import numpy as np import os import math import tensorflow as tf import pickle import matplotlib.pyplot as plt rnd_seed=1 def conv_concat(X, y, y_dim): yb = tf.reshape(y, [tf.shape(X)[0], 1, 1, y_dim]) yb = tf.tile(yb, [1, tf.shape(X)[1], tf.shape(X)[2] ,1]) output = tf.concat([X, yb], 3) return output def lin_concat(X, y, y_dim): yb = tf.reshape(y, [tf.shape(X)[0], y_dim]) output = tf.concat([X, yb], 1) return output def lrelu(x, alpha=0.2): """ Implements the leakyRELU function: inputs X, returns X if X>0, returns alpha*X if X<0 """ return tf.maximum(alpha*x,x) def evaluation(Y_pred, Y): """ Returns the accuracy by comparing the convoluted output Y_hat with the labels of the samples Y """ correct = tf.equal(tf.argmax(Y_pred, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) return accuracy def supervised_random_mini_batches(X, Y, mini_batch_size, seed): """ Creates a list of random mini_batches from (X, Y) Arguments: X -- input data, of shape (number of examples, input size) Y -- true "label" one hot matrix of shape (number of examples, n_classes) mini_batch_size -- size of the mini-batches, integer Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ m = X.shape[0] #number of examples in set n_classes = Y.shape[1] mini_batches=[] np.random.seed(seed) permutation = list(np.random.permutation(m)) #print('Zeroth element of batch permutation:', permutation[0]) shuffled_X = X[permutation,:] shuffled_Y = Y[permutation,:] #partition of (shuffled_X, shuffled_Y) except the last mini_batch num_complete_mini_batches = math.floor(m/mini_batch_size) for k in range(num_complete_mini_batches): mini_batch_X = shuffled_X[k*mini_batch_size:(k+1)*mini_batch_size,:] mini_batch_Y = shuffled_Y[k*mini_batch_size:(k+1)*mini_batch_size,:] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # handling the case of last mini_batch < mini_batch_size if m % mini_batch_size !=0: mini_batch_X = shuffled_X[mini_batch_size*num_complete_mini_batches:m,:] mini_batch_Y = shuffled_Y[mini_batch_size*num_complete_mini_batches:m,:] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def unsupervised_random_mini_batches(X, mini_batch_size, seed): """ Creates a list of random mini_batches from (X) Arguments: X -- input data, of shape (number of examples, input size) mini_batch_size -- size of the mini-batches, integer Returns: mini_batches -- list of mini_batch_X """ m = X.shape[0] #number of examples in set mini_batches=[] np.random.seed(seed) permutation = list(np.random.permutation(m)) #print('Zeroth element of batch permutation:', permutation[0]) shuffled_X = X[permutation,:] #partition of shuffled_X except the last mini_batch num_complete_mini_batches = math.floor(m/mini_batch_size) for k in range(num_complete_mini_batches): mini_batch_X = shuffled_X[k*mini_batch_size:(k+1)*mini_batch_size,:] mini_batches.append(mini_batch_X) # handling the case of last mini_batch < mini_batch_size if m % mini_batch_size !=0: mini_batch_X = shuffled_X[mini_batch_size*num_complete_mini_batches:m,:] mini_batches.append(mini_batch_X) return mini_batches def unsupervised_random_mini_batches_labels(X, mini_batch_size, seed): """ Creates a list of random mini_batches from (Y) Arguments: X -- input data, of shape (number of examples, input size) mini_batch_size -- size of the mini-batches, integer Returns: mini_batches -- list of mini_batch_X """ m = X.shape[0] #number of examples in set mini_batches=[] np.random.seed(seed) permutation = list(np.random.permutation(m)) #print('Zeroth element of batch permutation:', permutation[0]) shuffled_X = X[permutation] #partition of shuffled_X except the last mini_batch num_complete_mini_batches = math.floor(m/mini_batch_size) for k in range(num_complete_mini_batches): mini_batch_X = shuffled_X[k*mini_batch_size:(k+1)*mini_batch_size] mini_batches.append(mini_batch_X) # handling the case of last mini_batch < mini_batch_size if m % mini_batch_size !=0: mini_batch_X = shuffled_X[mini_batch_size*num_complete_mini_batches:m] mini_batches.append(mini_batch_X) return mini_batches # def preprocess_true(true): # mean_true=true[true!=0].mean() # std_true=np.std(true[np.where(true!=0)],axis=0) # true[true!=0]-=mean_true # true=np.where(true==0,0,true/std_true) # return true, mean_true, std_true # def preprocess_reco(reco): # mean_reco=np.mean(reco,axis=0) # std_reco=np.std(reco,axis=0) # reco-=mean_reco # reco=np.where(reco==0,0,reco/std_reco) # return reco, mean_reco, std_reco # def reconstruct(sample, mean, std): # return np.where(sample!=0,sample*std+mean,0) def four_cells(img): img = img.flatten() return img[img.argsort()[-4:][::-1]] def normalise(X, norm_space=False): if norm_space: X[:,0]=X[:,0]/X[:,0].max() X[:,1]=X[:,1]/X[:,1].max() max_X = X[:,2].max() X[:,2]=X[:,2]/max_X min_X = 0 else: X=np.where(X>0,X,0) #temp = X.reshape(X.shape[0],X.shape[1]*X.shape[2]*X.shape[3]) #temp = temp.sum(axis=1) max_X = np.max(X) #max_X = np.max(temp.sum(axis=1)) X=X/max_X min_X=0 return X, min_X, max_X def denormalise(X, min_X, max_X, norm_space=False): #mask = X!=0 #return np.where(X!=0, np.exp(X*max_X), 0) denormalised = np.zeros_like(X) if norm_space: denormalised[:,0]=(X[:,0]*52).astype(int) denormalised[:,1]=(X[:,1]*64).astype(int) denormalised[:,2]=X[:,2]*max_X return denormalised else: return np.where(X!=0, X*max_X, 0) # def normalise(X): # X=np.where(X>12 ,X,0) # #X=np.where(X>12,np.log(X),0) # # E_max = X.max() # # E_min = np.min(X[X>0]) # # X = np.where(X>0, X-(E_max+E_min)/2,0) # # X/=X.max() # E_min=np.min(X[X>0]) # X=np.where(X>0,X-E_min,0) # E_max=np.max(X) # X=np.where(X!=0,X/E_max,0) # return X, E_max, E_min # def denormalise(X, E_max, E_min): # # X=X*E_max-E_min)/2 # # X=np.where(X!=0, X+(E_max+E_min)/2, 0) # X=np.where(X!=0,X*E_max,0) # X=np.where(X!=0, X+E_min, 0) # #X=np.where(X!=0, np.exp(X), 0) # return X def delete_undetected_events_single(X): pos_rejected=[] for i in range(len(X)): if np.array_equal(X[i],np.zeros_like(X[i])): pos_rejected.append(i) X_filtered=np.delete(X,pos_rejected,axis=0) return X_filtered def delete_undetected_events_double(true, reco): pos_rejected=[] for i in range(len(true)): if np.array_equal(reco[i],np.zeros_like(reco[i])) or np.array_equal(true[i],np.zeros_like(true[i])) : pos_rejected.append(i) reco_filtered=np.delete(reco,pos_rejected,axis=0) true_filtered=np.delete(true, pos_rejected, axis=0) assert len(true_filtered)==len(reco_filtered) return true_filtered, reco_filtered def delete_undetected_events_triple(true_p, true_K, reco): pos_rejected=[] for i in range(len(true_p)): if np.array_equal(reco[i],np.zeros_like(reco[i])) or np.array_equal(true_p[i],np.zeros_like(true_p[i])) or np.array_equal(true_K[i],np.zeros_like(true_K[i])) : pos_rejected.append(i) reco_filtered=np.delete(reco,pos_rejected,axis=0) true_p_filtered=np.delete(true_p, pos_rejected, axis=0) true_K_filtered=np.delete(true_K, pos_rejected, axis=0) assert len(true_p_filtered)==len(reco_filtered)==len(true_K_filtered) return true_p_filtered, true_K_filtered, reco_filtered def selection(true, reco, n_cells, energy_fraction): pos_selected=[] pos_rejected=[] for i in range(len(reco)): tot_E=reco[i].sum() reshaped=reco[i].flatten() if (reshaped[reshaped.argsort()[-n_cells:][::-1]].sum())/tot_E<energy_fraction: pos_rejected.append(i) else: pos_selected.append(i) reco_filtered=np.delete(reco,pos_rejected,axis=0) true_filtered=np.delete(true, pos_rejected, axis=0) reco_rejected=np.delete(reco, pos_selected, axis=0) true_rejected=np.delete(true, pos_selected, axis=0) assert len(true_filtered)==len(reco_filtered) return true_filtered, reco_filtered, true_rejected, reco_rejected def load_batch(true_path, reco_path, i): with open(reco_path+'sample{0}.pickle'.format(i), 'rb') as f: reco=pickle.load(f, encoding='latin1') with open(true_path+'sample{0}.pickle'.format(i), 'rb') as f: true=pickle.load(f, encoding='latin1') #cut that extra produced pixel #true=true[:,1:true.shape[1]-1,1:true.shape[2]-1,:] return true, reco def load_conditional(true, reco): ETs=np.zeros(shape=(len(true),3,1)) for i in range(len(true)): x, y, _ = np.where(true[i]!=0) ETs[i][0]=x[0] ETs[i][1]=y[0] ETs[i][2]=true[i][x, y][0][0] return ETs, reco def load_data(true_path, reco_path, n_batches, select=False, n_cells=None, energy_fraction=0.0, preprocess=None, test_size=None): if n_batches == 1: #delete undetected particles true, reco = load_batch(true_path, reco_path, 0) #true, reco = delete_undetected_events_double(true1, reco1) #delete too noisy events if select: true_output, reco_output, _, _, = selection(true, reco, n_cells, energy_fraction) true=true_output reco=reco_output elif n_batches > 1: true, reco = load_batch(true_path, reco_path, 0) #true, reco = delete_undetected_events_double(true, reco) #delete too noisy events if select: true_output, reco_output, _, _, = selection(true, reco, n_cells, energy_fraction) for i in range(1, n_batches): true_temp, reco_temp = load_batch(true_path, reco_path, i) #true_temp, reco_temp = delete_undetected_events_double(true1, reco1) #delete too noisy events if select: true_temp, reco_temp, _, _, = selection(true_temp, reco_temp, n_cells, energy_fraction) true = np.concatenate((true, true_temp), axis=0) reco = np.concatenate((reco, reco_temp), axis=0) if preprocess =='normalise': reco, min_reco, max_reco = normalise(reco) true, min_true, max_true = normalise(true) m = reco.shape[0] train_size = m - test_size train_true = true[0:train_size] test_true = true[train_size:m] train_reco = reco[0:train_size] test_reco = reco[train_size:m] return train_true, test_true, min_true, max_true, train_reco, test_reco, min_reco, max_reco else: m = reco.shape[0] train_size = m - test_size train_true = true[0:train_size] test_true = true[train_size:m] train_reco = reco[0:train_size] test_reco = reco[train_size:m] return train_true, test_true, train_reco, test_reco def load_data_conditional(true_path, reco_path, n_batches, dim=None, preprocess=None, test_size=None): if n_batches == 1: #delete undetected particles true1, reco1 = load_batch(true_path, reco_path, 0) true2, reco2 = delete_undetected_events_double(true1, reco1) ETs, reco_output = load_conditional(true2, reco2) elif n_batches > 1: true1, reco1 = load_batch(true_path, reco_path, 0) true2, reco2 = delete_undetected_events_double(true1, reco1) ETs, reco_output = load_conditional(true2, reco2) for i in range(1, n_batches): true1, reco1 = load_batch(true_path, reco_path, i) true_temp, reco_temp = delete_undetected_events_double(true1, reco1) ETs_temp, reco_output_temp = load_conditional(true_temp, reco_temp) #delete too noisy events ETs = np.concatenate((ETs, ETs_temp), axis=0) reco_output = np.concatenate((reco_output, reco_output_temp), axis=0) true = ETs reco = reco_output if preprocess =='normalise': reco, min_reco, max_reco = normalise(reco, norm_space=False) true, min_true, max_true = normalise(true, norm_space=True) m = reco.shape[0] train_size = m - test_size train_true = true[0:train_size] test_true = true[train_size:m] train_reco = reco[0:train_size] test_reco = reco[train_size:m] return train_true, test_true, min_true, max_true, train_reco, test_reco, min_reco, max_reco else: m = reco.shape[0] train_size = m - test_size train_true = true[0:train_size] test_true = true[train_size:m] train_reco = reco[0:train_size] test_reco = reco[train_size:m] return train_true, test_true, train_reco, test_reco def draw_one_sample(train_true, train_reco, preprocess=None, min_true=None, max_true=None, min_reco=None, max_reco=None, save=False, PATH=None): j = np.random.randint(len(train_true)) X_batch_A = train_true[j] X_batch_B = train_reco[j] if preprocess=='normalise': X_batch_A=denormalise(X_batch_A, min_true, max_true) X_batch_B=denormalise(X_batch_B, min_reco, max_reco) n_H_A, n_W_A ,n_C = X_batch_A.shape n_H_B, n_W_B ,n_C = X_batch_B.shape plt.subplot(2,2,1) plt.imshow(X_batch_A.reshape(n_H_A,n_W_A)) plt.xlabel('X') plt.ylabel('Y') plt.title('True E_T: {:.6g} MeV'.format(X_batch_A.sum())) plt.subplots_adjust(wspace=0.2,hspace=0.2) plt.subplot(2,2,2) plt.imshow(X_batch_B.reshape(n_H_B,n_W_B)) plt.xlabel('X') plt.ylabel('Y') plt.title('Reco E_T: {:.6g} MeV'.format(X_batch_B.sum())) plt.subplots_adjust(wspace=0.2,hspace=0.2) plt.suptitle('HCAL MC simulation\n ') fig = plt.gcf() fig.set_size_inches(11,4) if not save: plt.show() else: plt.savefig(PATH+'/HCAL_reconstruction_example_{0}.png'.format(j),dpi=80) def draw_one_sample_conditional(train_true, train_reco, preprocess=None, min_true=None, max_true=None, min_reco=None, max_reco=None, save=False, PATH=None): j = np.random.randint(len(train_true)) if preprocess=='normalise': X_batch_A=denormalise(train_true, min_true, max_true, norm_space=True) X_batch_B=denormalise(train_reco, min_reco, max_reco) X_batch_A = X_batch_A[j] X_batch_B = X_batch_B[j] n_H_B, n_W_B, n_C = X_batch_B.shape plt.imshow(X_batch_B.reshape(n_H_B,n_W_B)) plt.xlabel('X') plt.ylabel('Y') plt.title('HCAL MC simulation \n X: {1} Y: {0} \n True E_T: {2:.6g} MeV, Reco MC E_T: {3:.6g}'.format(X_batch_A[0].sum(), X_batch_A[1].sum(), X_batch_A[2].sum(), X_batch_B.sum())) fig = plt.gcf() fig.set_size_inches(11,4) if not save: plt.show() else: plt.savefig(PATH+'/HCAL_reconstruction_example_{0}.png'.format(j),dpi=80) def draw_nn_sample(X_A, X_B, i, preprocess=False, min_true=None, max_true=None, min_reco=None, max_reco=None, f=None, save=True, is_training=False, total_iters=None, PATH=None): j = np.random.randint(len(X_A)) _, n_H_A, n_W_A, n_C = X_A.shape _, n_H_B, n_W_B, _ = X_B.shape #draw the response for one particle if i ==1 : X_A = X_A[j] X_B = X_B[j] sample_nn = f(X_A.reshape(1, n_H_A, n_W_A, n_C)) #draw the response for i particles if i>1: X_A = X_A[j:j+i] X_B = X_B[j:j+i] X_A = X_A.sum(axis=0) X_B = X_B.sum(axis=0) sample_nn = f(X_A.reshape(1, n_H_A, n_W_A, n_C)) if preprocess=='normalise': X_A=denormalise(X_A, min_true, max_true) X_B=denormalise(X_B, min_reco, max_reco) sample_nn=denormalise(sample_nn, min_reco, max_reco) plt.subplot(1,3,1) plt.gca().set_title('True ET {0:.6g}'.format(X_A.sum())) plt.imshow(X_A.reshape(n_H_A,n_W_A)) plt.xlabel('X') plt.ylabel('Y') plt.subplots_adjust(wspace=0.2,hspace=0.2) plt.subplot(1,3,2) plt.gca().set_title('MC Reco ET {0:.6g}'.format(X_B.sum())) plt.imshow(X_B.reshape(n_H_B,n_W_B)) plt.xlabel('X') plt.ylabel('Y') plt.subplots_adjust(wspace=0.2,hspace=0.2) plt.subplot(1,3,3) plt.gca().set_title('NN Reco ET {0:.6g}'.format(sample_nn.sum())) plt.imshow(sample_nn.reshape(n_H_B,n_W_B)) plt.xlabel('X') plt.ylabel('Y') plt.subplots_adjust(wspace=0.2,hspace=0.2) if is_training: plt.suptitle('At iter {0}'.format(total_iters)) fig = plt.gcf() fig.set_size_inches(10,8) if save: if is_training: plt.savefig(PATH+'/sample_at_iter_{0}.png'.format(total_iters),dpi=80) else: plt.savefig(PATH+'/nn_reco_sample_{0}.png'.format(j),dpi=80) else: plt.show() def draw_nn_sample_conditional(y, reco_MC, i, preprocess=False, min_true=None, max_true=None, min_reco=None, max_reco=None, f=None, save=True, is_training=False, total_iters=None, PATH=None): j = np.random.randint(len(reco_MC)) #_, n_H_A, n_W_A, n_C = X_A.shape _, n_H_B, n_W_B, _ = reco_MC.shape #draw the response for one particle y =y[j:j+4] reco_MC = reco_MC[j:j+4] sample_nn = f(y.reshape(4, y.shape[1])).reshape(4, n_H_B, n_W_B) if preprocess=='normalise': Y=denormalise(y, min_true, max_true, norm_space=True) X_B_mc=denormalise(reco_MC, min_reco, max_reco) X_B_nn=denormalise(sample_nn, min_reco, max_reco) for i in range(4): plt.subplot(2,4,i+1) plt.gca().set_title('X: {1}, Y: {0} \n True ET {2:.6g}, \n MC ET {3:.6g}\n'.format(Y[i,0].sum(), Y[i,1].sum(), Y[i,2].sum(), X_B_mc[i].sum())) plt.imshow(X_B_mc[i].reshape(n_H_B,n_W_B)) plt.subplots_adjust(wspace=0.25,hspace=0.25) plt.xlabel('X') plt.ylabel('Y') plt.subplot(2,4,i+5) plt.gca().set_title('NN ET {0:.6g}'.format(X_B_nn[i].sum())) plt.imshow(X_B_nn[i].reshape(n_H_B,n_W_B)) plt.xlabel('X') plt.ylabel('Y') plt.subplots_adjust(wspace=0.25,hspace=0.25) fig = plt.gcf() fig.set_size_inches(20,10) if save: if is_training: plt.savefig(PATH+'/sample_at_iter_{0}.png'.format(total_iters),dpi=80) else: plt.savefig(PATH+'/nn_reco_sample_{0}.png'.format(j),dpi=80) else: plt.show() def get_inner_HCAL(reco): inner_HCAL = reco[:,12:40,16:48,:] return inner_HCAL def get_outer_HCAL(reco): m_tot, h, w, c = reco.shape outer_HCAL = np.zeros(shape=(m_tot,h//2,w//2,c)) for m in range(0, m_tot): img=reco[m] for j in range(0, w, 2): for i in range(0, h, 2): outer_HCAL[m,i//2,j//2,0]=img[i:i+2,j:j+2].sum() outer_HCAL[:,6:20,8:24,:]=0 return outer_HCAL def get_4_max_cells(img): c =0 value = np.zeros(shape=(2,2)) pos =np.zeros(shape=(2,1)) for i in range(img.shape[0]-1): for j in range(img.shape[1]-1): c_prime = img[i:i+2,j:j+2].sum() if c_prime > c: c = c_prime value[0,0]=img[i,j] value[0,1]=img[i,j+1] value[1,0]=img[i+1,j] value[1,1]=img[i+1,j+1] pos[0]=i pos[1]=j return value, pos def get_triggered_events(true, reco_inner, reco_outer): l = [] for m in range(len(reco_inner)): value_inner, pos_inner = get_4_max_cells(reco_inner[m]) value_outer, pos_outer = get_4_max_cells(reco_outer[m]) if value_inner.sum()>3680 or value_outer.sum()>3680: l.append(m) triggered_true = np.array([true[l[i]].sum() for i in range(len(l))]) triggered_reco_inner = np.array([reco_inner[l[i]].sum() for i in range(len(l))]) triggered_reco_outer = np.array([reco_outer[l[i]].sum() for i in range(len(l))]) return l, triggered_true, triggered_reco_inner, triggered_reco_outer # def crop_conditional(true, reco, dim): # ETs=[] # assert len(reco)==len(true) # cropped_reco=np.zeros(shape=(reco.shape[0],2*dim+1,2*dim+1,1)) # max_x = reco.shape[2] # max_y = reco.shape[1] # pos_rejected=[] # for i in range(len(reco)): # reco_y, reco_x, _ = np.where(reco[i]==reco[i].max()) # #CENTER OF IMAGE # if 2*dim<reco_y[0]<=max_y-2*dim and 2*dim<reco_x[0]<=max_x-2*dim: # cropped_reco[i]=reco[i, reco_y[0]-dim:reco_y[0]+dim+1, reco_x[0]-dim:reco_x[0]+dim+1, :] # ETs.append(true[i][np.where(true[i]>0)][0]) # else: # pos_rejected.append(i) # # # # print(len(pos_rejected)) # ETs=np.array(ETs) # reco_rejected=np.delete(cropped_reco,pos_rejected,axis=0) # assert len(reco_rejected)==len(ETs) # return ETs, reco_rejected # def crop_function(true, reco, dim): # assert len(reco)==len(true) # j=0 # cropped_reco=np.zeros(shape=(reco.shape[0],2*dim,2*dim,1)) # cropped_true=np.zeros(shape=(true.shape[0],2*dim,2*dim,1)) # max_x = reco.shape[2] # max_y = reco.shape[1] # for i in range(len(reco)): # y , x , _= np.where(true[i]>0) # #CORNERS # #top left corner # # if y[0]<=2*dim and x[0]<=2*dim: # # #print(i, x, y) # # cropped_reco[i]=reco[i,0:2*dim, 0:2*dim, :] # # cropped_true[i]=true[i,0:2*dim, 0:2*dim, :] # # j+=1 # # #top right corner # # elif y[0]<=2*dim and max_x-2*dim<x[0]<=max_x: # # #print(i, x, y) # # cropped_reco[i]=reco[i,0:2*dim, max_x-2*dim:max_x, :] # # cropped_true[i]=true[i,0:2*dim, max_x-2*dim:max_x, :] # # j+=1 # # #bottom right corner # # elif max_y-2*dim<y[0]<=max_y and max_x-2*dim<x[0]<=max_x: # # #print(i, x, y) # # cropped_reco[i]=reco[i,max_y-2*dim:max_y, max_x-2*dim:max_x, :] # # cropped_true[i]=true[i,max_y-2*dim:max_y, max_x-2*dim:max_x, :] # # j+=1 # # #bottom left corner # # elif max_y-2*dim<y[0]<=max_y and x[0] <=2*dim: # # #print(i, x, y) # # cropped_reco[i]=reco[i,max_y-2*dim:max_y, 0:2*dim, :] # # cropped_true[i]=true[i,max_y-2*dim:max_y, 0:2*dim, :] # # j+=1 # # #BORDERS # # #bottom border without corners # # elif max_y-2*dim<=y[0]<max_y and 2*dim<x[0]<=max_x-2*dim: # # #print(i, x, y) # # cropped_reco[i]=reco[i, max_y-2*dim:max_y, x[0]-dim:x[0]+dim, :] # # cropped_true[i]=true[i, max_y-2*dim:max_y, x[0]-dim:x[0]+dim, :] # # j+=1 # # #top border without corners # # elif y[0]-2*dim<=0 and 2*dim<x[0]<=max_x-2*dim: # # #print(i, x, y) # # cropped_reco[i]=reco[i, 0:2*dim, x[0]-dim:x[0]+dim, :] # # cropped_true[i]=true[i, 0:2*dim, x[0]-dim:x[0]+dim, :] # # j+=1 # # #left border without corners # # elif 2*dim<y[0]<=max_y-2*dim and x[0]<=2*dim: # # #print(i, x, y) # # cropped_reco[i]=reco[i,y[0]-dim:y[0]+dim,0:2*dim, :] # # cropped_true[i]=true[i,y[0]-dim:y[0]+dim,0:2*dim, :] # # j+=1 # # #right border without corners # # elif 2*dim<y[0]<=max_y-2*dim and max_x-2*dim<x[0]<=max_x: # # #print(i, x, y) # # cropped_reco[i]=reco[i, y[0]-dim:y[0]+dim, max_x-2*dim:max_x, :] # # cropped_true[i]=true[i, y[0]-dim:y[0]+dim, max_x-2*dim:max_x, :] # # j+=1 # #CENTER OF IMAGE # if 2*dim<y[0]<=max_y-2*dim and 2*dim<x[0]<=max_x-2*dim: # #print(i, x, y) # cropped_reco[i]=reco[i, y[0]-dim:y[0]+dim, x[0]-dim:x[0]+dim, :] # cropped_true[i]=true[i, y[0]-dim:y[0]+dim, x[0]-dim:x[0]+dim, :] # j+=1 # #assert i==j-1 # return cropped_true, cropped_reco