnzREzr5Xy1ougpWQBQTuaaSjvf1eSrMvRDAmM/rbbdfSkaiOEnvm fRHsQtpZBtnVdLRE93yA1V0EOyM3G/WW5j+UkZbqMisggulu1nD/O/gYsXX4 DjaxiWBR32SXQ+Ieo+gtC6NMehHsHSdzWV33Y+TpxKZi81sYI8YYWoe6P0FH lOJXmlqFsR7qTz5auU/RLDkwOjNAGMtNbpFSlchE2tN2WTZ9QphnassexJmD PDhP2Y13CGGj1W2Tq4dz0ONDx3kvvxXCRCPWVcV9chBVimZC8EshTM1E07Kj Jwc1A6vPk5tCmGHUykbmo+fIPIN8eOKQEFY6/0PP6OgLFNVU9c9jrxCW3wTm j0NeoMrFwqoVBSGsa5Jx6lrlC8RrmCbPwC+EHTZNu1UqnYeG/3hzKCwJYgzL aeUJrPnI7aTkuFeuILaSEUf6vlGAMq7z/7f2SBATGY06y6hTiDqyWa0i7wti /LZsYU3BhUhlY6M1OUIQyyfbz7HuFKLl3J7SKltBbONU7uyuPcUogiom4h+r IGansKdryPAlelgxLRYXIIA9j9JjlZMsR/t4Fdb0rwhgJNfM3ZNm5aj/uscn mgsCWE7uSrhgRDni1f0dEWYigEWaJBb8+VqOUlo3xv2kBbBwjtp3kc8rUNLI npyLPfzY7KnUDOXjVUgNzEIk2/ixrr8WWcwRVehjVrLlWD0/thXMzOlHqkKs bnz0dgX8GNfTydG/stXo9pK4y6lIfmxxc//yCBsJxTPslTuiyo8NbH7sCNt8 heQu+1NRSfNj2bOyfpMHa1BL56vBN4L8GJ3ORaGl0Bq0K/nQTa1d/Fj7S3ZO OppaFC1sOKs2wof9tImJ1uZ8jSKItkVit/gwlkJ10XDLN+j62Qi1rSleDPiS 8qf3NaDajtRfs8O8mEwWB62/UwPa1CkuGOzmxdyG7yT53G1A4cJDUpX1vNg9 7ZDntdMNKHZEQ8A9lRebu648+fzpW/TAcZr681Fe7EqgZdpP6UbU/3GrvlmH F9ON1xaZsmlE/MAdUknkxaod7j4+f7sRPRI/vJoowovt1qUrHltuRDnjGbMG KzxYwF6FGEJnEyq/YNJTmcODtb6d5/iZ0oKWey4mZWXwYGd/VNx58KkF7dMP PpmUxIMdiPLf6WdpRTVSeS3uITxYvqQ7JhXXirBJ6jpJSx5MIuXdFd4bbeij a1VOEi0PtrpLg6UqvQPNuQv7ezhxY+z73D9Py3xCs71GwQxnuLHahWR32pOf 0I9DgRFZptwYz+DxyevXPqFJtv6EwYPcmPX58nHfhk9otCLxqT4fN8bUsVHU er4LffpH0ybcyYX5LiwXZld2ow8XiR9Ib7mwawM6N5vGulHne8ceixouzOSJ ZbTpnh7U9rRuJD6XC9PWLyp66tqD3ur5Ly1HcGHrhAJ1Y4leVHlrRui9Jhdm Y6tPrMnvQ+XLfBJuSlzYhT5Hmb7hPlRqbyBDS+DCOA2TSi6x96Ni1Ww1LXYu bF9D2BxVYD/K7bE7+nyWEws7+3GMwWwApQl98gx9yonxCv8uCuP9jEIKqxuU mTgxueBt8697RtCPE8TJrW0O7BRbNaZtM4Is5woZPyxzYDWT5tcts0eQsnKm qecYB7Z+44FTu84o/n1ya6SExIG1v2NLX/X7ig6Xn1tXdeHAXvtUeycwjqMS iy/CVHYcmHKi1m7JveNI8I8VfDLnwK69ktSQPzeOljROxHkf4sA4juVmJ9SM o5wqTZ4ybg5sqnzvcs3Vb2hXDTNR/R07FpxoG9yz9h35nImxpKlhx4bdQ2QX FSfQ6PpOQHcJO5ZuoPsk0XECkbRX6n0y2DHG817ydq0TyK3uq3HFVXZsuVxT yvzZJOogV7rtFWfHjigPxY9fnkZid97AlQ1WrCjuO5nH7yfyJn/jc5tmxa52 PqfKr/6J3v5mWHDqZcV0aRcGBtd+oounLR7blLBievRdUtzhc6hAbHpdz4kV a6v+/Ffy/i+0r5y9QrB9D9bBZuXyb2gBxU9oJvCQ9mCmEgLJcVyL6DPv2fPs OXswn36lo3Naiygk+DnbrrA9mMle+jttcYvorb62x2/iHuzTpN/QT9nfyGTg gnRrOgu2ODTGmBa0hJ4x3dx8G8uC9e6KP1OTu4R+65T0vLnGgi1V3GHU71lC Kc/WIitOsmAc56l90pX/oKFLd0afULNg4twcN89N/0Eum9UP/S7txrq2w4KO ea+gMAlmZoIWMyauWnDL+Osa4vYaKAiVYca+Vyewxgiso4K6nBODXMwYz/ea T0ct11G/NbpzZ54JM6HJZnfuWEcqd33Z17KZsICj1py62Ab6ujHK+56VCbte eON5RNMm8j9WRJLdZMRe2WMsnxm3EEtqoE3UDCP2MMaX+aPxFjpA5M7Y38iI Yfca7qb3b6Ek1+MiWYGMGNtHt69dv7cR9FYQAiYYMJszxSKcOVTQLxHZ2NXF gL2vWFWh76ACDy8TZyUyA3agw8Lp1BIVpDHP5I6nM2CPHW/G0B2hht8gqmBs yoA5C76M65qkhqzieDWJ2l0YTdIPty+IFmjj7A91JNJjcS2RYKC/C/z13gkm BdNj1M1rpv0hu+DHjtyapSs99n1BZWulahd0Xl8uH9Wlx3LPlk7OyDNAyuVb cku/6LC13PKiTn5GkDGp4RIwpsO0NjIsPnEx4/0R+z2ynw5DigKye04zA3NL 9IcsAh22J0CdsJTGDAvI7KbSP1pshFoYXovvhlfE6W1UQIt5c3jWBR5gASMe nlkXRlrMeWLpuUYCK9R1BbUoLtNgfUHido0DrKBydyxn8SsNtt/daUlAhg24 GIocg0g0mPIRqyShJjYYXjvSd8eFBks8lKBmE8sOnsPeWGUjNcap96337zgH 3MvuTKWJpMJaglP4VH9zQ4i5E52kJxWG2iyk2iR5wHXn79XDZ6kw8jeH5EFL Hjh0lnAyQpMKc8vinD1bywM90su7Nnt2yCrxo6Fct3ghms50bOn5NlmNWSHN QJ8fbM8FvSZGbJNrmY5cqw/lB7W656nettvk/bee6tWT+GH42qbxPOs22T2K v8NWWQA0v+fXzARskVtnhI0VxQRhqoHu/tjxTfJ2gOOwhagw1ImoeYpJbZIv NxPkps8JQ3Lg2eMO2//I+RIOs/w5wqBLLN/5Uv6PbHmtJttWSQQePnP0GBD6 R143Qc4R+qJwLLz26Idf62Q1/ZSTp43EofCg99rre3/JMxyt4nRjkqDt32n8 0e0v+Zca1ZofOwFaX8plfkN/yb3iGX8uHCbAhOT4cab5VfIj8ZumNTkEEGWy +O+00SqZUXYvx5WrUpDcp6H7m2aF7JtySl1MSgbE2ZKS6YaWyR5b5awLdjLw 8tjcFF/ZMnm3ma6HWaoMdL7OSdR1XCabq2YEv2eWBfosnvFbr/+Qi+bsvYc2 ZOG6598bMr5L5IN5Ea5pa/KwK+/UoNaJJTLJ5lTBPh0FeDD+Uumk5BI5mJrW OzxMAcot3fquffpNfgCWFnwMivBT+7NMg9Jv8jpDFtM9cSWoY/W/T2pfIK+1 ez1D/ioQD1uiksWz5AltxzzWESKQxE/Pt9jNkmO6X0pSMavDFNXLN1dYZsmG 1+POOO1Xh6MN5+xq3GfIg8f6LoTeVweaI43pZgo/yKKbtFbK5hoQoneLO/zF JJl9o29v4Pe9UEiY+C5lPUlucBiyoOLXhCHaQxXtuybJ9g2dHLtPaoJW47w5 r8sE+e9Y8f3SV5qwqm+RWCz1neyjyXP4XOo+8DIQYB7OHCN/rxFujPQ4AE9k fD5Hmo+R48I7b37PPwAfdnXkyVKPkYOf/fg9On0AbO6u353CRslrDlez8py1 oDsRY+LRHSZTF0RJlLtpQ3Oyyc7VAwPkH32fv23fOQi2xL5ea9t2clPi8Fhx KUBO236eNJU2sp8Oplg7ALBwPsNqkKaV3GhCNJXYAYhOduy3KWwiJzy56Exr ehhe/pkZOLOJkT0O7xNV+XMY2Ac33L0CS8iDwrf9Rk/qgbZWzBXv9nyyyCWe s9tBeuCcweZ1Veg5WZoD9sTl6YFvzbGJqaCH5Kk35hn9dPrgHdQqKrlxCznJ uUncfKsPOQkvD4FONcpYen1S4JQBsNnO1pGTXyEN2xUDnTgDCJKXPohma1H5 TiZ3/2sDMG3N0NZNJyOnre6wIBlD2KJ5J/QkuBGx/Ods+pj6GORBCf+jz+/R swLs37FPx2HH/ghTp9EgKkmwFC8bOAlrGSfpbH8NovVUvW4RggksDdjsTCd+ RgwdqjqGXiYwZe61Qts3hDzk6L0HmEyh8+ijcR3HEaT7x/0Gu5QZvOf9N9yn NY6q4pfko/zMwagqYkj41jh6kGjpmJhpDs2ndg1eGB5H60XN7swfzAFL4uj5 HfYN1QeAlomcBVQyy7XtafyOCtz1ghS+WcB/25ZVR02mkNv+x/ZKHpbA/3io /PbTKbSHNq0s/aklpOicK+1ZnEJZosF1sT2WcPe6e+H5+9NozHp/+8RBK4ha iswMHfyBuoXWpHt4ToPbVMmdKqefqCfRW/jBuDUIudJVJOssolDq3iCF2bPg dsqVI/L8Ihr3X1W5omgHlajdywvfl71M2u8dvWIHJvxJSsY9i8hVROpO3ZId RLQJ5dK7/0Y21l1sP+gcYEpRI/16xhI6FHS9u4xwDjT4U/+6YEtozPLdB7Pj 5yCCbt3KamoJ3Wnam3TU6xwIjNRzqqv/QbT3BUw06s6B8V2j2z/b/qCPWg3+ e23PQ/ni+XCH9WXkH6RkcP2FE+wMN44Yi62gD+uiKh+6ncC4TfagztEV1HHY Vz122wkmM3+t8d1bQQdfhg+JWV8A/lOBPl1yq4gsbr2LY89FCK1Kcta3+Yuc tEKnCm47w7Eg8gkF0jpK44vU4xx3g+H432r6Y+vIbFrkBVHsElx9SOB1YNpA x1ZoBqfsL0FGZdzYvbMbaNHw9CjfyCWYmzf1W9/ZQKaVcUU13y5D0oWxJ63H NtGnj2xvlFmugJQPZ/S3q5tIP06Ey9jyCtRE6F/azNhE2trhR3gfX4Fvj/M0 1H5tIjjGuKtSzRP2Dnq3Pry3hao4DdN0z3nBgDH1ksvQNtoyFZ/6vegNHmc1 BiJod5DiX1bxWsGrQHXZuS5DaQcdF1+Im9C/CnJxbbEfwnZQA6esyIWMq/Bm rHXPfxxUEDjyVk/UyAfYhO5l0VRTgRjvySrDN9egIlGis2ubGm60FgSHr/nD q2DOlW1OGlgdNzNVUw2AeldaUSVZGpA8MvTV1iUA2tGkV6wpDSS6xnWL9wfA 2EIel84zGjhjfdjr5uvrwGKmdjbnMC1ETxzb/u9JEHAelIjusqKFlOaeF6dH goBPjrN4+xItnLnQOpYuHAySVMvbNsm0QPV4quvNo2DQKiVl7flOC0wf+++m ZoeACzua9Y+mA6HplesXO8PAY1OVKyeNDrqVJueFuMPh6g/xg11FdPBdSDvC 3S4cQjCau4p9dJAS1j7TPx8O972biWPS9KA/aGISeicCsE8nA4+30MO0M1Gn oDUSBO/ZMQozM0Bzz4Bfblg0vLglkjkvzAB3w3wWv+RHw97YUa0GVQaQeZfk cr4vGk4Gn3N3sWKAIYPIz/bKMRDhfPFD6TMG2Cl07Jcdj4EpLY+Uo/sZYdU3 5dtpmzgo/xYs7nWRCZ4kVkbXxyUAGjlYcziACV5PZzq8fJMAnQNb5twJTHCR 4dLSvz8JMNkZfqPmJRMoCHom55+/BfykG1O0/5hAD23cdjx8G8Ju3SpKu8cM 1i+U5gI578KJvf8deFu/Gx7XtSjnbCfBJvldikLPbujfY3/BVfIeFJ2YW0ye 3g1Lvr/NnQ3uAeuFQ/kX2FngqLlzI0fiPfh076sAvRMLuFgn5KgSkuH0AuGf If0ecNco8E46fR/OFRS9eX+CFXo0aHfJzT4AbXbHTA8PdlDlaMNSG/6D0/Zn 4/74sQMS/Badvvgf+BRYXwkKZ4ekvS9m2sUeQYG+mVZ8Mjs0Nysnvgp7BAKB h7uyX+HxGr52ku5jWBsnUH+h4wDPwvOrdC1PoLrix7njjzmg6K7LNvx7BhrW PuIyHzih5dCVnXd2OZCuGXV5isAD+7T9n7kbFULOIYeTjCo8ECzjJ8vpVgil R7XVFA7wQFLrsbLimEJotVpauWLMA7RZhu5vsUJY9XOKXPHlAaY8hRmbfUVg UX0kja4Zj4vzJy+IFgPzftpmSTdeSITB/SnfS4AXfc3T9+GFcbOY7zo7JSBh +PqWSwgvnBD+/PGD4Es4YH3NvCCJF7I2TrlVmb8El4Dvw8QaXtBJX68Lq38J b0nv/gAzH/R8PcI9fbwUgg9ESzgW8cGg19LmOk8ZtBseq+up4gPfcdf1QIky ELRmsT5G5oNDG16a80pl8Mov5Taxmw8YFg5rVuiVwXJ5zl/aNT6IGqubLvYu Aw/lpvd5evxAE9owfba1DBwkdwUtDfEDJP136axnORQT27ldJ/jhku5MiOn1 ctiEuy+//OKH+1v3GvdFlUOGI+9kI5UAKMaMTI4+KIeBRzJmD2UEIG2iQeNB XTmY8RnKHPQRgE2ZBrZ0hgo4zBLfHcMkCHJf+KbpUipAcmLHpIlLEGTj1Pdz Pq4AurqADjpRQcimL6hmz62AZnfXxhvqgvD2Hcu5cVIFGHUYVEeeFYSLcuvq 3UMVYJFAnxFaLAh2Q6Ie6yKV4MR447yfuRB0xg7ufZFeCXpjGyOVZ4WAKHj8 19yzSpB65WO77CwEbgevKUnnVcKUq9Opa0FCIEx84H+luhIutxw+ejVbCG4I irc4dFeCTyyV/JUVIdjIZFDoYqiCG3RhixfTheHeNfrmc5eq4O0HiXjfbGGY ODAztO5ZBVTpTWLRxcKQfYX9U5xvFYQp7zHNbhAGsRsD6VHhVXD99KPi8Rlh fN+KvLCSUgWeebWXHbRFYC0o7NnImyoo9nGg8dQXgfafDcKdb6tg7iBNRqiJ CLg7b/qVtlTBpa7jbY+cRMD2Q9m2bVcVXNwYlP2SIAJtPuJSWhNVYGv8d8L6 iwiwjs4myDJWQzrvfyGukyIw1+Z0MJilGgbHdLkDFkTg6YNrzU3s1WDlF6uX SisKt796ZiGBajB7wpPVqygKjmHHFFrlq8FgUcPRPEQU7Ll5RrSOV4N6ivdn IxExODDfHs8YVQ2VzptyxTJiMFeVRyscUw379sdfZ1MTA4vhPwT5+GrQGXrK 13tEDB5y0kep3a0GffGPVvZuYpB5tO3Xcno1WBcpd3tViME5Fl85h9JqGAqt keiuE4NOCysljopqsDM9enVvsxgEaNZH11dVw7klO/b1QTF4yi9nz/i6Gi4f uG0StS0GhimBH880VYOuk59zu5Q4XK4h524OVsOOkc6dYHlxMLx36d2ZL9WA aVBXKamIA9OTqP6ykWo4Qn+HLnG/OCRZP9l16ls1GOblZJ/C/2tUbtSl2/7E 6zHfMz7sJQ5KviavYjerwSlI3WGhVhwq3e9euidEAg/D7lV6DM/3nqkrRoQE /tw+icJN4iBjr5DuJ0aChJIy7PhHcRi3HLxmSCBBxTc1Qs53cXjvbXG5SoEE dCdUf9iwSIBJRtKXtwdIwMr/McKLQwIkGC9NXdUmAf+kp0AsrwQov8j7KXyQ BErhJUYV4hJA/+QckysigVWFcvEeTfz6P9QJnUdJkCuk5PPWXgKiP2coTJiT oPRHB/NnJwmonfq2ePoUCWqr3LMXXCVgdnZOq9mSBB9MC3uFfSQgkVfQN8Oa BH9vKOwPiJWACBnxi4L2JDg2J7ep+FICCLpRn8NcSTBTJx37gEoSoosV1FmC SJBypybIil4SMG+60N3BJACHk148zJIgd6oxkjGEBGk7vjYPuCTBLXSi818o nu9Io8IDGUkQU19baokkQV6L08cUY0ngmn+ftxFPAsu01XeW5pKgeyOuZ+Am CaguJbziPi0Jn4/70FYkkMCGuTwzxVESLv29EH3hNgkYTlL7pvhIAuNI0I3i RBK4dD/lT0mThLL+x2IzD0jAma2xx/KxJJhZsaXnpZKg/loLNXeWJHwz+3zG 5SEJeHkWZu8XSsI+o0FsOI0ETda6b+7XS8JZz0t3q/4jgdTI8Pn7E3i+M3vt BTNJ8G1aoDBZjQAsAQ9/tBaQ4E2ZXrG2JgFOPnnpaFWIP2/wlZfftAjAZlPw cAz3SbaGCnU9AoyynLX6U0SCV/vc6rqtCLBydeYU80sS3I2pfs8ZTICNTz+L qCpIcMl07GNtOAG8BuN8gnDrCzB3O0UT4M9QveQf3OtF9v3ldwgwCEXG45Uk uNhL99XiGQGGBmWYyqpJoE04tZjcRICOA2zy4rUk4PkVsqTdToDKy6j0Ju7F 6tzlbx8IEJoRbLCE+7nRxpr6IAEYGG7lYa9JwO6TSd0zS4BMY8VQizckmMIW OLnYpaDE7a+CMUaCZIfbmvdtpWC0YuN9ThMJqlmS8p45SkHVg+7SDdxDtfeF Si5KgVqoTL1pMwkk+P6jbvOUgnzqq+f+4i79mP9+OwpvT9X872ArPv6gxfly oRRorcah7HYSLM23DwaUSgFLZEXVHG7exx9OxFRJwftjS76aHSSwX+8jPiNL Qct6WV8j7rmyia2+HikwR/FmXzpJwESgST28KQXTqbef/fiAz5cueiZTammY Vrf1kf1IArNwphC7XdKQanbjhTPutC/sTgHs0mAmuHR4DLdMiphKsZQ0KI69 PvfhE15/+kPN/CeloS5GLTaxmwQR0wGrC4+loVfb621JHwkM0r2acrOkwbZ3 4L/PuHefcE2xfyENTzNNOej6SZBaclq9o1QaRPKZeq1xF/lpeua+k4Z3TGFd G7gHaf9M2s1IA2v/HQ/VQRI8qZqt5JqXBr0QMS9L3Bdcv91oX5IGxgVjoUDc 8+1dEgc2paFs9b9rDbjpkkvtudhkQLj6lpbJZxKoiXv2te2VgckhxgabIRKs djnnRGjJAHnoLuk67tc37K/t15WBm0fcL6ThNpg25nhuKAO9hsMj/bjtShRP RtjKwENzHW+zLySIPzjTuC9CBkzVRzL2DZNgzOZiZXaHDJi1nTjYM4L3Z15z mfxJBtI7Z9l+4d6KZtg73Ie3Z+fL2jVKAsGyggruMRno/ldAp4Xbkul3ecyy DCivefVm4G6tCS1zFZGFWo1PMqe+kqDf1PT3DUlZQE7mypdwT06KE5/JykL5 9Ma/MNw0nI2lg0RZeGi58Scf98HLzKXHDWRh4WyT/Rbul4IPSxS9ZEGWk/ZO xhg+30vd5g19ZeFrjqFVMe5OA22Vi4GyUBD44xcZ9w+fkeJHN2SBNCuWPIFb soNQvCdNFmJUT1QojuPvL7i0cAGThTfq1HVluMOG2/IqOOXgpj1X+9NvJFDx T9QP5JODbK87t4pwj7JZjekKywH/cJtKDW6kN8bXLi0HChdeCHXjpipYjR07 IAdZc09Tab6TICqA4LzHUQ6e07QaO+BW55ih6rkgB3LP7xhdwv2toORRmpsc BMwcUfHFrTeq1UvwkQPXTJ+8m7jpjprpacfIwWV0w7MCdyxnqIRroRw8fBXh SzNBgn1FR94olcpBfNva3G7cU0cZzyxVykGO34YJD27DwPtJofVyEPHX85Ms bsax/J37XXLQ0/7xwwncCcX9I9hfOXBmDZ1MxH33mFqGoL48MH0NeMc0SYIr X27ptR6TB7KReh47bmPP6Tm/k/L4evM9hA83c8oT1HVaHi7E1K9K4Y77yjIZ dwm/PuO0GsId4T+junJXHiqwxc/euB2Zjn7Oui8PWjIDH/xx6z56FmWWJg8j FeNVIbg3G6z7CjPlIfDLd9t43Nf3NAc5VcrDKpGd7inuqzlZTR8/y4O/7+tf bbjN9m97ho7KA3uaI9dH3GrtZ/gVv8uDWwOTci/u+QV299g5edg59vXgKO7L OuHsh3bkgVriVtdv3E7dZ88WSCmAk+36JO8UPn6peH5HeylAttAr1zO4QwKM dqf5KsCIycVke9w58+HShYEKYNp7u/w87uXh2TNdNxRg8HldzyXcKTXYW5E0 BQjLuPIoEHefj0dKNaYADZLLdg9xb89klrQ1KcAZHoOfGbhlzg+0DrcrwArp ifcT3P6mR7Zo+hRgx7H+3HPcvEr8LqYzChBNIHwux3168t3+HxyKEMuvcqgT d5jduvk/XkXYiWM1+Ig7t0fFg1VYEWSPGxh2415tSH+2V0YRCj8zagziTn3i xRSprQiPT/8s+457wFroi8AFRagM5rFfx23T7hN2olIRGgv8v4pN4/Pl6KNl hhpFyHtTtiCBe47cdLnxjSKYMrH/I+COqOK3PtSiCAvUF2nlcL94Vq+qOqQI kJn9RRX3qj/zOCeVEiSQtip0cWO/Naw/0imBX9G9YMCd4GH//haTEjjSLese wS3qVFpDx6UETSdO1BzFffTk6eRVaSXo1TgVaow7hZClN3RCCaI6Vo3O4HZ4 0lGTaqYE8fvGe2xxywmsqJ6yUgLmPOUzdrjrWI8JdzooQUwm6xlH3N/Xfy2/ uaoEd/KHVJxxq3/Sys18qASyN/O1vHF/DOlivPRdCQaNB6micX/70ruQ8EMJ /N97HorBvaw92F/0C78/64h/LG7B9dGcxb9KMLl+biwet4vfHFxnUYarAt/v 3sG9eYUhME5TGfzGfc+l4mZ7z3wuX1sZaH5Lej6k1FeJ1bAD4e3DxAPTcB+b 5eZhM1KG1wHScRm477tIlqU6KMPQZ87oJ7gVHA/NPI9TBo0fBIZc3Ifq4VPL bWV4lzI8R7GZiD5p5p4yBGBGn17g9vtiFKP8SBksfzok5VPqb20jUVWqDK7F u1aLcFubXTvT+FkZ3Eal7SpwRx/Ob/umqALUG16ketzN6Ufq59RUwEVA8CwZ N+PSl/JVTRVQXpDfovhWFusjZlCB7KaEgw24k2l9PdUt8bgMOe8d7qdNulxR ISoQAHrarbjHRAYZbkeqQGkMTzPFkv5XNx/EqsDnozfN2nDnyuRM5iepAOOM 0/l23EVxTK+6clSAo+7gtU7ctcd77STeq8CFOEfbT5T6Zl4xV+xWAXWxni6K D23sMtAcUIHJw0LHuijPW6ClenxcBcy/7CV2427Z/ZT66ooKKJaMrPTg7n1/ KRcTUYX3yldPDOBeMN9ZcPRUhd01j7VGcHcX3waua6qwJryWQHE1k+C95gBV sFZL+UJxSMNedeVIVZA8nRY0ipuZeNl3474qHDKnKv2KW4a9by2lRhXSWsjr 45S4h9PxY/WqcE1lC33D/atlIf3fWzy/XmoMxZXhzDpOnarAGDjO+h33kQUU qvpVFbK16QUncKu69lE506iBUzjGNYVbnEc4v55ODZ7edDajmPOdkzk/gxpU VobcpnhVdDGzY7caTKTvop3G/aafWU+dRw3uqhbNUHzCAGJ2ZNXAwtP8yQxu V+lCpoyTavAwlbl4DndYk8NlGTM10A1mHqU4xZmzo9xCDegk7rL+otT3eeDt Dms1+JEm7Ukxv8wxtq3zamA8Vy07j7tdZpL7nL8aXB5ziVmgvP/mNL+562rQ PKX6kuJVF+P+68FqIL9+d5BiwouKh/ci1GD1KpfCIqW+slGC7xLU4LOXRSvF KnJi4jJP1WC3aOzSb9z6rd0R5ZlqQFCT413CbesWO66bowavpr20KI7L+5Vl na8GNz7/CaN4TK5O+maFGmDHpuj/UMar/BnFuRY1yNFWp1vGvaJwf1/5ohqc Zv3WsoJ7uBOOcv1Rg8P6PGMUN3rOn/JdUQMPRbY1ipPLj1/dt6EG/IpnZFcp /dOmKqqlJYJ0oOUNil2OX5F4x0uE0hwb4l/cJ38KqkkJEOHguIYBxXvvtOrG CBFhV+2ILcU0XQQ7Q3Ei8HI9vUHxU5uh1A55IjjOTnRTPOhqyNJ7kAh7tkbc 1nCTmVYENRERXKMHgijOLcySTz1MhLmg3NsU+y5sGdgYEKHdsPklxRwBlZHD pkToVeJfptgoVuLvhBMRbt638VunrJc5/8ZX4onwvafWbgO3tp7vX6NbRHw9 6bpEcc34HMuzO0RgOt7uT3G16Oh+o2Qi1BueT6K4NA278+Q/IojdUnlLcc7t GC3DEiIkZkaI/6PMd8Vtk0elROCh71KkOLPN/+LvciLMEBj2U/xkl1vifyQi jMdKn6Q4LcJocgEjgqw78TrFd3zZ7qX1ECFv36s2ilm44nN/9RHh06vwHooT yqjqjgwS4Wqs2gjF8fO/p+aGiRDab7JIcZRb78HDU0T4sXCDZxO3v136j5k1 IpCr/52l2EGfADqi6hCl5jZEMXUfI+s7cXUwfWn5jeIc5/kvRgR1sNJWnqV4 NrYmwFZOHeIPZa//P1+b6ctAdXW4aJPHt4X7rkmI6CsDdfAwAzOKiV/Pz6Hj 6pDERWdNca+XYW3LCXUQ/FBtT7HgPc7TA2bqENs7c5ni3J68O6u26mD3JiGa 4nqbvs29XupQ6PilkuLzM7XtdVfVAT5m1lJMF/QsTd9XHUQrz2AUG/3nvtcy UB3avZ50UNw/Qu1x7YY6lKSHj1M876TypeyhOsT9rGfexi12Ja5GBVOHIk5O S4qTd1w0b73F6zG+Y03xrmSDsulGdTDynThL8Xw1ff6zNrw+B5MvUFxPFZ3G 2aMO/vlRPhQ7pEQErE6qg/fv1rsUd8uc+2PxQx3yyErJFBvUIK+Xs+qgnBr/ gGKV0W0XtwV1GM+Ve0Txlmzo6aE1/P42LPkUP3odqFm/WwNSwq42UMxucqZM kFUDfHUcGimOHjugHMCuASH8+i0Ue9CvSanxaED8tX+dFOuY+nNniWpAlpvg IMVD33z+xBA1QK5U5hfFAsweZSetNeBc/jDnDu48vdCgxTMa8DDGiIfifaF3 9e7baQAXbTkfxRaLpX2D5zXAX8pTmOKE/pX1Cx4awNj+SJrijazwI0GRGrDh ML6P4vjhpN0i0RpwsGXxAMW8vFm95FgN8Grd0KZY/WajC/1tDdD6sK1LsbsX 062kVA1YuNxqQPGwzv2e3EINkLx3xYriy345j46XaAD7qJI1xWslVc5zpRpA nTptQzG35OBfYrUGTPib2lFszCgi/AbTgEtHZ50oftObe7GnTwPs1qy8/h9n faXsP6gBTZZd3hQPGbat8n/RAPsPx3woXq39Ge8wpgHkw0p+FKtkqhXPzOL9 geYgiuuGDvvf/qUBdx4TQig24j6FVBc14JNLaCjFLnF+Xb4rGmDsJBNB8TIW m8G3pgE0L/wiKY7aeHihdkMDYkIaoihm35uvZL+lAUM/maIpfnKldmVnRwNm tkxiKP4fGYGP3Q== "]]}, Annotation[#, "Charting`Private`Tag$3850#1"]& ]}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-10, 20}, {0., 6119.998127877226}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], TraditionalForm]], "Output", CellChangeTimes->{3.758281326635113*^9, 3.758281371377243*^9, 3.7582847176775627`*^9, 3.758285048877262*^9}, CellLabel->"Out[48]=",ExpressionUUID->"5aa8ebaa-551f-4695-88d2-561a8f47d302"] }, Open ]], Cell[BoxData[ RowBox[{"6", "*", "G"}]], "Input", CellChangeTimes->{{3.758281191007758*^9, 3.7582811918252277`*^9}},ExpressionUUID->"23a7d6e0-f7d1-43e1-8301-\ 83d26edf4abc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"D", "[", RowBox[{ RowBox[{"G", "[", "x", "]"}], ",", "x"}], "]"}]], "Input", CellChangeTimes->{{3.757769150843001*^9, 3.757769154243264*^9}, { 3.758276581945362*^9, 3.758276583075118*^9}}, CellLabel-> "In[127]:=",ExpressionUUID->"f784ccf6-07f5-4576-8b62-c9c1e85c04a3"], Cell[BoxData[ FormBox[ FractionBox[ RowBox[{"6120", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"5", "-", "x"}]]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"5", "-", "x"}]], "+", "1"}], ")"}], "2"]], TraditionalForm]], "Output", CellChangeTimes->{{3.757769154558042*^9, 3.7577691626113*^9}, { 3.757769617898608*^9, 3.7577696533545313`*^9}, 3.7578287200170727`*^9, 3.757828765494636*^9, 3.757835435982698*^9, 3.7578355211607018`*^9, 3.758276583311789*^9}, CellLabel-> "Out[127]=",ExpressionUUID->"a6c24978-6a42-4e9f-a867-80ed321e9863"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "10"}], ",", RowBox[{"+", "20"}]}], "}"}], ",", RowBox[{"PlotRange", "\[RuleDelayed]", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.757769607871423*^9, 3.757769651885653*^9}}, CellLabel-> "In[128]:=",ExpressionUUID->"38630a6f-4f21-4ca0-a2c0-3d40bbce384d"], Cell[BoxData[ FormBox[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwtm3c419/7x22RbDIz3vZ+kwrl3LL3TvYeley9yfqEsqlUSEpKVoXk/VK2 hh1CtlL2isTX77p+f53reZ3rdc7zdV+Pc93P88fhc/I2cSUhIiISJyUi+r9R 6VvAr8NDHFZfEPcDPbdDw/VFK9p/cdjplej6gU07FJT/eSNrG4eN+VzSYVG2 R5XmIvvCSzisTnnrWGGfPRLo+UZjNIrDsvlpKsjiHBBN60Wpwtqj76H2fm+L Iyp75C27+BKHLb3viB1fdkQacQVnTpfjsIDCyFk9dicUg7aVO4pw2K/j1YOW 3k5oq77McPUWDkt/+rRKg9cZTVTQ+8IVHPapSpdOI9cFhaddCLzpgsM2TfP5 /rW5IDbPq6ED9jjspdu5MOE/LshEtCXW4xIOm9FgUBu1dkXtj4Iz01VxGP7a /sshETdUmT9RM8mNwyKVFfHCo+4oNu75dkwfPxYgSj9/t/gaGoo4/M/1Ez8W 6RD8NvHnNSQWbMKt08GPcXoNZYrgPVHftT+qTE38GGtbcn7Oe0/Eb66W8biM Hxsz30Day9fRB+Ex8a4YfkwlIPaGi7wPYuOXJlSE82PvBwwu/rPzQZ5ccSZZ QfzYfKh1M9F/PoiZQSTUxpMfsypq09Gb8EEue/5tyxb8mPKulgzzLV9E/um4 I5M0P+ZEZPTVldQfWbXbbe6I8mOvjxsp4k/7o4rmqqQxAX7surPjUKirP7r0 2qLiMQc/dlfO5X1Spz8qffjo71kKfqzcdcSmIS8Aafop5dqM82HL7HEKj/WD 0H8nr3U/TuHD9CKVDItFw9B52i6SqUQ+zJDW3dzAIwwtk4kqcsXxYZSOmRHp T8KQyfr808wQPsy5tePLmHA44vrklBjtyocxptO9eicdgSrirFQsER+W+OaH 8ZJtFHIIrQ/JVuTDuHBRmeWlUYjJh63yizwf9mKcm5ltNQqF2A6d0pDgwza8 6V1IEqKRyjmTfVl2PsyJRO/aY+sYNLCk/YZmgxfTMq14nvswFiXOPl3WXObF BhqOM37ujEXnvlEK3fjJi91bkMy/uhmL7ne0Zu9+58Vk1Ej6hnTikNsjFb/5 j7yYqt8wdd5+HNq9rCCJlfJiJHv0rbkB8ehUi8gjfyteLOxWvCxbUxIqbl77 2GbOi5lq9MuMbCUhQULDNrsxLxap08PJLZWMJBr0dDBNXoyH3jNZtjAZKVb6 rNHI82KfosvpXt/8D10qqEOldLyY/pwK/fmwFDR6J/bKLjUv9phzwfh9Qwqy zdPJ0qPgxXr/PmKb/JuCOgTqP83t8mB+n7+3L0Snohl6Yq7oAR6sTk3G3fB2 GuL4mV5X9R8PxuX0K7/j423EN8tPczmGB7tis/mk4Xg6Evlea38QxIMNHE5X euDT0ZnBYQpdFx7sxotosi+R6cikmdd8VpkHe6se9fIbRwa6eadyjXXzFPbQ NuJajVsm2tXuEYuwO4V1fy4wbNTNQV4RFQUWZqcwqQsk40RxOWi2IpVWTucU xiKiVfulLgd9ZtJe/yl/CtO8mdTKIJKLiseb6y1OnMI4+N6MGZzIQzq+NVpy jdzYOKeY5OZGPiI8ymigrebG7P/rD7gpdwedHvKWWHzCjR24NLS+97+DTilJ 0BdlcWPqdLt7PNt30DrZ46+017ix+vC3Uw0k99Dd/Fy3RXZurECbV2D9/H1E 1x0w3ErHjQ1wtwz6J91H8f9MdIrIubHA2jXnmr77yMuJTuryGhf2I3qjzP/a A3RRInmrtYMLexqM35UqfYgWCaHxRcFc2NjQa2JRviKkuGBTfHmQE8N3dBae YSxBnoymNlPdnFgLY6rRskoJun9Bm/Xqe07Ms/mt70m/EkSULX8z/CUndprv qcr7/hLUBrR+D/7jxEiGcGfyCx4j47sEldkLnNizjYBVZfUnKK711V/P05wY Tr26PSPiCapdLX+1JcaJzXnaCnrUPkGsmvmilGycWIh4vmWJ4FM0tuHDILbO gVm07aRH0pYhD33+Ke9SDozI/UTUwN4zdDeE7d6fAg6Mqcxg5I9iOep+RGse m8WBmb1trXoVXo6k9vY6MmM4MF+Kd0kHB+Vos7S/8pUVB+ZK+VN1i+YFiiFK iPlLy4F9VyW3atN8ifJqFniSgtmxzWIWfQ7+anSGVeyP2nV2zPOtDOlXo2o0 FOLZQ+LMjuXv90jRxFQjVuW1mCgDdmzteMaH2e/VKLtjbypQkB3jUXV/4Pu4 BqWPnyhx6WfDBOJqSjm0XyEZMIrg72TDhsSR3k70K/SlONNssokNczjssHB8 8wrRepwkt3nGhgUqil6aEX6NUtd53Uxj2bCAE6O17XRvUDLlaZGL0myYa4xZ hct+HRK5GkREJMiG1S7a93Sdr0ftH+uG33GwYSbvM38PRdYjiswL/ylQsGHG do1tC8QNKJ5Lc1Fm/CQmzf1xjJPxLYrBWz3nSTmJLepJ81ubvUMh1jEy/+ZZ sZDo2YnPZ5pRQ3fu0uIYK9bwyKTBxqkZ7Su9eDbcx4o9M1Vsv3yrGUVzjQrU NrFiC4da/Q8XmlHiuBz7tVxWzCDz12Tyw/cox36BeESdFfONFivuFGxBQ1/+ NbUpsWJvbazDPlxuQWzAHFGLZ8W83qboKKe2oAJele3b3KzY1GvRlbebLahk 6u6ixhYLFmBr2/q3uxVVOxv015awYFkkxKmN2e1os98lvfguC1bQJ83p1tOO zqiF66ens2Bdu0/vldJ0oHqBp+3XIliwT7oZ19YTOxA2R9zIb8aCpU9L732P 60Rf3F+VpJOyYFRObMaBd7rR72tcQZ5OzNhn9QeyjUI9aHFAJ5zSkhlz5R3Z GtLrQT8uhMYUGzJjfJqfC3T9e9Ac3dDN4fPMmG7ZrwX15h40UXP7odpJZuwk 33WeXMde1POXpJPrIxM2PWLGe6W2D312wX9+854JmzjJ8uO/yT708ZN9v0k9 E5bx7EYH44l+1PmwcTy5lAmzdG8od3DvR+9Vg9Y3Y5gw/cRI12N8A6g25Sfn J3kmTKtsqfxq2SCq3jzJ5yHBhDG79EkkjA2iSlsNIVIcE/a5bkGBjX4IvZB+ JKNAz4QN3fP2fB4yhEr7bdQfLzJianwha88Nv6J8zh6vyIeMGIejpC0L6wiK KH/dLEnFiDlLjjGZnBhHP3Txc/8OGLDG5yTPn1mMI7Pf5cc+bzJgedQBUc3F 40hSssjQa5IBqyv38MUrTRzlk5TxijcMmIJH675R4HekUu2wK+3GgNEPuFqK HptCFSbfuIhsGLC31iFEBLkpxLFhDj3GDBjPrwWxFvsptC6nm+RzgQG79yYt lq9+CpW8kmepYmbAgh9+5tLynUYU9dR42Q/0mC7GQ2TwZwb5WSaYkdTTY62m xf/cxWfRxO5hcF8FPTbBu/uGzH4WvVHcavK7S4/5Z/Q/7G6fRR6N3/VqfI80 38ei2odzqJtQ63Galx7LWtChELu6gHjS3sH1PVrsy7tzQewBv5APYfqkxwIt Vjqgv//k1S/0fo1yxWmAFvsZfY6kf+cXcrlkcv9yBS1G15LlRhb1Gz3jWdhV daLFzjP9UzvIWEJnqulrOLpOYL98LHufjKyg5Fn5myxvTmCj1wbzRxlX0Qir tSN9yQnMsm78xHmFVRQR/piOIuoEZqX79Blj0ip6r6bouYY/gRXTtY0LCa8h g6/Ogh13aDAsZz2qJnQdFVL9t/8+kQZ72L6W2PN4Ha0pVfS/86fBuh82D1/q W0fZhX9ia/RpsNKPWVqPJDbQ6JW0iQfENFjFgLaLxfwGctt/nRd45Thmo8g7 wey9haL4qKlxCtTY4CP5uIrxP4jZ++uzSCFqrKV08sr3k7voWWOJ7jATNdb5 meV6vskuGrJAaWnLVJhCBXvzk85dJHUrgP7PIyrs6lVmXvumPfR9b4L1Ey0V Vn7w+f6lD/soSOv5G+H9Y1io862vJRT/EE1u6OW4n8ewE6SLwek6/9A5PPPd sy3HsONanhXqA/9Qurs2d3HoMeyLi/8/o5UDBAM1uOBZSgxNc/k+LCaCIb7Y lt5eSuzDrEZNSicReHobuEoQKDH+n9E7fatEkE/9s3TqDiXm73dsNBCIYQ1O iekZUmIU9DSYwCwxFL9IluFroMBexv26+usCKZAm2V7ovk2O1TZ351SoUECQ 6geO9HBybCq20wMfRgE/DkX+mLmTY2TE2zmqNRTwMWSzekKZHPu1qFXBKUwJ 2VdTRNaXyDC+IabrH1iOgZBBPRO7Hhlm9kGe7iI99ZEfnrXxs2TYr+y0Rk8T aqBuj/9cjCPDokhGT6McalhBRv9J/CXFEvBdEtNcx6EOv3CAnpFiAoYFNYan aUCHhWXR7Rgp1ls2iTdNoIXG3rB28U0SjOzhKkl3Hy1I3ZosWf1OgrGMUslT 8tEBE+Vz+7A3JNhlDtsbAwQ6GPtzcTDNjQQT8W0RirxBD15jPlhtCzEm893r 9cMJBsh49DGXJJYIc+3K2sv/zQwRxk5k/F5E2O7tdjnuUyzgfrjjq2JNhD2h DHJjNWKBC9Y4/Rh5Isx3VP6Y5ysW6BfcpNjvPyQ8DVjbe5/ACvFkhpPrjw8I dO/6OE8ps4GVQ9hbfMwBYT3nZllIMBvIND7O9bE6IFy/LlFkVcUGY/77esu0 B4QPCq+76oXYQX6mrP5n8D+CvGV45jE2DphvJsua1N4nfLvHJ0fLygWN3DJe PAL7hPbpXpHwy1yQGWqtbXfwl6A0uDISf48LlPHVh9+q/xJyCRSyAThuyCu0 9/zK+ZdAyfrfl1+Kp0ArukH989Iu4am2zZVONV4oP+/z523GDkEv6kl2+jA/ KAZ91PvisUNwqNvd+3YMBx0vRYqm0Q4htCKBUKyAg1n+KW2q5W3CFfpvOk8K cHCKyuTeJZ1tAjlbiedLDwHIHJRTXiPZIvQ88XCZYBcCXrr0TLLRTUJPvaZ9 qIkQvNT6PX+yapOQPPq1qyRFCD6+LbmtbL9JwBI7KqoPhYC8mGUq5e0G4eKV qFv9y8IQ4rVzQyhgnfDDW+xvxKIoUDw1HVbQXSek+MzH9kmIQc7USwl9/nWC Sdwcc6+3GFSbeQz696wRvH900PXsiMEvxRGhZok1wk+2GiZyeglopA3KetO1 Qoi9dUH9q5MUJMO/U/wvFgmWDQ6Jr77g4Q3vpeV2m0WCB2llrPM+HuaJXr67 TrNI0HR4NxsjKgvqzQ429dd+EobUhKVoE2SB5GLLHSOxH4ShSJ6ADBU5iFBN YY5+MkdgmbVqOtd7GspxszMCFnOEPf+s+87k8jBKeqGmi2KO4Hr9kh69ojwo tCwbs7rNEsyu/WTeLJGHbTWT2y8EZggafbaTx2LPgLcGO/VY0SRhfZJnOs30 HDwQ8huJNZ4kJNTJP/BNPwefKbqfChNPEmySPGJ/fzoHl2/t3prHJggzd+jj X+goQN9tjIpFeYxgXujwLEFXEdoyDQ59z30lhHzajJ25dh6s8IMDFlZdBOom zRX7OwAlnWdZ8qU6CSo2mxUHBIAVx7vmwyQdBJzhG/XteYD4TPuhy+WthN3W FLYNeRV4ufHzq+U+RphYLMhQGFYB+uG9a96hFYQFZzqXKilVUFRIuO7TVUZA AaMTytaq4HqXztuX8zFBl2wqRDZZFQLqtWbnw/IIdw9s7hnOqIJPWMcp/r0U RPIt+E/YAzUoufnyAii9RqUC42buohpAZ7XYSMisQ7OObypabTQgTFTwPFps QA06L3TupGuAYcddReU7BGRKXW9RsqsB/0g+cD4Ib0FjmmqP3Ho14SlUsBWM fEIOog5L/+Vrw6HtRaqPOsOoQfpLkXSaPvy5q09mtTSMikc8R/m+6sP618uH C7dH0GbAGeNOPgOYN/beIh0cRYWCrwuV6w3go3rBlJL9ODof8ot3fdUQPrH+ HRtUmEJmC60PYy8ag86rmFGulCm00uyFT71uDG2mFMPOY1No4z/LuMN8Y8DS GfrXoqZRtzi7uMCaMdRSi3SeaJlBw+Rq8TGlJnDvwOyVusE8qmypxTkLmQHb /dHq1Ifz6IVQrIb3ZTPIVnKo7F+dR98L+fCbN83gVsi1csesBbShcbPUc80M 4tZjiyKHfyCyqG9xZ1rMwWO+Iu2V0y80u/LUUyTOAjjdyWoylVaRLPe/hQ53 a/AwdWeIdVxFiSyFck9KraEWdXl7H/Vlb7kFGvp5azBgS5fQ619FT5iPtya4 2UBMJ2cp+bU1lJtkKsfrZQvz4nJ3Qu6uIzKesaETd+xBji13xw1bR6WRi9ac U/YQQ7Zrbj6/jkyoD/qmmR2AfbyJUVZ2A/3Xw1AWZucAerd0Un91bqDfxHH+ vlsOUL3qGG23u4kc2TPKyeWc4HCsZVyPZwt9eTPDfN7GCfQ6hc8rqW+h/ROJ fV0JTjBXtPTnZMYWWpePmdkYcQI201C/XpFtFMTp/yox0RkiX6W7ql3eQcEe Oc5qay6gFUbQFXuzi5imLlOuMnjAWPKajNrkLuIrS9g61PUA3zwcqx3VHjow XHqWkegBd2uTJjOs91B7FYOQ8j8P+L1sGLh7uId6Z54VDK5egXTnyQcdWvvI Q/W5W9/aNRDwY4yf9t1Hc/cEpr1Pe0J9jNqV/bv7KNjxpNGDYE+Yvv9UTmZp H404vh2rOvSE08M+HXkZ/1Bx6YdXn1m94Kse8brb6AGaK5/+9E3GBzyt5b7G kB4in8mRvV+XfIDoqmvjXYlD1N6WaaEX6QMiSZ2Jn6MOkXyGe8phlw+8m+w4 cY+BCCJfH1e+cNUX6DgzikleE8F7iZTx6Do/qLnN97H3gBi6fnnlWOYFQl04 49YBIwkQk+3s+rQHQpM76SkJYRLglH+VObMTCF1ozjvRkATUSnynv1kGweTK UyalQhLwiw1Ww/EHA42RjHWJCil877TgsG4JATd6tBgUTwZ5Od9xacYR4Lkv zVSSTwan2Bjyn6VFgO8P3vO9z8lA+DKNiURXBERgJLfEB8ngtJ2vtK1aJGT5 tOEnBcmhd3iXL+RCFGA9+qHa7eTAJ6BGYcoXAxwZNse4qClhX6izzEMvDp6k cBctc1GC9sj0I2OvODidOKHQLE0J6d/DSl3T40A/3OGamzkllH/D69AOxkGM q8vnykJKeHz6pp6dww2YV/DMVj97DMaFZWEwKh6qp8N5vV2oQIXEOShvJBF0 T987977pONidT1mfWE+BfcKHbLH+45AmI6k5wZsKz3V/r2YuHIeLXgY8Gwap QOt8ocyZngasdf7WW5anQk/Gd3ZyJxpod+pwJnJNg0sruL+a5CdAqckncHD0 Fjg8e/7uky4tGJR+exE4mw70ZwbZzzjQQmuI8H+df9Ohuflf4IMAWsAxW+NY mTKAf8RAyvs+LXjn+U7lqmTAHOXaA/oVWkjdeKuHe5ABV13lY0wz6WBSXPhB p1kmKNLbF3l60sNS+hobd00WXLK1TtoIpAemSDuDprYs8HtmcT0smh4eeZ+J UhvNgmdqRgrJmfSwQB2q+I8oG9hDVXof1dFD+sYUF61+NvyZwhF/I2MAbtZb ttzfs4FZmnfBkZYBCJHkx5pXs0EmguvTj5MMoKua44FIcsCDleXOthgDhNK/ bOkUyIGvOhR4RmMGWP01Y07qkQOva344aN9nAL2A1qLo+RzoI5rT6CllgOK6 iQvxWzmwrD8lYVHJABK/X3RakuWC0I+RPy4fGMDKM9kxkC8Xcri602N+MkCE VE+1nWUuVF5pD6LcYACK6/Rzo2658PH1B5tb+wygGuKdigvIBTLjRpECOkao yVFhZ7uVCwEJL7A38oxAM0P/MJqQC+l9ZaXKiBGex3nPGHXnwnOe0tRWLUYQ 5cYSF4dyYbb+weV+a0a4p9tIHLiUC2bLt1eXYxnB8aXD+MjJPPBRSh0KTGEE 1OzDO8WXB6nJyY372YwwcydS6IV4HrTwxyZTP2WEcQWtoQzlPJCz8OMV+swI miZmWJxjHjzPvcsX+ZURGr4ONEZcyQOhoff8A5OMINdjPqbomwcc5kyCcRuM kHaBH5HE5EF2tpLQyD4jsCVXzFEn5cGJAWdhGQomYLvbFTiUlgdEprWiE2xM YG10S+7V3TwIyxwTk+dngoW15q/thXmw0UsmkSrOBLevl5kUlObBvJG5lKIy E8Qxsw7+V5UHDumR0hmaTDDSLOde/DoPRr48lvlhxAR+b2Au/G0efDTYls11 ZgLL5xVDPi15oHHr1OklTyaYkrP+mdKRB4RPGvJqQUzw+3WukPvHPDh3wvvM vWgmoPYtdiHpyYNqvbyz68lMYCJ+LcK2Pw8kUgnntDOP5ptStUOG8qC0e0Gh 8B4TRJmbPzMZyQPe4/RKOyVMMB/aEf37Wx7c0Tl33qCCCcxHil6oT+QB402H C4/fMMFsvwWH3eRR/TuTlfcxJpDq5H4pP50HFFRVyLSLCSiF5y0+zuRBjNYI POs/qpeCCyn/XB7sJRFfJB5nAs76E4/OzOeBf7uo6uV5JpDl4RKnXsiD3xQm ai9XmOB5dVpmwZF20whTp9hlglgrof6lIz2ZUKxhS8IMo5I+P/8dacvWLs3a 48zA1fJ24OOR7iPb0DrOwgxTarx5VkdaT41Tx+kUM0SfDZd/crRf2w1V3Xph ZrBk9HlTfeQHPlzTo8czw+//3IUjZ/OggSRb312RGdoe3sqkOPIvd7HRoEmV GTJ8B48ZTh3xEztryKLPDCYdSwWXvh/x00xj7HmJGZg8tF24x/OgkEje5IM9 M+jzsgU/Gj3iCWxNOa4wg9V99dUfX494ik4w8/VjhjN/g5aWBo54Irww7whn hh32Y7ere494Uj6wCLrFDCkKCgbhXUc8RQpZfspjBjUPyobotiOeGg2sBIqY 4evLm25q7494Unpo01fDDAemmkp09Uc8hbfbir5jBiWusTaW2iOeGlbsYtqY YWO733K84ognBXCUGmEG4iy+0MpHRzyFejglTDND/AW/yMb7RzzVpTuP/WKG aTGG0Jt5R/ycnXK9ecAMIm86Ha/fPOJBPu7qPI4FpNJP91+6ngclF+z0j0mx wCvqgqGPLnlQqa4oI3aOBYZPQ+G+dR50mK9vXddjAZqhBuUU7TzYDnSK3Qpg AZU7fg6+R+eXJErZ5WQ0CwiGS519z3pUj0QOTYX/WKBVajSr53geCOT20UTe Z4FJ/NqW8FYumLy+mE/WxgJ/6fWye1pywa7pVLhQDwtoUr5/x1WXC1fa9my1 RlnAn8fyu1h5LsQMVeNSl1ngWoyA/+30XKjY5n/JdJIVtj7Fnk65nAvUZ0nb +D1YoU9XLn9iPAdY0fenan6sYMHFOJD7KQf4NN+muEWwwob4fibnuxw4Z+Fv /CydFb6cXQ1Ou5cDbsEzY/h6VijX+O+s8KUceP/mwwZQnwRvUsnx4ffZEH4u ns/++UkgnDk2mBKdBV2aWo39r07CyZxm+lfXsoDDgsZCi3ASuPZfZLdZZEFd YHYqvu8kWN38uF4inQWb1SU7pH9OwiN03NFhIhM8JVs/PVVlg723zjzW5zLB jp8ibH2UDVyH3oTHT6eDCk1yXwIVBxBHen/jsk4F/tlDg1YmDiiO+ez/RSIV yBqDu8lOcUBuhcONvIMUaLvm3nJDlgPKfYSKrhWngE63xutYaw6gc1KWOv/r JpjcJL8b+YIDTD8JPj8d9x84HbvhGGjMCecnnSy8uhJBdXJvvNaaE3S1rFU0 ChNBoM7PatOVE3pNZi9qByXCvLuTqX8YJ5zOsjPp40+Eq+0q6r6POGGuc9hs PzIB/BKJRK9vcYK4hBIP6YV4uEEWtepyhwsW1skrRr/HwvvPfMkBj47u4ZtZ ZxwaY4HoTitP/Asu6Ll8Pf7knViIkjxh+KiZC4ovjH3mNI2FkEsFL6Z+csGV 8Sr1yM4Y8HracNVOkRs0ioJNbaOjwUpvZ9biGzcI7F7Fpz8Khzus9yLc57hB efVbC+5KOAxPKjMHr3CDV40dnkM6HMwDE1VzSU9BR1oQJtUYBkYPWIoHxE9B pd5Dj9XRUNBYlbM3jjgFskrN7QViISCb7TOiw80DIo7XKwPpA6HWdV/khRAP PFSverA7GwBnziaH0MnwwI6C3beu+gBQGn14cuAiD/Ska26ZugSAGu8Xc1sP Hgj38IrYafQHi+eSfd41PDCwfzXqXIQfjEbW8/U18oCakp3lFXM/sDFU9z3d xgNPjs2yTkv5gcO6Df3uMA90S+x/Lpv2havnUg3iDnjgq9Wxs8n6vqDsFOja JcALNd3LojJH+fdQRyktXJQXfB7juWtP+AAmR/xKQooXhnheX9oc8oaL5Glk t8/ygoyTv0quoTdoPi15ZKrDC7V0lPq/NbzAaLl/asybF0DyccJ5fU9wCpO1 W2ngBd1hKir9Gg/w1OzbJsd4If+ub9uPEA8IYva7zdXKC66KFDfIkAfcrKjC tL/wQiuJmk3dR3eomZbBlczwAgvLO/c/S25Apiv94zINH/z5fOcUk6Yr0LJ9 ifFm4IOpwLtTqsyuwDbnxZ7IygclKuyJ81MuIBFdoVPDywf8lBVUUVEuYF4j +eKEPB/opbroTDQ6QymnhN97Wz6YpvxmWabvBJU/uqlHnPjg1kmHziw+J2h4 de3RijsfVAYMzExvOcJnw/IBLj8++E+neKX8oSPs3BA7G5zIB39ZjEP7dxxA 67fIvvhLPjjLvS59x98efjYKJuYQ8UPt8WWDxAMryE6rDzMn54cNtwqyfcwK wE7fm4WaH1yvOXT/uWEF+YcBl3OY+OGshZXejeNWoHWxRSxHiB/4Tx5rbuK1 hKftTl+y9fhhpHsft+hkAWb52x/MjPlhromDyFzSAoiu3KxjvsQPspeWa878 uQSXqauLsu35oR43+Nnq9iWg1CcOyPbjhxlXB6fjH8zBre8hW3Y+Pwi4JX1D yAwYH8mdMLvPD0oXZ949pTeDJv92YuZifnBmS5wNnTYFVpaVxaxyfvjiE5lh nGQKrRbK77Ka+GFAjLO1adAEBMbHHLNm+eGr3Jr3cLwxTC+wl2fK4MC7/na9 uL4BvKtSfaEojwOsckf50jEDyA+//nJaAQc/VC7ssLfogz5dc42sKg4edEz/ cL+gD3VnPBr7zHFHOZLk1d4ZPbiV8PoTYzgOYtspNxfVdOCK4eSXhmgclN7m nWWm0gE1duo+p3gchJ5IbGr5pA27z22HqtNwICEmW1V1WRtcBsi+mxTioPam 342iAC1QxJmuZrbioA0ILxY+aADLUsS6YhcOZM+vPl+6rQGrr0s3pz/joGhR 4ZaHjQY81tn7IzuMg5s3og7qttWB3q+IuH8RBzcMDhXKZNRhHlthZKIXgAqa 1Mr1OlXItEuVz7ISgCekxad+MqvAa5r0p4X2ApBYei7RbxFgtCGLs8JFAFxs 7A1cMAC+k/eIO70EoMR84mTkdYDKL2WfDuIEgLL2l0NvPoLP0O56tfxoPlFc pvLcBVhf7hoOrhQAfS7XvKWV88B6/7NuwisBkPxp5D3x5DzY7g7iCwkCcMwq +kU/+3n4XTX7b7BfAIZsdWfGyZWACkeSq7IvAH/6nz+j+ncOJHrJqQyJBWHg 3R+Wt03nwCiaKsKGQhBGaM7eoYg9B/nf6J2C6QWBX6eHzo3yHAhl80i9EBCE pd+Qe4rzLKiRX2hj0xeEsm7GKmQrDzELwdsr9wWPcpZ//mlVWdC4491aWiwI o88XUwvYZOG4rnu27RNBuC999qL7Mv6oD12S7a4UhORpLw++e3h4HijvVfpB ELSW+h3od2VgmHRjzuanIHwRHLNVTJWGB68Wa5mWBWFYYfZ17kVpcHafvtG1 LggZY7WMD3alYLmrl+/cviBU/f1b9eSKFJBlVtoy0QkBszn51QhjSZDh9Rrs PC0EtILjSXPK4rDd61oSoyAEIcqi4iqHYvD2hq3/WWUhiBVQ+SKDiYHGgh7D Y00huB5p2NGmKgY2FeL6MVZC8C/uzeJTY1FIPv+z5UyMEETQhc2IJQnD5GWX 2kfdQkBhdFl4wkgAlpflNwk9QnBN5WaZE7cA/IunPD02KASZDh6nrxxxxFH1 rIZ5Ugi4Q2UNdhJwYEa1Vp2webR+ju6Tzff80FEfWeXOLQyWZj1pbqZ8MGRo uHaDXxjkdiytQ4X5YG6OF18oLAwDHLln//7lBRLGlsphvDDMXCB7r1nKC+ev UldqawhDQb1txMdDHnjJkVch7i0MoyIJb0pSuaGp0mNZM0AYXrvyLVSpcMNH DUUpl1Bh2LrL1BixwwU//MZfFNwQhrgw7VlVVy7g78a9OJEvDL4yysyu2pyQ G15ZvoIJQ1Aw7xcPWXaIGut8WsMoAkT9dr3EEUc5Mei2WuhJEdBhtMIYtVlg gs58UplLBNRCmBQLWFkAqU6e7BIUgcQcKXvmoxxL9Gw7cfKcCGhM2+2FrR3d k4JxrifsRUBI4M+B/A1GkGX4SdTvLAL32BzHDS0YYfpZRUG+hwgY/pV60SvO CKoTCgM4PxGwaarWpxpiADJ1I1XFBBHoaLmgJSXNAImMkXzu5SJgzdo2SrlA B2eeX3wnUSkCnaPqmrb36GBe/Zjleq0IkJuQrroa0YFmaFZ6ZJMIhFvjbW42 0sKxybLDrF4RsEzehvWCE3DzxdA4tiMCGVnL6d8jjsMtLZm7HGqigBKf1m1W UML1bymqHVqiwGVUEj0WTAl6Xgu/A/VFQffHrrGaCiVQZz9AvZdEgVtHL/j2 IAUkfaeZS7oiCoy06SsbpBQQE/RTeuuWKDjFP3Y/DCIDeyr1keIsUSipCbRx 0iQD5YLCOKN8UfA9tUN0mo0M9pstBsuLRGF7oNeC5y0phJxoC3OqFYXpe2yv 9shJwbekuPXLiCjUuCqqr1QQg9HZA6/ICVF4UnWxvjOBGGS6LNnEZ0ShYnFv hNSWGJZX6K8l/haFlOG5Z1k0xHBVKZr+wqEorEgyNlL5EIFTn7X1MwExeBPy mEj69gEyI2JZi/cWg8aFtjtV7nsoIljneH6AGFwZ/n1IJ7iHSpajBctDxeC8 +S8/1pldtDm2aNl7QwxKSajnmR13UXY99p47Xww4RFNfPXP5gwb9PLNfH51D geC+N2PJ2+jgZ1FFZ6sYaL1oVTsw3EZCjl87xrrE4C6JvPrLk9soyPDiP5JB MQik3/1X/3QLsUqwuRn+FIMDUXyxbu8mujT34ewPBnFIqdSMklfaQFE2u8Z/ WcXBV9LA9Dn1Birtl/Kk5RIHg42eu/dH19F2853C00LikEQorFoMX0e5D7yp YhXFgSn9+O6JljX01YLzG7uzOLRYvzQJu7KKLnf5RenWisPbO/Vx1KS/Eb96 wSZlvTggqnerlM2/0G9C69WWd+KgZ8E4VRj9C8W8YrO40C4OTz8FZT08WERP CpukpUfFwXpCgryMdBFtB1FPMRJJwKGT169GkR8IW5Oz+EImAdtSEcSfVxbQ TU/bTylUEuBpbKvo+mYBnXKqrCdjkoCYZiIRPq0FpK5/KXNbUAIa56s4X3jP o2xcseqorgSQD50eohuaRXYPuutzjSSAO7FMdqtkFomwb0mbmkuAfcwXFYOA WdRIq8X10U4C8IN15yyYZ9HM7tLmO18JiPuDWTyxnEGyPQqlRXkSsOkuW2/3 Zwp9ieg9dmVGAqo+xONEDyfQ9LeBlZs/JIDQblBLUTmBNhWHh54vSYCud5ta heME4tidKFndkYBL1yltTNvHkVvgbwihkQTOxhuqTffG0P51ytAkeUkwiFrm 8nIfRXSfqB3KFCXhxq/+n2QCo4hfglazG0lC+5OIbs2pEaS1yMxCpyMJTSGD m122IyjLjb8q104SmkO9fuTZDSMx+ws/HydJgt/vCrvpyCF0oQl62lMlIcm5 fCpQbQgZcau9+ZkhCZ725vv3jg+hwG86CZIFkkA9Poa7e28QYRaX+V5VSoJ4 5sNzZ94PIAsjf8uWEUnocO3grBfpR/EqZZ3T4lLw736n945xD2q7c7Hpt4wU XF8zbDsh2oOOrX+r3paXgq3wH89uEvWglGLaAmqQgjupVxU8HL+gTNIAL1kz KZj8QKxhJv4ZPWxVZoqLkAJpZRrj+9PdaJJ7mDI1VgqOMPR/VdCN+IN893MS pcBrWrE3wqIblQqVzJWlS8HSUvUVxi9d6HkSVV1viRRs2z05IdbWiRq0B2z4 PkmBjfMPrLCvHe0XXTcW75OCpIKfUwu57ejCHoWG/FcpaNofrWuxbkfYMwVp 7SkpYLQ6/1JhoQ21H39I7LslBS45Xvk/yNrQwKcrpRi3NHy/mtQsYNWCVowP V+y9pIGG6t7wSedm1PciFZj8pUGN0ZfrmmIzek3FkdEWLA33wq4kcjM2o4jm 07KSsdJgqJ5mVvAeQ9T4qwF7WdJQp0RBvCiMISH6wT/Z9dJgSkZ/g4OiCVF7 OmlrNUkDefxg9zjhHVpqX7nz9700GHMQnNTD3qHaaGolp4/SgLnJRP5dbUQX V1Ck9HdpWBxuOjM69xZJuw8SuZLIgFZ1lgvudz3iZeEqayKTgeQzKuNRL+sR 4wcnYzZKGSDreSXr4V+Ptk+tFnUfl4H4mkLN7/t16N0Qtaosiww8UPVJUWKt Q7oakHAoLAPsrJ737zi+Ru6C5VR39WWg06G0a86kBkW12l0VMpIBz9u9p+f5 alC2K2N3tYkM5JKajDmtVSPscWhqt4UMHNP33OvOqEZsQlp0/xxl4PBNdbPS cBXqEppjdgiSgXutTz6khVWiybb8wN8hMlAcWrDdYlSJtt30hkLCZeC9+FUu N+FKhHtSk5cRIwMf/J35WspfogjhOI4PN2UgjvgtpuldgaREeHiFHsoAXc4t 5RmO50itoy+mukgGeLyarj/sL0dWHolTyiUyIBinZ0SfVo6Sni4VW5TJQOCI zXEqknI0KdIo+F+NDAT/HrUQ3CxDmaKW4r/bZUBxijXp9s4TtCWWdaZ6VQYQ ba2QnE8JGvsI6kwbMpAgQTf7EZWgFq9l04AtGdg3EFIeoStBmdXavmf2ZKAF fNPUqx4hKUWi5w2keKBpOZVouFuM3LSv831gxUOOnI2C1v0ipP+LQ0aAHQ9S qWMTGf5F6HRah3ICJx7UxAx1lXWKEEkvzkaTFw9Vpbn9b/8UooeXR3O7RfFw Nvy/LBmrQjTsrkkzcB4PT8/tukfZPEAEqi0OeYSHvORjIfnMD1BpebForgoe lJOSumw+3UcBK/80LmvgwVZ+ZGkc7iOG4NrYMUM8mD4e+pcrXYB0Evl2Zp3w 4OM1mZwrdhc1lvyd2krGwzz9gR1dWi5SVA3Y0Uk58uOq3lpzORfVT/2mKUzD Q3Ax/9tegVz0+tTEWZ1MPLDcV1sJbMpBlflY2oOjHDzbVKeospONSlITFDQr 8JB4UBCzG5mF+MUPDAoq8aDSMUVWZ5SFijqDXNaq8fDg291733FZ6AGFx+17 b/DgXzIk69adifJjdOZWMDyU/pGbPcOTidIC6DLy+/FA9MBPkmskHdEwJZcu DeLB3uWm7EFVOrpZRdR4cRgPFbRxVEop6Sh5eW3+9xge1ulSZ5qV01Gcx8B5 lXk87NidsP9mehsF2dz58fMPHkYkk0e5edOQnRoOlE7Jwg+7B+JvJf5DxIPH aD/wykKW01d1i6VkVOK6/E0HJwu4az//ZVYko8XE+mArEVlgOrNAOiObjII6 DV+GyspCC+9jj4aLSeiWQcSpOg1ZwPvpM/6NTED4746/kbYs8LGbkI9rJqAB b82Gdl1ZqLGfOq/JmIA4MhgvfTWShYqceN6XT+OP+vnTtG0rWfD0ViV/+u0G aro8uH/aWxbUN8gBZxmHHH82dDX6ysLbeImPK2JxiCysMF8tQBZUtBdfyPyL RTr3rp02C5UFtynzKepHsWhonNjT/4YsvNsarSLejEHLTlLfqvJk4U3Oy9e0 ZtGI53pSvRQmC1zrSdtjTWEo89BNPuW9LPgrzDAQxYQhikyNqoUWWXiot730 WiUMLb8mLyvslAWh0ctRo22hqIkoPp+x/+j/3qR1938NQXbZMcHbc7JQZFYS 780UjPqEHDZMfsjCeu7zJ7LjQUijHnm/XDzyK1alHvgkCElNHLh5rMhCfPQv jYALQeifcOSl0T+yQJrurabgHYgK3obKNx2Xg+zDwBMLP/wRvYFlFQetHLiI WapxNvij+MlzksH0ciDifDPkXYo/8iT/IyDDIgeFt3C9mjL+SMkwiLn4lBy8 N9pPvxzlh0an/TYS8HIguXl4NlvSF7FTe1bpW8jB3wHqiisl19FT1ciwVUs5 iDdllqy4dB2dibylmmUjB08+5d9oorqOTFYrB4cd5UBLwMFJ0c8T3Rza2nX2 lIODgORWV71raK84+mJYrBzsR4ro9+OuoOSx9OPc8XLw5qKb9vyUB2JlLR4g JMqBuBiXcGmhB5L9r8WNPFUO7BPEgwR5PdA1b6qU9Fw5oL3wfXlNyB2NKWX1 l5Yf7X87SVXfxBVdDSwp0K6Qg/+SicqcOVzRn4pXrr8rj+oh1PWCZsYFMfMP 7+Bfy0HVkloefZAL0jvGzfUOO1pv93vv62Jn9G6g1KV/UA7U52mTgMUJ6dHW SQYNy4HdtsD+wJwjGtXs3Gb7Jgenzrl1z712RNsNv5LtJuWAT9LBOdjKEUkV ybz4uSgHN/QZH5594oAaR1WCUpfkgE07eSMl3AHpMJsi6dUjbU79ycTIAbkl BfYGbMnBfBvde7dte7SJJd49+UcOfBIk83OK7VHcXp5zw54cmDalKxYa2iP6 02UStv/k4LvxkEf8Pzv04HrD1uGhHJT9//uU/wHB5W3g "]]}, Annotation[#, "Charting`Private`Tag$66583#1"]& ]}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], TraditionalForm]], "Output", CellChangeTimes->{{3.757769608419174*^9, 3.7577696543386173`*^9}, 3.757828721891801*^9, 3.757828766940044*^9, 3.757835437374585*^9, 3.7578355225401373`*^9, 3.758276589466311*^9}, CellLabel-> "Out[128]=",ExpressionUUID->"f43d30ac-6f1e-4c6a-a478-47da276753e9"] }, Open ]] }, WindowSize->{808, 833}, WindowMargins->{{-1635, Automatic}, {-91, Automatic}}, FrontEndVersion->"11.3 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 5, \ 2018)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 1101, 23, 52, "Input",ExpressionUUID->"b345f780-c762-422b-bb72-4f3dcbf7d3d9"], Cell[1684, 47, 3343, 76, 244, "Output",ExpressionUUID->"2780a80e-bda8-45c2-b1b0-3eb6caa89a36"] }, Open ]], Cell[CellGroupData[{ Cell[5064, 128, 255, 6, 30, "Input",ExpressionUUID->"8e07609f-09e3-40d7-af74-38b08a5e8f91"], Cell[5322, 136, 2045, 56, 104, "Output",ExpressionUUID->"368b90c4-a174-42ff-88ff-fa878b289f90"] }, Open ]], Cell[CellGroupData[{ Cell[7404, 197, 389, 10, 30, "Input",ExpressionUUID->"755b5a3a-b723-4917-b599-cbfec71b6ba8"], Cell[7796, 209, 3439, 78, 244, "Output",ExpressionUUID->"57c09952-dd78-4249-b11e-a32c2dddede6"] }, Open ]], Cell[11250, 290, 602, 13, 50, "Input",ExpressionUUID->"31e3dfa2-15a7-4036-b188-62331ca14f94"], Cell[CellGroupData[{ Cell[11877, 307, 528, 12, 30, "Input",ExpressionUUID->"89e2d575-eabc-4561-9cef-87861999c7e7"], Cell[12408, 321, 16734, 292, 244, "Output",ExpressionUUID->"5aa8ebaa-551f-4695-88d2-561a8f47d302"] }, Open ]], Cell[29157, 616, 177, 4, 30, "Input",ExpressionUUID->"23a7d6e0-f7d1-43e1-8301-83d26edf4abc"], Cell[CellGroupData[{ Cell[29359, 624, 304, 7, 30, "Input",ExpressionUUID->"f784ccf6-07f5-4576-8b62-c9c1e85c04a3"], Cell[29666, 633, 640, 17, 61, "Output",ExpressionUUID->"a6c24978-6a42-4e9f-a867-80ed321e9863"] }, Open ]], Cell[CellGroupData[{ Cell[30343, 655, 389, 10, 30, "Input",ExpressionUUID->"38630a6f-4f21-4ca0-a2c0-3d40bbce384d"], Cell[30735, 667, 18707, 325, 244, "Output",ExpressionUUID->"f43d30ac-6f1e-4c6a-a478-47da276753e9"] }, Open ]] } ] *)