import ROOT import pickle import numpy as np import os import getPredictions # numbers of excluded fills due to special configuration (e.g. CCE scans) bad_boys = [4643,4639,4638,4518,3960,3820,3478,3456,3232,3054,3109,3121,3108,3072,2797,2772,2576,2574,2564,2481,2480,2476,2472,2414,2252,2235,2083,1944,1943,1936,1932,1928,1616,1595,1554,1552,1547,1464,1463,1459,1455,1449,1436] # obtaining for a given sector the integrated luminosity, the time and the measured current # as an array def vectors(sec): time,lumi,curr = [],[],[] for d in sec: if d["current"]>0.00: # excluding jumps in the measured currents by more than a factor 10 if len(curr)>0 and d["current"]>10.0*curr[len(curr)-1]: continue if d["fill"] in bad_boys: continue lumi.append(d["intLumi"]) time.append(d["endTime"]) curr.append(d["current"]) return [lumi,time,curr] # function to correct for the temperature -> normalisation from a temperature t1 to T = 8 degrees C (t2) # Eg: silicon energy gap in eV def tempCorr(t1,t2=8.0,Eg=1.21): kelvin = 273.15 kb = 8.6173324e-5 t1 += kelvin t2 += kelvin return (t1/t2)**2*np.exp(-Eg/(2*kb)*(1/t2-1/t1)) # function to apply the temperature correction for TT (i.e. two relevant temperature senssors CT5 and CT6 def corrCurrTT(time,curr,temp): i1=0 i2=0 for i in range(0,len(curr)): while time[i]>temp["CT5"][0][i1] and i1<len(temp["CT5"][0])-1: i1+=1 while time[i]>temp["CT6"][0][i2] and i2<len(temp["CT6"][0])-1: i2+=1 t1 = 0.5*(temp["CT5"][1][i1]+temp["CT6"][1][i2]) curr[i] *= tempCorr(t1) # function to apply the temperature correction for IT # (taking the temperature sensor in the corresponding box) def corrCurrIT(time,curr,temp): j=0 for i in range(0,len(curr)): while time[i]>temp[0][j] and j<len(temp[0])-1: j+=1 t1 = temp[1][j] curr[i] *= tempCorr(t1) # filter high-voltage channels according to a given layer name pattern def filterLayer(dic,expr): return dict((key,value) for key, value in dic.iteritems() if key.find(expr)>=0) # filter high-voltage channels according to a given section/box name pattern def filterSect(dic,expr): return dict((key,value) for key, value in dic.iteritems() if key.find(expr)==len(key)-len(expr)) # function to get the silicon volume connected to a particular value # returns 100000000000000.0 if the pattern does not match def getVolume(key): # in cm^3 if key.find("TT")>=0: oneSensor = 0.0500*9.64*9.44 if key.find("US")>=0 or key.find("X1S")>=0: if np.size(np.where(np.array([key.find(sec) for sec in ("S10","S4","S3","S9","S15","S16")])>=0))>0: return 1.0*oneSensor elif np.size(np.where(np.array([key.find(sec) for sec in ("S11","S5","S8","S14","S17")])>=0))>0: return 2.0*oneSensor elif np.size(np.where(np.array([key.find(sec) for sec in ("S12","S6","S7","S13","S18")])>=0))>0: return 4.0*oneSensor elif key.find("S2")==len(key)-2: return 2.0*oneSensor elif key.find("S1")==len(key)-2: return 4.0*oneSensor elif key.find("VS")>=0 or key.find("X2S")>=0: if np.size(np.where(np.array([key.find(sec) for sec in ("S14","S8","S7","S13","S19","S20")])>=0))>0: return 1.0*oneSensor elif np.size(np.where(np.array([key.find(sec) for sec in ("S15","S9","S6","S12","S18","S21")])>=0))>0: return 2.0*oneSensor elif np.size(np.where(np.array([key.find(sec) for sec in ("S25","S24","S3")])>=0))>0: return 3.0*oneSensor elif np.size(np.where(np.array([key.find(sec) for sec in ("S26","S22","S16","S10","S4","S5","S11","S17","S23")])>=0))>0: return 4.0*oneSensor elif key.find("S2")==len(key)-2: return 3.0*oneSensor elif key.find("S1")==len(key)-2: return 4.0*oneSensor else: if np.size(np.where(np.array([key.find(sec) for sec in ("P8","P4","P5","P1")])>=0))>0: return 12.0*oneSensor else: return 9.0*oneSensor else: if key.find("BOXA")>=0 or key.find("BOXC")>=0: return 0.041*7.6*11*2.0*4 else: return 0.032*7.6*11*4 return 100000000000000.0 # returns one multigraph for time and one multigraph for time for TT # filSector and filLayer are iterables representing different patterns to be selected # temp is a dictionnary of lists containing two elements, a time list and the corresponding temperature list def drawTT_sensor(data,filSector,filLayer,name,color,temp): mg_time = ROOT.TMultiGraph("mg_%s_time"%name,"Multigraph time"); mg_lumi = ROOT.TMultiGraph("mg_%s_lumi"%name,"Multigraph lumi"); for f1 in filSector: filter_dict = filterSect(data,f1) for f2 in filLayer: dfilter_dict = filterLayer(filter_dict,f2) for sec in dfilter_dict: print sec,": ",getVolume(sec) [lumi,time,curr] = vectors(filter_dict[sec]) corrCurrTT(time,curr,temp) v_curr = np.array(curr)/getVolume(sec) g_time = ROOT.TGraph(len(time),np.array(time)*1.0,v_curr) g_lumi = ROOT.TGraph(len(time),np.array(lumi)*1.0,v_curr) g_time.SetLineColor(color); g_lumi.SetLineColor(color); mg_time.Add(g_time,"l") mg_lumi.Add(g_lumi,"l") return [mg_time,mg_lumi] # returns one multigraph for time and one multigraph for time for IT # filSector and filLayer are iterables representing different patterns to be selected # temp is a dictionnary of lists containing two elements, a time list and the corresponding temperature list def drawIT_sensor(data,filBox,name,color,temp): mg_time = ROOT.TMultiGraph("mg_%s_time"%name,"Multigraph time"); mg_lumi = ROOT.TMultiGraph("mg_%s_lumi"%name,"Multigraph lumi"); for f1 in filBox: filter_dict = filterLayer(data,f1) for sec in filter_dict: print sec,": ",getVolume(sec) [lumi,time,curr] = vectors(filter_dict[sec]) corrCurrIT(time,curr,temp[sec[0:-3]]) v_curr = np.array(curr)/getVolume(sec) g_time = ROOT.TGraph(len(time),np.array(time)*1.0,v_curr) g_lumi = ROOT.TGraph(len(time),np.array(lumi)*1.0,v_curr) g_time.SetLineColor(color); g_lumi.SetLineColor(color); mg_time.Add(g_time,"l") mg_lumi.Add(g_lumi,"l") return [mg_time,mg_lumi] # combines an iterable of graphs into a multigraph def combineMultigraph(name,graphs): mg = ROOT.TMultiGraph("mg_%s"%name,"Multigraph"); for g in graphs: mg.Add(g) return mg import time # sets the axis ranges etc. for a graph showing the current as a function of time def modifyGraphTime(mg): #mg.GetXaxis().SetLimits(1262304000,1360000000); #mg.GetXaxis().SetLimits(1262304000,1438003626); mg.GetXaxis().SetLimits(1262304000,int(time.time())); mg.GetXaxis().SetTimeDisplay(1); mg.GetXaxis().SetTimeOffset(0.0); mg.GetXaxis().SetTimeFormat("#splitline{%d/%m}{%Y}"); mg.GetXaxis().SetTitle("Date"); mg.GetYaxis().SetTitle("#it{I}_{leak}/#it{V} [A/m^{3}]"); mg.GetXaxis().SetLabelOffset(0.02); mg.GetXaxis().SetTimeOffset(0.0); mg.GetYaxis().SetTitleOffset(1.3); mg.GetXaxis().SetTitleOffset(1.4); # sets the axis ranges etc. for a graph showing the current as a function of the luminosity def modifyGraphLumi(mg): mg.GetXaxis().SetLimits(0.0,3500.0); mg.GetXaxis().SetTitle("Delivered Luminosity [pb^{-1}]"); mg.GetYaxis().SetTitle("#it{I}_{leak}/#it{V} [A/m^{3}]"); mg.GetXaxis().SetLabelOffset(0.02); mg.GetXaxis().SetTimeOffset(0.0); mg.GetYaxis().SetTitleOffset(1.3); mg.GetXaxis().SetTitleOffset(1.2); # Running the lhcb style file ROOT.gROOT.ProcessLine(".x ../../include/lhcbstyle.C") # Load temperature #filenameTemp = "/home/hep/egraveri/cmtuser/STMonitoring/STAging/data/temperature" filenameTemp = "/home/hep/egraveri/STAging/data/temperature" filenameTemp += "/temperature.root" f_temp = ROOT.TFile.Open(filenameTemp) v_TT_CT5_temp = f_temp.Get("v_TT_CT5_temp") v_TT_CT5_time = f_temp.Get("v_TT_CT5_time") v_TT_CT6_temp = f_temp.Get("v_TT_CT6_temp") v_TT_CT6_time = f_temp.Get("v_TT_CT6_time") temp_TT = {} temp_TT["CT5"] = [v_TT_CT5_time,v_TT_CT5_temp] temp_TT["CT6"] = [v_TT_CT6_time,v_TT_CT6_temp] v_IT_A1_temp = f_temp.Get("v_IT_A1_temp") v_TT_A1_time = f_temp.Get("v_IT_A1_time") v_IT_A2_temp = f_temp.Get("v_IT_A2_temp") v_TT_A2_time = f_temp.Get("v_IT_A2_time") v_IT_A3_temp = f_temp.Get("v_IT_A3_temp") v_TT_A3_time = f_temp.Get("v_IT_A3_time") v_IT_B1_temp = f_temp.Get("v_IT_B1_temp") v_TT_B1_time = f_temp.Get("v_IT_B1_time") v_IT_B2_temp = f_temp.Get("v_IT_B2_temp") v_TT_B2_time = f_temp.Get("v_IT_B2_time") v_IT_B3_temp = f_temp.Get("v_IT_B3_temp") v_TT_B3_time = f_temp.Get("v_IT_B3_time") v_IT_C1_temp = f_temp.Get("v_IT_C1_temp") v_TT_C1_time = f_temp.Get("v_IT_C1_time") v_IT_C2_temp = f_temp.Get("v_IT_C2_temp") v_TT_C2_time = f_temp.Get("v_IT_C2_time") v_IT_C3_temp = f_temp.Get("v_IT_C3_temp") v_TT_C3_time = f_temp.Get("v_IT_C3_time") v_IT_T1_temp = f_temp.Get("v_IT_T1_temp") v_TT_T1_time = f_temp.Get("v_IT_T1_time") v_IT_T2_temp = f_temp.Get("v_IT_T2_temp") v_TT_T2_time = f_temp.Get("v_IT_T2_time") v_IT_T3_temp = f_temp.Get("v_IT_T3_temp") v_TT_T3_time = f_temp.Get("v_IT_T3_time") temp_IT = {} temp_IT["IT/HV/ST1A/BOXA"] = [v_TT_A1_time,v_IT_A1_temp] temp_IT["IT/HV/ST2A/BOXA"] = [v_TT_A2_time,v_IT_A2_temp] temp_IT["IT/HV/ST3A/BOXA"] = [v_TT_A3_time,v_IT_A3_temp] temp_IT["IT/HV/ST1A/BOXB"] = [v_TT_B1_time,v_IT_B1_temp] temp_IT["IT/HV/ST2A/BOXB"] = [v_TT_B2_time,v_IT_B2_temp] temp_IT["IT/HV/ST3A/BOXB"] = [v_TT_B3_time,v_IT_B3_temp] temp_IT["IT/HV/ST1C/BOXC"] = [v_TT_C1_time,v_IT_C1_temp] temp_IT["IT/HV/ST2C/BOXC"] = [v_TT_C2_time,v_IT_C2_temp] temp_IT["IT/HV/ST3C/BOXC"] = [v_TT_C3_time,v_IT_C3_temp] temp_IT["IT/HV/ST1C/BOXT"] = [v_TT_T1_time,v_IT_T1_temp] temp_IT["IT/HV/ST2C/BOXT"] = [v_TT_T2_time,v_IT_T2_temp] temp_IT["IT/HV/ST3C/BOXT"] = [v_TT_T3_time,v_IT_T3_temp] # Load data #filenameTT = "/home/hep/egraveri/cmtuser/STMonitoring/STAging/data/leakageCurrent" filenameTT = "/home/hep/egraveri/STAging/data/leakageCurrent" filenameTT += "/ttcurrent.pkl" pkl_fileTT = open(filenameTT,'rb') dataTT = pickle.load(pkl_fileTT) #filenameIT = "/home/hep/egraveri/cmtuser/STMonitoring/STAging/data/leakageCurrent" filenameIT = "/home/hep/egraveri/STAging/data/leakageCurrent" filenameIT += "/itcurrent.pkl" pkl_fileIT = open(filenameIT,'rb') dataIT = pickle.load(pkl_fileIT) # Get current plots for TT for 1, 2, 3, and 4 read-out sector regions [mg_TTaU_1_time,mg_TTaU_1_lumi] = drawTT_sensor(dataTT,["S10","S4","S3","S9","S15","S16"],["US"],"TTaU_1sensor",ROOT.kRed,temp_TT); [mg_TTbV_1_time,mg_TTbV_1_lumi] = drawTT_sensor(dataTT,["S14","S8","S7","S13","S19","S20"],["VS"],"TTbV_1sensor",ROOT.kBlue,temp_TT); [mg_TTaU_2_time,mg_TTaU_2_lumi] = drawTT_sensor(dataTT,["S11","S5","S2","S8","S14","S17"],["US"],"TTaU_2sensor",ROOT.kRed,temp_TT); [mg_TTbV_2_time,mg_TTbV_2_lumi] = drawTT_sensor(dataTT,["S15","S9","S6","S12","S18","S21"],["VS"],"TTbV_2sensor",ROOT.kBlue,temp_TT); [mg_TTaU_31_time,mg_TTaU_31_lumi] = drawTT_sensor(dataTT,["P3U","P7U","P2U","P6U"],["U"],"TTaU_31sensor",ROOT.kRed,temp_TT); [mg_TTbV_32_time,mg_TTbV_32_lumi] = drawTT_sensor(dataTT,["P3V","P7V","P2V","P6V"],["V"],"TTbV_32sensor",ROOT.kBlue,temp_TT); [mg_TTbV_33_time,mg_TTbV_33_lumi] = drawTT_sensor(dataTT,["S25","S24","S2","S3"],["VS"],"TTbV_33sensor",ROOT.kBlue,temp_TT); [mg_TTaU_41_time,mg_TTaU_41_lumi] = drawTT_sensor(dataTT,["P8U","P4U","P5U","P1U"],["U"],"TTaU_41sensor",ROOT.kRed,temp_TT); [mg_TTbV_42_time,mg_TTbV_42_lumi] = drawTT_sensor(dataTT,["P8V","P4V","P5V","P1V"],["V"],"TTbV_42sensor",ROOT.kBlue,temp_TT); [mg_TTaU_43_time,mg_TTaU_43_lumi] = drawTT_sensor(dataTT,["S12","S6","S7","S1","S13","S18"],["US"],"TTaU_43sensor",ROOT.kRed,temp_TT); [mg_TTbV_44_time,mg_TTbV_44_lumi] = drawTT_sensor(dataTT,["S26","S22","S16","S10","S4","S1","S5","S11","S17","S23"],["VS"],"TTbV_44sensor",ROOT.kBlue,temp_TT); # Get current plots for IT for A, B, C and T boxes [mg_IT_A_time,mg_IT_A_lumi] = drawIT_sensor(dataIT,["BOXA"],"IT_BOXA",ROOT.kRed,temp_IT); [mg_IT_B_time,mg_IT_B_lumi] = drawIT_sensor(dataIT,["BOXB"],"IT_BOXB",ROOT.kRed,temp_IT); [mg_IT_C_time,mg_IT_C_lumi] = drawIT_sensor(dataIT,["BOXC"],"IT_BOXC",ROOT.kBlue,temp_IT); [mg_IT_T_time,mg_IT_T_lumi] = drawIT_sensor(dataIT,["BOXT"],"IT_BOXT",ROOT.kBlue,temp_IT); # Get predictions for 1, 2, 3, and 4-sensor read-out sec [mg_cent_lumi_TT1, mg_cent_time_TT1, mg_unc_lumi_TT1, mg_unc_time_TT1] = getPredictions.predict("TT","1") [mg_cent_lumi_TT2, mg_cent_time_TT2, mg_unc_lumi_TT2, mg_unc_time_TT2] = getPredictions.predict("TT","2") [mg_cent_lumi_TT3, mg_cent_time_TT3, mg_unc_lumi_TT3, mg_unc_time_TT3] = getPredictions.predict("TT","3") [mg_cent_lumi_TT4, mg_cent_time_TT4, mg_unc_lumi_TT4, mg_unc_time_TT4] = getPredictions.predict("TT","4") # Get predictions for A+C boxes and B+T boxes [mg_cent_lumi_TAC, mg_cent_time_TAC, mg_unc_lumi_TAC, mg_unc_time_TAC] = getPredictions.predict("IT","AC") [mg_cent_lumi_TBT, mg_cent_time_TBT, mg_unc_lumi_TBT, mg_unc_time_TBT] = getPredictions.predict("IT","BT") # Combining multigraphs mg_time_1 = combineMultigraph("TT_time1",[mg_unc_time_TT1,mg_TTaU_1_time,mg_TTbV_1_time,mg_cent_time_TT1]) mg_time_2 = combineMultigraph("TT_time2",[mg_unc_time_TT2,mg_TTaU_2_time,mg_TTbV_2_time,mg_cent_time_TT2]) mg_time_3 = combineMultigraph("TT_time3",[mg_unc_time_TT3,mg_TTaU_31_time,mg_TTbV_32_time,mg_TTbV_33_time,mg_cent_time_TT3]) mg_time_4 = combineMultigraph("TT_time4",[mg_unc_time_TT4,mg_TTaU_41_time,mg_TTbV_42_time,mg_TTaU_43_time,mg_TTbV_44_time,mg_cent_time_TT4]) mg_time_IT1 = combineMultigraph("IT_time1",[mg_unc_time_TAC,mg_IT_A_time,mg_IT_C_time,mg_cent_time_TAC]) mg_time_IT2 = combineMultigraph("IT_time2",[mg_unc_time_TBT,mg_IT_B_time,mg_IT_T_time,mg_cent_time_TBT]) mg_lumi_1 = combineMultigraph("TT_lumi1",[mg_TTaU_1_lumi,mg_TTbV_1_lumi]) mg_lumi_2 = combineMultigraph("TT_lumi2",[mg_unc_lumi_TT2,mg_TTaU_2_lumi,mg_TTbV_2_lumi,mg_cent_lumi_TT2]) mg_lumi_3 = combineMultigraph("TT_lumi3",[mg_unc_lumi_TT3,mg_TTaU_31_lumi,mg_TTbV_32_lumi,mg_TTbV_33_lumi,mg_cent_lumi_TT3]) mg_lumi_4 = combineMultigraph("TT_lumi4",[mg_unc_lumi_TT4,mg_TTaU_41_lumi,mg_TTbV_42_lumi,mg_TTaU_43_lumi,mg_TTbV_44_lumi,mg_cent_lumi_TT4]) mg_lumi_IT1 = combineMultigraph("IT_lumi1",[mg_unc_lumi_TAC,mg_IT_A_lumi,mg_IT_C_lumi,mg_cent_lumi_TAC]) mg_lumi_IT2 = combineMultigraph("IT_lumi2",[mg_unc_lumi_TBT,mg_IT_B_lumi,mg_IT_T_lumi,mg_cent_lumi_TBT]) # plot graphs c_TT1_time = ROOT.TCanvas("c_TT1_time","Canvas",800,600) mg_time_1.Draw("a") mg_time_1.SetMaximum(40.0) modifyGraphTime(mg_time_1) mg_time_1.GetHistogram().Draw("axissame") c_TT2_time = ROOT.TCanvas("c_TT2_time","Canvas",800,600) mg_time_2.Draw("a") mg_time_2.SetMaximum(15.0) modifyGraphTime(mg_time_2) mg_time_2.GetHistogram().Draw("axissame") c_TT3_time = ROOT.TCanvas("c_TT3_time","Canvas",800,600) mg_time_3.Draw("a") modifyGraphTime(mg_time_3) mg_time_3.SetMaximum(10.0) mg_time_3.GetHistogram().Draw("axissame") c_TT4_time = ROOT.TCanvas("c_TT4_time","Canvas",800,600) mg_time_4.Draw("a") modifyGraphTime(mg_time_4) mg_time_4.SetMaximum( 6.0) mg_time_4.GetHistogram().Draw("axissame") c_IT1_time = ROOT.TCanvas("c_IT1_time","Canvas",800,600) mg_time_IT1.Draw("a") modifyGraphTime(mg_time_IT1) mg_time_IT1.SetMaximum(10.0) mg_time_IT1.GetHistogram().Draw("axissame") c_IT2_time = ROOT.TCanvas("c_IT2_time","Canvas",800,600) mg_time_IT2.Draw("a") modifyGraphTime(mg_time_IT2) mg_time_IT2.SetMaximum(10.0) mg_time_IT2.GetHistogram().Draw("axissame") c_TT1_lumi = ROOT.TCanvas("c_TT1_lumi","Canvas",800,600) mg_lumi_1.Draw("a") mg_lumi_1.SetMaximum(40.0) modifyGraphLumi(mg_lumi_1) mg_lumi_1.GetHistogram().Draw("axissame") c_TT2_lumi = ROOT.TCanvas("c_TT2_lumi","Canvas",800,600) mg_lumi_2.Draw("a") mg_lumi_2.SetMaximum(15.0) modifyGraphLumi(mg_lumi_2) mg_lumi_2.GetHistogram().Draw("axissame") c_TT3_lumi = ROOT.TCanvas("c_TT3_lumi","Canvas",800,600) mg_lumi_3.Draw("a") mg_lumi_3.SetMaximum(10.0) modifyGraphLumi(mg_lumi_3) mg_lumi_3.GetHistogram().Draw("axissame") c_TT4_lumi = ROOT.TCanvas("c_TT4_lumi","Canvas",800,600) mg_lumi_4.Draw("a") mg_lumi_4.SetMaximum( 6.0) modifyGraphLumi(mg_lumi_4) mg_lumi_4.GetHistogram().Draw("axissame") c_IT1_lumi = ROOT.TCanvas("c_IT1_lumi","Canvas",800,600) mg_lumi_IT1.Draw("a") mg_lumi_IT1.SetMaximum(10.0) modifyGraphLumi(mg_lumi_IT1) mg_lumi_IT1.GetHistogram().Draw("axissame") c_IT2_lumi = ROOT.TCanvas("c_IT2_lumi","Canvas",800,600) mg_lumi_IT2.Draw("a") mg_lumi_IT2.SetMaximum(10.0) modifyGraphLumi(mg_lumi_IT2) mg_lumi_IT2.GetHistogram().Draw("axissame")