Newer
Older
Lecture_repo / Lectures_my / MC_2016 / Lecture7 / mchrzasz.tex
@mchrzasz mchrzasz on 21 Apr 2016 21 KB fixed bugs in lecture 7
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel} 
\usepackage{polski}         
\usepackage[skins,theorems]{tcolorbox}
\tcbset{highlight math style={enhanced,
  colframe=red,colback=white,arc=0pt,boxrule=1pt}}

\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
                            

\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}	
\usepackage{listings}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}
\usepackage{amsmath, amssymb} 

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{hyperref}
%\usepackage{hepparticles}    
\usepackage[italic]{hepparticles}     

\usepackage{hepnicenames} 

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patternsfx

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams, 
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle, 
minimum height=3em, minimum width=6em]

\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}  
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}  



\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
%\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
%\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
%\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}
\def\fixme{{\color{red} FIXME!}}
\def\mc{{\color{Magenta}{MC}}}
\def\pdf{{\rm p.d.f.}}
\def\cdf{{\rm c.d.f.}}
\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Specific \pdf~generation]{Specific \pdf~generation}
\date{\fixme}
\newcommand*{\QEDA}{\hfill\ensuremath{\blacksquare}}%
\newcommand*{\QEDB}{\hfill\ensuremath{\square}}%

\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.9\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \Huge {Specific \pdf~generation}
		\end{column}
		\begin{column}{0.2\textwidth}
		  %\includegraphics[width=\textwidth]{SHiP-2}
		\end{column}
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}
	\textcolor{normal text.fg!50!Comment}{Monte Carlo methods, \\ 14 April, 2016}
\end{center}
\end{frame}
}
\begin{frame}\frametitle{Announcement}

\begin{Large}
There will be no lectures and class on 19$^{th}$ of May
\end{Large}

\end{frame}

\begin{frame}\frametitle{Exponential \pdf }
 \begin{footnotesize}
% \begin{exampleblock}{~}
\ARROWR The $X(\theta, \lambda)$:\\
\begin{align*}
\rho_{\theta , \lambda}=\frac{1}{\lambda} e^{- \frac{x- \theta}{\lambda}}
\end{align*}
\ARROWR One can transform the variable:
\begin{align*}
x \to x^{\prime} =\frac{x-\theta}{\lambda}~~ \Rightarrow~~ E(\theta, \lambda) \to E(0,1): \rho_{0,1}=e^{-x^{\prime},} x^{\prime} \geq 0
\end{align*}
% \end{exampleblock}
\begin{columns}
\column{0.1in}
{~}\\x
\column{3.5in}
\begin{block}{ \begin{footnotesize}Reverting the \cdf \end{footnotesize}}
\begin{align*}
X^{\prime} = - \ln R,~R \in\mathcal{U}(0,1),~~~\Rightarrow X=\lambda X^{\prime} + \theta
\end{align*}
\end{block}

\begin{block}{ \begin{footnotesize}Monolitic series method\end{footnotesize}}
\begin{enumerate}
\item Generate a sequence: $U_1,U_2,... \in \mathbb{U}(0,1)$
\item We look at series: $U_1 \geq U_2 \geq U_3 ...\geq U_n < U_{n+1}$, which we then order with numbers: $0,1,2,3,...$.
\item First series which length $n$ is odd we take as integral part of a number. The decimal part is taken as $R_1$.
\end{enumerate}

\end{block}
\column{0.1in}
{~}\\
\column{1.3in}

\ARROW E7.1 Write the two above generators of $E(0,1)$. Compare \cdf~and \pdf 


\end{columns}

 \end{footnotesize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\begin{frame}\frametitle{Gaussian \pdf }
 \begin{footnotesize}
 \only<1>{
% \begin{exampleblock}{~}
\ARROW The \pdf:
\begin{align*}
\phi_{\mu,\sigma}(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}~~ - \infty <x < \infty
\end{align*}
\ARROW Now we can always transform the variables:
\begin{align*}
x \to x'=(x-\mu)/\sigma~~ \Rightarrow~~ N(\mu,\sigma) \to N(0,1)
\end{align*}
\ARROW First method of based on Central limit theorem. See Lecture 2.\\ Bad for the tails.\\
\ARROW Reverting the \cdf 
\begin{itemize}
\item In 1 dim the \cdf~is not revertible :( One can use an approximation (Odeh,Evans 1974):
\end{itemize}
\begin{columns}
\column{3in}
\begin{align*}
\Phi^{-1}(u)=\begin{cases}
g(u),~~~~~~~10^{-20}<u<0.5\\
-g(1-u)~~~0.5<u<1-10^{-20}
\end{cases}
\end{align*}
\column{2in}
\begin{align*}
g(u)=t-\dfrac{L(t)}{M(t)},\\ t=\sqrt{-2 \ln u}
\end{align*}

\end{columns}
\begin{align*}
L(t)=0.322232431088 + t + 0.342242088547 t^2\\ + 0.0204231210245 t^3 + 0.0000453642210148 t^4
\end{align*}
\begin{align*}
M(t)=0.099348462606 + 0.588581570495 t + 0.531103462366 t^2\\ + 0.10353775285 t^3 + 0.0038560700634 t^4
\end{align*}
}

\only<2>{
\ARROW Reverting the \cdf~in 2 dim:
\begin{align*}
\phi(x,y)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2+y^2}{2}},~~~ - \infty <x,y < \infty
\end{align*}
\begin{itemize}
\item We change the coordinates: $(x,y)=(r\cos \phi,r \sin \phi)$
\item And we factorize: $\widehat{\rho}(\phi,r)=f(\phi)g(r)$, where $f(\phi)=\frac{1}{2 \pi}$,~$g(r)=re^{\frac{-r^2}{2}}$.
\item The angles is generated flat: $\mathcal{U}(0,2\pi)$ and the $r$ with reverting the \cdf.
\end{itemize}
\ARROW If $U_1,U_2 \in \mathcal{U}(0,1)$:
\begin{align*}
x=\sqrt{-2 \ln U_1}\cos (2\pi U_2)\\
y=\sqrt{-2 \ln U_1}\sin (2\pi U_2)
\end{align*}
\ARROW Accurate and simple to use.\\
\ARROW Time consuming calculations of trigonometrical and logarithm function.


}
\only<3>
{
\ARROW The Marsaglia \& Bray method (1964):
\begin{itemize}
\item If $U_1,U_2 \in \mathcal{U}(-1,1)$ are independent random variables, and $U_1^2+U_2^2 \leq 1$ then:
\begin{align*}
X_1=U_1\sqrt{\frac{-2 \ln (U_1^2+U_2^2)}{U_1^2+U_2^2}},~~Y_1=X_1\frac{U_2}{U_1}
\end{align*}
have the distribution of $N(0,1)$.
\end{itemize}
\ARROW The algorithm:
\begin{itemize}
\item Generate $R_1,R_2 \in \mathcal{U}(0,1)$ and calculate the $U_1=2R_1-1,~U_2=2R_2-1$
\item Calculate $W=U_1^2+U_2^2$.
\item If $W<1$ start over.
\item Calculate the $X=U_1 Z$ and $Y=U_2 Z$, where $Z=\sqrt{\frac{-2 \ln W}{W}}$
\end{itemize}
\ARROW E7.2 Generate $N(0,1)$ using \cdf~reverting and Marsaglia \& Bray method.


}


 \end{footnotesize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{Breit-Wigner \pdf }
 \begin{footnotesize}
 \only<1>{
\ARROW The \pdf :
\begin{align*}
f_{\theta,\lambda}(x)=\frac{\lambda}{\pi} \frac{1}{\lambda^2+(x-\theta)^2},~~~~- \infty < x< \infty
\end{align*}
\ARROW The variable transformation:
\begin{align*}
x \to x^{\prime}~~~ \Rightarrow~~~ C(\theta,\lambda) \to C(0,1)
\end{align*}
\ARROW The reverting \cdf :
\begin{itemize}
\item The \cdf 
\begin{align*}
F(x)=\frac{1}{\pi} \arctan x + \frac{1}{2}\\
\Rightarrow X= \tan \left( \pi \left[U-\frac{1}{2}\right]\right),~~~U \in \mathcal{U}(0,1)
\end{align*}
\end{itemize}

\ARROW A statistical digression: There is no expected value of the Cauchy function. The variance is infinite.
}

\only<2>{
\ARROW One can use a cut-off Cauchy method $C_u(0,1)$:
\begin{align*}
f_u(x)=\begin{cases}
\frac{2}{\pi} \frac{1}{1+x^2},~~~\vert x \vert \leq 1,\\
0,~~~~~~~~~~~\vert x \vert> 1,\\
\end{cases}
\end{align*}
\begin{exampleblock}{Theorem:}
If a random variable $X$ has a cuf-off Cauchy distribution $C_u(0,1)$, then the new random variable $Y$, which is with $50~\%$ equal $X$ and with $50\%$ equal $1/X$ has a ''normal'' Cauchy distribution.
\end{exampleblock}
\ARROW Prove $(y \leq -1)$:
\begin{align*}
\mathcal{P}\lbrace Y\leq y\rbrace =  \frac{1}{2} \mathcal{P}\lbrace X \leq y \rbrace + \frac{1}{2} \mathcal{P}\lbrace \frac{1}{X} \leq \rbrace = 0+\frac{1}{2}\lbrace \frac{1}{y} \leq X <0  \rbrace \\ = \frac{1}{2} \frac{2}{\pi} \int_{1/y}^0 \frac{dr }{1+t^2}=\frac{1}{\pi} \arctan y +\frac{1}{2}~~~{\rm c.d.f~of~}C(0,1) 
\end{align*}
\ARROW The cut-off Breit-Wigner distribution we generate with elimination method using $\mathcal{U}(-1,1)$\\
\ARROW E7.3 Generate the Brei-Wigner distribution with all described methods.





}

 \end{footnotesize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{$x^n$ \pdf }
 \begin{footnotesize}
 \only<1>{
\ARROW The \pdf :
\begin{align*}
f_{1}(x) &=n x^{n-1}\\
f_{2}(x) &=n(1-x)^{n-1}
\end{align*}
where $0\leq x \leq 1,~n\in  \mathbb{N}$
\ARROW Revert the \cdf:
\begin{align*}
X=U^{1/n}~~~\longrightarrow &f_1,~~~& U\in \mathcal{U}(0,1)\\
Y=1-U^{1/n}~~~\longrightarrow &f_2,~~~& U\in \mathcal{U}(0,1)
\end{align*}
\ARROWR Disadvantage: The operation $U^{1/n}$ is time consuming.
\ARROW Second method:
\begin{itemize}
\item Generate $U_1,U_2,...U_n \in \mathcal{U}(0,1)$.
\item $X=\max\lbrace U_1,U_2,...U_n \rbrace$ has \pdf~of $f_1$.
\item $Y=\min\lbrace U_1,U_2,...U_n \rbrace$ has \pdf~of $f_2$.
\end{itemize}

\ARROW E7.4 Generate the $f_1$ and $f_2$ \pdf~ with two methods.
}

 \end{footnotesize}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{Bernoulli \pdf }
 \begin{footnotesize}
 \only<1>{
\ARROW The \pdf~$b(n,p)$ :
\begin{align*}
\mathcal{P}\lbrace X=m\rbrace ={n \choose m} p^m (1-p)^{n-m},~~~~m=0,1,2,...,n.
\end{align*}
\ARROWR The interpretation: number of success with the probability $p$.\\
\ARROW The algorithm (buffon needle):\\
\includegraphics[width=0.45\textwidth]{images/buff.png}\\
\ARROW It requires many ''trials''

}
\only<2>
{
\ARROW If $n$ is large, we can use a discrete \pdf :
\begin{align*}
p_k=\sum_{i=0}^k \mathcal{P}\lbrace  X=i\rbrace
\end{align*}
and use the algorithm:\\
\includegraphics[width=0.45\textwidth]{images/buff2.png}



\begin{exampleblock}{Theory hack:}
If $n$ is big one can write it in a form: $n=kl$, where $l$ is NOT a big number. In this case one can generate $k$ numbers from distribution $b(l,p)$ and calculate $m$ as sum of the generated numbers.

\end{exampleblock}

}
\only<3>
{
\begin{exampleblock}{Theory:}
If $U \in \mathcal{U}(0,1)$ then:
\begin{align*}
Y=\Theta(p-U)~~~~~~~~V=\min \lbrace \frac{U}{p},\frac{1-U}{1-p} \rbrace
\end{align*}
are independent and $V \in \mathcal{U}(0,1)$.
\end{exampleblock}
\ARROW This is super nice! We can treat $Y$ as the indicator of success in the Bernoulli trials. And have a new random variable :)\\
\begin{center}
\includegraphics[width=0.45\textwidth]{images/bern.png}
\end{center}
\ARROW E7.5 Please code the above mention Bernaulli \pdf~generation.


}

 \end{footnotesize}

\end{frame}

\begin{frame}\frametitle{Poisson \pdf }
 \begin{footnotesize}
\ARROW The \pdf~$P(\lambda)$:
\begin{align*}
\mathcal{P}(X=n)=\frac{\lambda^n}{n!}e^{-\lambda},~~~n=0,1,2,...
\end{align*}
\begin{exampleblock}{Theory:}
If $\epsilon_1$, $\epsilon_2$, $\epsilon_3$,..., are from $E(0,1)$ then the random variable:
\begin{align*}
X=\min \lbrace k:\sum_{i=0}^k \epsilon_i > \lambda \rbrace
\end{align*}
has the distribution of $P(\lambda)$.
\end{exampleblock}
\only<1>{
\ARROW The algorithm:\\
\begin{center}
\includegraphics[width=0.45\textwidth]{images/al1.png}
\end{center}
}
\only<2>{
\ARROW The algorithm 2:\\
\begin{center}
\includegraphics[width=0.45\textwidth]{images/al2.png}
\end{center}
}
%\ARROW E7.6 Code the $P(\lambda)$ generation.

 \end{footnotesize}
\end{frame}



\begin{frame}\frametitle{Poisson \pdf }
 \begin{footnotesize}
\ARROW Reverting the \cdf :
\begin{center}
\includegraphics[width=0.4\textwidth]{images/al3.png}
\end{center} 
 \ARROW It has problem with large values of $\lambda$, at you need many generations which causes numerical instabilities.\\
 \ARROW E7.6 Implement the abovementioned ways of generating $P(\lambda)$.
 

 \end{footnotesize}
\end{frame}



\begin{frame}\frametitle{Geometric \pdf }
 \begin{footnotesize}
\ARROW The \pdf of $G(p)$ :
\begin{align*}
\mathcal{P}(X=n)=(1-p) p^n,~~~~n=0,1,2,3...
\end{align*}
\begin{exampleblock}{Theorem:}
If a random variable has a \pdf~of 
\begin{align*}
f_{\alpha}(x)=\alpha e^{-\alpha x}
\end{align*}
then $\lfloor x \rfloor$ has a geometric~\pdf:
\begin{align*}
G(e^{-\alpha})
\end{align*}
\end{exampleblock}
\ARROW Algorithm:
\begin{enumerate}
\item Generate a number $U$ from $\mathcal{U}(0,1)$
\item Calculate $X=\lfloor \ln U / \ln p \rfloor$
\end{enumerate}
\ARROW E7.7 Implement the above algorithm.

 \end{footnotesize}
\end{frame}




\begin{frame}\frametitle{Equal division of interval}
 \begin{footnotesize}
\ARROW The method of equal division of an $(0,1)$ interval (the \pdf ):
\begin{align*}
\mathcal{P}(X=k)=p_k,~~~~k=1,2,3...,K
\end{align*}
\ARROW Some times the inverting the \cdf~might be slow. This happens for large values of $K$. \\
\ARROW A more efficient method: \\
\begin{itemize}
\item The interval $(0,1)$ we divide in $K+1$ bins: $(\frac{i-1}{K+1}, \frac{i}{K+1})$, which are equal size and we number them: $1,2,...,K+1$.
.
\item The random variable $U \in \mathcal{U}(0,1)$  falls into bin $\lfloor (K+1)U \rfloor$.
\item We create a sequence: $ q_j =\sum_{k=0}^j p_k$, $j=0,1,....,K$.
\item And a companioning one: $g_j = \max \lbrace j:q_j < \frac{i}{K+1} \rbrace$, $i=0,1,2,...$
\end{itemize}
\begin{center}
\includegraphics[width=0.45\textwidth]{images/al4.png}
\end{center}

 \end{footnotesize}
\end{frame}

\begin{frame}\frametitle{Multidimensional generation}
 \begin{footnotesize}
\ARROW Let $\overrightarrow{X}$ be a $m$ dimensional variable with a \pdf~of $f(x_1,x_2,x_3,...,x_m)$.\\
\ARROW To generate a \pdf like that we use the elimination method. \\
\ARROW The problem with this is that for large dimensions we can have problems :(\\
\ARROW Example:\\
\begin{itemize}
\item Generate a flat \pdf~on the hyper circle $K_m(0,1)$ with the accept reject method.
\item The probability of accepting event:
\begin{align*}
p_m=\pi^{m/2} / \left[ 2^m \Gamma(m/2+1) \right]
\end{align*}
\end{itemize}
\begin{center}

\begin{tabular}{||c|c|c||}
\hline \hline
$m$ & $p_m$ &  $N_m=1/p_m$ \\ \hline
$2$ & $7.854 \cdot 10^{-1}$ & $1.27$\\ 
$5$ & $1.645 \cdot 10^{-1}$ & $6.08$\\ 
$10$ & $2.490 \cdot 10^{-3}$ & $4.015 \cdot 10^2$ \\
$20$ & $2.461 \cdot 10^{-8}$ & $4.063 \cdot 10^7$ \\
$50$ & $1.537 \cdot 10^{-28}$ & $6.507 \cdot 10^{28}$ \\ \hline \hline
\end{tabular}\\{~}\\
\end{center}
\ARROW Good luck simulating $10^{28}$ points ;)

 \end{footnotesize}
\end{frame}


\begin{frame}\frametitle{Multidimensional generation}
 \begin{footnotesize}

\only<1>{ 
 \ARROW Uniform distribution on a simplex:
\begin{exampleblock}{Theorem:}
If $U_1,U_2,...,U_m~\in~\mathcal{U}(0,1)$ and $U_{1:m},U_{2:m},...,U{m:m}$. The a random variable: 
\begin{align*}
X_1=U_{1:m},~X_2=U_{2:m}-U_{1:m},...,X_m=U_{m:m}-U_{m-1:m}
\end{align*}
has a uniform distribution on a simplex:
\begin{align*}
W_m=\lbrace (x_1,x_2,...,x_m): \sum_{j=1}^m x_j \leq 1,~x_j\geq 0,~j=1,2,...,m
\end{align*}
\end{exampleblock}
}
\only<2>{
 \ARROW Uniform distribution on a simplex surface:
\begin{exampleblock}{Theorem:}
If $U_1,U_2,...,U_{m-1}~\in~\mathcal{U}(0,1)$ and $U_{1:m-1},U_{2:m-1},...,U{m-1:m-1}$. The a random variable: 
\begin{align*}
X_1=U_{1:m-1},~X_{m-1}=U_{m-1:m-1}-U_{m-2:m-1},~X_m=1-U_{m-1:m-1}
\end{align*}
has a uniform distribution on a simplex surface:
\begin{align*}
W_m=\lbrace (x_1,x_2,...,x_m): \sum_{j=1}^m x_j = 1,~x_j \geq 0,~j=1,2,...,m
\end{align*}
\end{exampleblock}

}

 \end{footnotesize}
\end{frame}

\backupbegin   

\begin{frame}\frametitle{Backup}


\end{frame}

\backupend			

\end{document}