(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 15417, 465] NotebookOptionsPosition[ 13779, 402] NotebookOutlinePosition[ 14115, 417] CellTagsIndexPosition[ 14072, 414] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"x_", ",", " ", "y_"}], "]"}], " ", ":=", " ", RowBox[{ RowBox[{"-", "2.1"}], "y"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"h", " ", "=", " ", "0.5"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"x0", " ", "=", " ", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"y0", " ", "=", " ", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"yNextValues", " ", "=", " ", RowBox[{"{", "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.688109047059428*^9, 3.6881091615507298`*^9}, { 3.688109196246677*^9, 3.688109226023087*^9}, {3.6881093786779633`*^9, 3.688109383397826*^9}, {3.688110265128317*^9, 3.6881102693437967`*^9}, { 3.688110342415762*^9, 3.6881103425034227`*^9}, {3.688110560365991*^9, 3.688110561005869*^9}}], Cell["explicit Euler step with h 0.5", "Text", CellChangeTimes->{{3.688109042375373*^9, 3.688109081215054*^9}, 3.688109115526836*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{"x0", ",", " ", "y0"}], "]"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.688109023442931*^9, 3.688109034352015*^9}, 3.6881090887992973`*^9, {3.688109133567192*^9, 3.6881092158464327`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"-", "0.050000000000000044`"}], "}"}]], "Output", CellChangeTimes->{{3.6881092163858*^9, 3.6881092272861643`*^9}, 3.688109387188862*^9, 3.688110272361723*^9, {3.688110344468812*^9, 3.688110350385796*^9}, 3.688110565279694*^9}] }, Open ]], Cell["implicit Euler step", "Text", CellChangeTimes->{{3.688109251600007*^9, 3.6881092747580843`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input", CellChangeTimes->{{3.688109281639778*^9, 3.688109302422203*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`"}], "}"}]], "Output",\ CellChangeTimes->{3.688109302822234*^9, 3.688109390123254*^9, 3.688110272427383*^9, 3.688110350460581*^9, 3.6881105653414927`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`", ",", RowBox[{"-", "0.10512500000000014`"}]}], "}"}]], "Output", CellChangeTimes->{3.688109310311212*^9, 3.688109390988352*^9, 3.6881102724889593`*^9, 3.68811035053411*^9, 3.688110565396331*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`", ",", RowBox[{"-", "0.10512500000000014`"}], ",", "1.11038125`"}], "}"}]], "Output", CellChangeTimes->{3.6881093159400263`*^9, 3.688109392546154*^9, 3.688110272540285*^9, 3.6881103506078377`*^9, 3.688110565400127*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`", ",", RowBox[{"-", "0.10512500000000014`"}], ",", "1.11038125`", ",", RowBox[{"-", "0.16590031250000026`"}]}], "}"}]], "Output", CellChangeTimes->{3.688109473510303*^9, 3.6881102726069508`*^9, 3.688110350612899*^9, 3.6881105654640217`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`", ",", RowBox[{"-", "0.10512500000000014`"}], ",", "1.11038125`", ",", RowBox[{"-", "0.16590031250000026`"}], ",", "1.1741953281250002`"}], "}"}]], "Output", CellChangeTimes->{3.6881095000395107`*^9, 3.688110272668214*^9, 3.688110350675782*^9, 3.68811056553791*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`", ",", RowBox[{"-", "0.10512500000000014`"}], ",", "1.11038125`", ",", RowBox[{"-", "0.16590031250000026`"}], ",", "1.1741953281250002`", ",", RowBox[{"-", "0.2329050945312503`"}]}], "}"}]], "Output", CellChangeTimes->{3.688109503620624*^9, 3.688110272735523*^9, 3.688110350738181*^9, 3.68811056561063*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`", ",", RowBox[{"-", "0.10512500000000014`"}], ",", "1.11038125`", ",", RowBox[{"-", "0.16590031250000026`"}], ",", "1.1741953281250002`", ",", RowBox[{"-", "0.2329050945312503`"}], ",", "1.2445503492578127`"}], "}"}]], "Output", CellChangeTimes->{3.68810950655245*^9, 3.688110272805271*^9, 3.688110350802301*^9, 3.6881105656837397`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AppendTo", "[", RowBox[{"yNextValues", ",", " ", RowBox[{"y0", " ", "+", " ", RowBox[{"h", " ", "*", " ", RowBox[{"f", "[", RowBox[{ RowBox[{"x0", " ", "+", " ", "h"}], ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "0.050000000000000044`"}], ",", "1.0525`", ",", RowBox[{"-", "0.10512500000000014`"}], ",", "1.11038125`", ",", RowBox[{"-", "0.16590031250000026`"}], ",", "1.1741953281250002`", ",", RowBox[{"-", "0.2329050945312503`"}], ",", "1.2445503492578127`", ",", RowBox[{"-", "0.3067778667207035`"}]}], "}"}]], "Output", CellChangeTimes->{3.688109510119643*^9, 3.688110272870085*^9, 3.688110350875483*^9, 3.688110565688951*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"xValues", " ", "=", " ", RowBox[{"{", " ", RowBox[{ "0.5", ",", " ", "0.5", ",", " ", "0.5", ",", " ", "0.5", ",", " ", "0.5", ",", " ", "0.5", ",", " ", "0.5", ",", " ", "0.5", ",", " ", "0.5"}], "}"}]}]], "Input", CellChangeTimes->{{3.6881094113321342`*^9, 3.688109427557271*^9}, { 3.688109529300817*^9, 3.688109540588752*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.5`", ",", "0.5`", ",", "0.5`", ",", "0.5`", ",", "0.5`", ",", "0.5`", ",", "0.5`", ",", "0.5`", ",", "0.5`"}], "}"}]], "Output", CellChangeTimes->{ 3.688109429506762*^9, {3.688109526925215*^9, 3.688109541022224*^9}, 3.6881102729397783`*^9, 3.688110350945903*^9, 3.68811056575429*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pValues", " ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"i", ",", " ", RowBox[{"yNextValues", "[", RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"i", ",", " ", "1", ",", " ", "9"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.688109435316019*^9, 3.688109477381198*^9}, { 3.688109551381194*^9, 3.6881095636526012`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", "0.050000000000000044`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1.0525`"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", RowBox[{"-", "0.10512500000000014`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "1.11038125`"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", RowBox[{"-", "0.16590031250000026`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "1.1741953281250002`"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", RowBox[{"-", "0.2329050945312503`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "1.2445503492578127`"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", RowBox[{"-", "0.3067778667207035`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.688109451265951*^9, 3.68810947771984*^9}, { 3.688109560290724*^9, 3.688109563868795*^9}, 3.688110272995986*^9, 3.6881103510253687`*^9, 3.6881105658340073`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Exp", "[", RowBox[{"-", "0.5"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"i", ",", " ", "1", ",", " ", "9"}], "}"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{ "ListPlot", "[", "\[IndentingNewLine]", "pValues", "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.6881094064823713`*^9, 3.688109464029291*^9}, { 3.6881095680930147`*^9, 3.6881096166203403`*^9}}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAwAWIQvaTxsjYDwwd7rmn5fzZlPLaX2NGxfIbjRzi/552t smHzJzifMTVIo8bmK5yvu+XMxYnHv8P5axzz3j50/QXnb7+xU8zn1x84v9Ij +0lDw384/0nC4/vpcowOMP7WPUvadMqY4PyHLDPrr21jhvMvBybV9wqxwvkK 3XEXNcPZ4PzpyXkxyVPZ4fwrDsHvVr7jgPNzuLIvXTXggvNP3wjfy9fHDecH u0U8fPKEB843W9AdvkCFD85/8G/ylYx6fjj/85Lngd2JAnD+zTPv97wQEITz Q440HhHZi+D/MdQt3RwrBOdzKDmvvMEtDOc7dhS1FaxD8Pn3aTNc9xWB8x3K /P8e/oXgz1/Ss1h5jiicnxhqcpbTWwzO33E1dfK+bwi+zZkNTM+micP5yq5p Xye7SMD5FiamE7c8Q/Affeo9ubhVEs5/bxzYKmkkBedrvtZ9xXgZwT+uUnqp oFEazp905WpykIoMnP8p+MBEpiMI/tZQUWfLQlk4f9nZ5rmPhOTg/F/HY6qF DiH4jyfu/yqQJw/n/30xl8eRXQHOt/QSfGATh+D3pAlyFK1H8FdmhdXx/Ufw f6wPMMsLVYTz4zZcd2JfhuCLLlg3j/kygn+mv/XX//8IPgDh0JgR "]]}}, {{}, {{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{{1., -0.050000000000000044`}, {2., 1.0525}, { 3., -0.10512500000000014`}, {4., 1.11038125}, { 5., -0.16590031250000026`}, {6., 1.1741953281250002`}, { 7., -0.2329050945312503}, {8., 1.2445503492578127`}, { 9., -0.3067778667207035}}]}, {}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{2., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{1, 9}, {0., 1.2130613194252668`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.68810946439671*^9, 3.6881094785983686`*^9}, { 3.6881095647315187`*^9, 3.6881095801719913`*^9}, 3.688109617483754*^9, 3.6881102730755672`*^9, 3.68811035114158*^9, 3.688110565938201*^9}] }, Open ]] }, WindowSize->{862, 1179}, WindowMargins->{{0, Automatic}, {Automatic, 19}}, FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 843, 20, 121, "Input"], Cell[1404, 42, 138, 2, 31, "Text"], Cell[CellGroupData[{ Cell[1567, 48, 376, 8, 32, "Input"], Cell[1946, 58, 274, 5, 32, "Output"] }, Open ]], Cell[2235, 66, 103, 1, 31, "Text"], Cell[CellGroupData[{ Cell[2363, 71, 434, 11, 32, "Input"], Cell[2800, 84, 255, 6, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3092, 95, 368, 10, 32, "Input"], Cell[3463, 107, 300, 6, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3800, 118, 368, 10, 32, "Input"], Cell[4171, 130, 326, 7, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4534, 142, 368, 10, 32, "Input"], Cell[4905, 154, 349, 7, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5291, 166, 368, 10, 32, "Input"], Cell[5662, 178, 377, 8, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6076, 191, 368, 10, 32, "Input"], Cell[6447, 203, 419, 8, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6903, 216, 368, 10, 32, "Input"], Cell[7274, 228, 452, 9, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7763, 242, 368, 10, 32, "Input"], Cell[8134, 254, 495, 9, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8666, 268, 375, 8, 32, "Input"], Cell[9044, 278, 339, 7, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9420, 290, 440, 11, 32, "Input"], Cell[9863, 303, 1024, 28, 55, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10924, 336, 628, 14, 209, "Input"], Cell[11555, 352, 2208, 47, 241, "Output"] }, Open ]] } ] *) (* End of internal cache information *)