from __future__ import division, print_function import sys import os import string import numpy as np import pandas as pd import ROOT as r location = os.path.expandvars('$DISK/data/ST/Aging/') macros = os.path.expandvars('$CCEHOME/macros/CCEScan/') VERBOSE = False # Voltage steps voltMapTT = [None] * 11 voltMapTT[0] = 400 voltMapTT[1] = 350 voltMapTT[2] = 300 voltMapTT[3] = 250 voltMapTT[4] = 225 voltMapTT[5] = 200 voltMapTT[6] = 175 voltMapTT[7] = 150 voltMapTT[8] = 125 voltMapTT[9] = 100 voltMapTT[10] = 60 voltMapIT = [None] * 11 voltMapIT[0] = 300 voltMapIT[1] = 200 voltMapIT[2] = 170 voltMapIT[3] = 140 voltMapIT[4] = 120 voltMapIT[5] = 105 voltMapIT[6] = 90 voltMapIT[7] = 75 voltMapIT[8] = 60 voltMapIT[9] = 40 voltMapIT[10] = 20 # Time steps def get_tmap(): timeMap = [None] * 6 timeMap[0] = 0.0 timeMap[1] = -60.0 timeMap[2] = -30.0 timeMap[3] = 30.0 timeMap[4] = 60.0 timeMap[5] = 90.0 return timeMap def build_pulse(vals): times = get_tmap() pulse = list(zip(*sorted(zip(vals, times), key=lambda x: x[1]))[0]) return np.array(prune(pulse)) def is_monotonic(x): if not len(x): return False dx = np.diff(x) return (np.all(dx <= 0) or np.all(dx >= 0)) def is_central(x): if not len(x): return False dx = np.diff(x) return (np.all(dx <= 0) or np.all(dx >= 0)) def max_adc(x): return np.max(x) def prune(x): return [element for element in x if element is not None] def get_vmap(d): if 'IT' in d: return voltMapIT if 'TT' in d: return voltMapTT # Helpers for string formatting # based on http://stackoverflow.com/a/23305496/3324012 class StringTemplate(object): class FormatDict(dict): def __missing__(self, key): return "{" + key + "}" def __init__(self, template): self.substituted_str = template self.formatter = string.Formatter() def __repr__(self): return self.substituted_str def format(self, *args, **kwargs): mapping = StringTemplate.FormatDict(*args, **kwargs) self.substituted_str = self.formatter.vformat( self.substituted_str, (), mapping) return self.substituted_str class Table(dict): '''Dictionary tweaked for conversion into pandas DataFrame Dictionary conversion into DataFrames is faster than appending rows to a DataFrame, as pointed out here: http://stackoverflow.com/a/17496530/3324012 ''' def __init__(self, *keylist): super(dict, self).__init__() self.__keylist = keylist for key in keylist: self[key] = [] def append(self, *vals): assert(len(vals) == len(self.__keylist)) for i, v in enumerate(vals): self[self.__keylist[i]].append(v) if __name__ == '__main__': if 'VERB' in sys.argv: VERBOSE = True datafile = r.TFile(location + 'CCEScan.root', 'read') # Select detector detector = 'TT' nstrips = [3, 5, 7] layer = 'TTaU' if 'IT' in sys.argv: detector = 'IT' nstrips = [7] layer = 'T3X2' # Load fill numbers with open(macros + 'Fills.dat', 'rb') as f: fills = f.read().splitlines() fills.remove('2797') fills.remove('3108') # Load sectors with open(macros + '{DET}sectors.dat'.format(DET=detector), 'rb') as f: sectors = f.read().splitlines() # Load inner sectors with open(macros + '{DET}inner.dat'.format(DET=detector), 'rb') as f: inners = f.read().splitlines() # Load voltage map vmap = get_vmap(detector) # String templates access = StringTemplate('{DET}/{LAY}/{SEC}/{FILL}/v_{CS}_val{NS}') access = access.format(DET=detector, LAY=layer) warning = StringTemplate( '{LAY}/{SEC} on fill {FILL}: pulse is monotonic for ns={NS}, Vbias={V}: \t {PULSE}') warning = warning.format(LAY=layer) not_found = StringTemplate( '{LAY}/{SEC} on fill {FILL}: calibration step {CS} not found for ns={NS}') not_found = not_found.format(LAY=layer) # Init dictionary for data frame table = Table('Detector', 'Sector', 'Fill', 'N strips', 'V bias', 'MPVs') # Loop on data for fill in fills: for sector in sectors: for ns in nstrips: # Loop on voltages for vstep in range(11): pulse = [] for cstep in range(6 * vstep, 6 * vstep + 6): try: data = datafile.Get(access.format(NS=ns, FILL=fill, SEC=sector, CS=cstep)) pulse.append(list(data)[0]) except: if VERBOSE: print(not_found.format(NS=ns, FILL=fill, SEC=sector, CS=cstep)) pulse.append(None) pulse = build_pulse(pulse) # Append this occurrence to the data frame dictionary table.append(detector, sector, fill, ns, vmap[vstep], pulse) if is_monotonic(pulse): if VERBOSE: pulse = [round(v, 2) for v in pulse] print(warning.format(NS=ns, FILL=fill, SEC=sector, V=vmap[vstep], PULSE=pulse)) datafile.Close() # Create the pandas DataFrame from the dictionary data_frame = pd.DataFrame.from_dict(table) # Select the instances where pulse data are monotonic monotonics = data_frame[data_frame['MPVs'].apply(is_monotonic)] if not os.path.isfile('monotonics.pkl'): import pickle pickle.dump(monotonics, open('monotonics.pkl', 'wb')) # Combine masks with the '&' operator # (intersection in numpy), e.g.: # data_frame[mask_highVbias(125) & mask_monotonics] def mask_highVbias(V): return data_frame['V bias'] > V def mask_lowVbias(V): return data_frame['V bias'] < V def mask_highsig(ADC): return data_frame['MPVs'].apply(max_adc) > ADC def mask_lowsig(ADC): return data_frame['MPVs'].apply(max_adc) < ADC mask_monotonics = data_frame['MPVs'].apply(is_monotonic) # To do: # - mask selecting only central sectors # - intersect with Michele's result and try to find cause/consequence relationships # - look at the actual fits and data taking conditions