(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 39725, 969] NotebookOptionsPosition[ 38125, 909] NotebookOutlinePosition[ 38460, 924] CellTagsIndexPosition[ 38417, 921] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"BesselJ", "[", RowBox[{"1", ",", " ", "x"}], "]"}]], "Input", CellChangeTimes->{{3.6879511125883017`*^9, 3.687951128551201*^9}}], Cell[BoxData[ RowBox[{"BesselJ", "[", RowBox[{"1", ",", "x"}], "]"}]], "Output", CellChangeTimes->{ 3.6879511299603863`*^9, {3.687952885427848*^9, 3.687952897510394*^9}, 3.6880962693042727`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dBesselJ1", " ", "=", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"BesselJ", "[", RowBox[{"1", ",", " ", "x"}], "]"}], ",", " ", "x"}], "]"}]}]], "Input", CellChangeTimes->{{3.687951319931106*^9, 3.687951330309391*^9}}], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"BesselJ", "[", RowBox[{"0", ",", "x"}], "]"}], "-", RowBox[{"BesselJ", "[", RowBox[{"2", ",", "x"}], "]"}]}], ")"}]}]], "Output", CellChangeTimes->{ 3.6879513307406588`*^9, {3.687952882162366*^9, 3.68795289760646*^9}, 3.6880962694577637`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"BesselJ", "[", RowBox[{"1", ",", " ", "x"}], "]"}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", "2"}], "}"}]}], "]"}], " ", "//.", " ", RowBox[{"x", " ", "\[Rule]", " ", "1"}]}], " ", "//", " ", "N"}], ")"}], " ", "+", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"BesselJ", "[", RowBox[{"1", ",", " ", "x"}], "]"}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", "1"}], "}"}]}], "]"}], " ", "//.", " ", RowBox[{"x", " ", "\[Rule]", " ", "1"}]}], " ", "//", " ", "N"}], ")"}]}]], "Input", CellChangeTimes->{{3.687951204980104*^9, 3.6879512349344*^9}}], Cell[BoxData["0.`"], "Output", CellChangeTimes->{{3.6879512129131317`*^9, 3.6879512398981333`*^9}, { 3.687952879441258*^9, 3.687952897673266*^9}, 3.688096269524742*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"BesselJ", "[", RowBox[{"1", ",", " ", "x"}], "]"}], ",", " ", "dBesselJ1"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", "1", ",", " ", "2", ",", " ", "0.05"}], "}"}]}], "\[IndentingNewLine]", "]"}], " ", "//", " ", "TableForm"}]], "Input", CellChangeTimes->{{3.687951256849247*^9, 3.687951349621264*^9}}], Cell[BoxData[ TagBox[GridBox[{ {"1.`", "0.44005058574493355`", "0.32514710081303305`"}, {"1.05`", "0.4558967897777311`", "0.30860813759792577`"}, {"1.1`", "0.47090239486629304`", "0.29152893228542653`"}, {"1.15`", "0.48504126615351717`", "0.2739447494580766`"}, {"1.2`", "0.4982890575672156`", "0.25589186295834976`"}, {"1.25`", "0.5106232603198806`", "0.23740747701538092`"}, {"1.3`", "0.5220232474146603`", "0.21852964539638578`"}, {"1.35`", "0.5324703140632868`", "0.19929718876387187`"}, {"1.4`", "0.5419477139308545`", "0.17974961042367837`"}, {"1.45`", "0.5504406911316964`", "0.15992701065240097`"}, {"1.5`", "0.5579365079100995`", "0.1398699997958517`"}, {"1.55`", "0.5644244679492657`", "0.11961961033284683`"}, {"1.6`", "0.5698959352616804`", "0.09921720810083043`"}, {"1.65`", "0.5743443486239402`", "0.07870440288159655`"}, {"1.7000000000000002`", "0.5777652315290233`", "0.058122958546684034`"}, {"1.75`", "0.5801561976389924`", "0.03751470296286935`"}, {"1.8`", "0.5815169517311652`", "0.01692143785857772`"}, {"1.85`", "0.5818492861408044`", RowBox[{"-", "0.0036151511480226883`"}]}, {"1.9`", "0.5811570727134342`", RowBox[{"-", "0.024053584159000857`"}]}, {"1.9500000000000002`", "0.5794462502898536`", RowBox[{"-", "0.044352676045445516`"}]}, {"2.`", "0.5767248077568736`", RowBox[{"-", "0.06447162473720106`"}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[2.0999999999999996`]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.687951293721142*^9, 3.687951349903165*^9}, 3.687952897700285*^9, 3.6880962695947113`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"BesselJ", "[", RowBox[{"1", ",", " ", "x"}], "]"}], ",", " ", "dBesselJ1"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", "1", ",", " ", "2"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", RowBox[{"{", RowBox[{"Blue", ",", " ", "Red"}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.687951491363956*^9, 3.687951518652185*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV13k4VO0bB3AS4UURSZssCW8pGkLLLXkRUoQspUL2aJGihCQlS0kilDap pJTQppB+hDIiFDInhFR2kznPnN89f831uc65nnme77PdR8Uj2H7vNCEhIRFh ISHBL2t/uKiQ0BCo/lMyXqPVDv5LJrI3CA+BvUalZuC/7XD9ywGDmGlDsPnQ hLHM8naQ+c/PR0x0CO661NJ2K9uhT8m5RkpyCMY8eOMtBu2QWamfqCQ/BIts Ol52bGyHaYrD8qs0h2BGADe5YWc7sF/5qHtvHQKvhvRe+wvtcM1GMjb5zhBo vJl0Xc20w6k0I+MR7hBYxw6Hpnl2AKv6wbqXlsPg3v7FoqOyAxTWtJzcdG0Y krSXa3ZrdYK0X+KCWUPDsH+LShv7dCesbuVOZliMwKqfqiVC/Z3w74q7Kuey RyBHbOjUR/NvYLCh99rTXyOg9Xn676nMb3AwtXXXTbNRcDpdblY5/g2qbmwP eX9pFKKkr8qkqHUBlT6/xblnFJoW/Wdua9UFug2px+6tGQNXneqGGYe64HLF lRD9hDFwf9IxXnu5C3QmHB/GfB+D3QrF663LuuC8rJOhkdE42GmKWxVRXSDR Rylonh2HigTpMn8RDjxh1PW/fBuHjMKAjrglHAhpHM2rWjkBXWHZSfJmHPDp PeIecmYCXPW8zd56ckCdMvGI75yAULaDSXA0B7jpac/bdCZBOllrOTuTA+T8 dYfB2ElwHRWOEirhgJKZ0UbDlknQcvd3/+cjB5hOhaifGlwwGNLNc+3hgOKL O/w9EVxgK/o2qdEcMLd/x5b9wIWUHLOrsrMoyNW+0ntqyV9o635vqq9OAXvg 8aZdx/6Cfsz245EGFMz2dhY+VPsXdsysm7/GnILTqk+mNqlOgfu+pswWRwpm Xbli6XpoCpbrPpGQ9qTA6++7bnbFFLRvKJUpDaJgICOvQkqJB/VZNk+GwyiI G58zHuXHA98PhZdkYyiYivnR2OHPA7HEUAsDdJBc6SPjQB68kHzV5Yp2WOES OBbEg69qH2tuohf7ZX73CeGBMFcslHWKguftyo22kTyI/FtmYBdLwe9KzYcL LvEgI0rD5WgcBY4pxn6lb3iw+A1ZHHGOgqJtO5fxy/H/3U8+yEDLK0T92VjJ g3nT7qsXo5suVx3+WMUDCfe+xt9o++ytJ3vf88AwYfaKXQkU2OZ5Z8o38yAL lveuSaTAsiylfn8/D64+itzSk0SB8cCArpYcDcyq+JncCxQYvTZP8Z1Nw9uW ngaZFAoMU2+M3JGn4fbX5xFL0PrrXZ9oKNKwSJWdYY9emVLDUl9AQ9eph1/v ozWM81Yra9CQVG982vUiBXLxe9cpGNMQPu99aF4qBbK7yrMd1tCgHuBx5yV6 Fmsh/+JaGgZMDlc2oKU7m8rkgAa9O5JlXLS4npnJLDMalqWOv7S4RAG/TXXj P7bY3lAzh4Me0OqyFPagQV5sTrXYZczzk2mxmycN65fZ9iihhyNuqxV70WAl 7TmwDM1l+/P9fWj4a6GWb48WCx9/0hRIg+M1RjobrfpeUjnvCA0vLA2tl6dT 4OqvP26bSEP/AVb+mgwK3OXTPe4m0dAcolVljd5TNvVR5DwNt4pJlRvaV+7N vdIUGqq2mkUeQ4c+t9qtmk7DLzebhmfoFMndteM3aADtHYO6VyiovRd/PauU ht5OdelZmbg+4mDs2zMaOFdTNy5A3/MaM1d7QUNA0bS9muj4Re6Dd1/R8Gr1 F18TtFWK7uqSChqEJcNCgtE1Ya117Doa9p07m1mDLnVKVFb4QEPeov7oJnTe KtODzh9p6Dlgue0b+syv+4rf2DTkFouVjKEt90R6DH6mIWjbqZOLsij4n6UG V4yD74tkaAWhi5d8tbKiaAhrZ14fQedOO5+d+J2G1CmfDdHo0y//msr30hAY uFY0FW2+sj5R5ScNrCHu+VJ0lWKI2tpxGhYsbCkl6KIxzdDICRqy3N0Z0WwK brE7qismMZ/TfStl0KfOWQRtmsI8R0UdF6HNmHnPnBga8k18r69DV/aW2x6Q IDC7grI6ii5Njyj4KEmA8W9rjkTnWxnJ6EgRYDkss4xDpxU8qh+QIRAb9oO6 hPYNvWbjJU/AS6FkqBC9U9Mtv0IBn1ddLC5F23+ZI6WiSOBmR73na/Sa9Um1 HUoEfNtdQ+rQMmIRVtuVCWQYt+/rQU8rNbz3dDGBv1vygn6iJ/3GJORVCTjz G52G0V31ATUN6gSsys06aPSTS66WVtoElJZerZC7SoHzEkPzdfoERtWt/xih bVpGb2caENi8abb3evSGsw9Fp1YTyDy19q0pWvuXRlWxMfav+7GBNZoUKZit NCFQ1LhqzBU94s2+mbSBwHd9iVx3dO/cRJFfpgR4tAl4oBuOT6+8+x8Btd2t S/3QN8xGN6hZE9BVu88+jL48UXA92obA8c3pZUfRCXn+wl2bCYzr9qccQx+W ot5kbcXxtRQPR6H9y7IX8+wIXPyz6ngM2n2/S5TLNuzvfoXfsWjLpgaY40TA cafYmXj02tMJ10K2E4hSmfMoAa1raMk0OhMIZuJfJ6HnZb0uS3YjoPLiVmoK eqbtsUW/dxA4N7LJNRU9XWj1CRt3AiKTDjPS0L88C9ZJ7CEwMj9bMQMdpXXT eI8HgUeHMkKuoOX/XF79zJNAZOW3Z5novKIEluxeAvkG+39kCfoTHq3r503g FteKZAvygVCdch/Mi7WfdxXtJRrwr5IfgUDFLs41NPf9Ls0D/gRqa688yhHk c95hSU0AAfkTOT7X0YudNqmq7MP15TosdgNdNH+9clgQro+ExCSBLTl6C9jB BAxND/MF/pq7VEnrAIG83Dynm+igwAVzog8SGOxdelngaXqys9sOEWhaMfpa 4LRJ0Vm6hwmYF0iyBdZ+NSV1NpSAU3LQe4HLTv6R4BzB9oWU8wW2t+wWMwoj YKyzIFTgXuk2kQvhBFrMvTUFDvtUL9R/jMDdI6RC0B+pjApiEkHA7zfnP4Fz 3Eum0k9gHq2zCwXjY6nnTw5FEnDde3G6wNX9OWOW0QQKynebCPLY8fDScM5J AmsXHPcS5DUUEv+bG0Ng382e/YI8TxlH/twaS6A+NnuvIO+5QiF9eacJiI/c NBXMR36Vb4/QGdwPc/7OEMyXybmdlPNZXI9q2U8F8+szx6JdPIFA98PGGsH8 T31d07Y7EddjktfKS+ik6ys/lyYRuCBrHnkRXbxsXoPvBQLDb7nNyWirEZn6 NykEKhzedySiO0tE3s9NJXDHcrD+HFps46/K6jQCQQtVfeLQV8SpN4vTCUjt MpglWM86Hz6/OppBwOBd5vWTaEeXNyWaWQQUq10jItC3gi/eP3Md99NEwdyD aEP9M3ldNwjYvbabHoyumzp+2/AWgT2rLVoD0KOx3tf6cgmc5Wkb7UWbZhld tMwnsMv2a6cT+vMenfM5Dwi4iCtJbxPst6VqidwCAqYi99W2oFMeS8XlFRKI jquTsEBzqr+Fi5cQWOHxz3N9tEe5xs5NpQQmWXLhumjq2T6If4Z5OkcvWS7w PZ6I1EsCAcYZ69UFTlBMnFlOIEyqKEwW3b11y7U5tdjethez+/D88tqUFr29 jkDcMrd4Ct29ocMzvZ6Anqj3YLvAegGa8xoIvPJ8dZCN7pGPK1zYTIB9+8iZ Z+je1rJK9W8ENipsaI1Fe7NFc/d2EbC+cVtUcH731ticyeUQ2D55ZJHgfP/x /IuNZjcBjYfecv7ovqyJ5n/7CWRtOyCyGd2/W6dPb5SAdJGn5Ez0YF+21IYZ fDC1mf4gBu+bA8U/eVnifLjQ//l4GHoixugnV4IPk31RrGC0kHJzzSMpPriJ 7XBzRcs7SsUtluPDYKJ+3Ar0mvJwYaGFfJBvy9/eLLiPM7ZPlOnx4ZloYIcM eqbP7Z55LD5Itt3OE0anskabQvX50Kzw2m0M7/urH5Oe6BjyYe7n82Ft6Mei 7/ZfXYf9KS+9eAPddoD1M8KSD6prHE1XojWtZLvWuvNhce21eCOsHzKsCoui d2H7/3vrrY2WtLY7+243H9Sf9i+fj/5lfUFvqycf5m9hRdBYvzzeLBvr6cuH H42NymXodXay2vEH+bDNyPfwOrS9s2xIy2k+3J110VNQH1U6F1ouOMOHec6a OfPQLBe7hXvO8uEG8/Z/4mhF1wvvBs7xodVTobU7jYJ2N1kl/nk+NBoqkUy0 9y7ZMvVMPmQv/+4shj7mLSt+8CEfvmcYuNRiPZcQPhD26BEfHIa5O0vQWUmV P38X8sHMINP2Jvpl8eGPAUWYz/Go0XA0X+xL2t5nfHC53WSthT5558YSl0o+ NOi0GZzE+jK+b9VGkxY+9GwU46pj/Znu73RChuGD86uvLJ1kCh5sMyA+QgzU Sn6Wm42uWDvneLkwA6k5em2TWP/+kvkcFjKdARV6tnI52vSJ4+EvEgxYfY1K tkcP8hwCc+UZ2DloK3IA62eTxG2u67UZ0BFRMcrCevvHw60GQY4M8OJXDd/H +n3zoxbTGbkMeI9QuU6RFLz3KV4SfIcB9p6keB20pfIl8ZY8fG5W6yCGNkuy /5B7nwGOLi/r6Qm8fwLrXcwLGUh3N6Hl0Ms0K/fHvmQAZrybqD6O53FOwVWR TwwEzZ3sVAnH8W9PjA5oYuCOXNGlCfxeEZ8Z6PWpmQHbjbKratHTT2hp32xl oEy7QCUETbvdemraycDtLZEf3h7F8SleqYvuZ6BuV7/3niN4nnw8+rB/gIF3 96k4Frrv9PYUu0EGFOpikmegu8flnVX+MFAc+tr+QSjO/6fk72/GGEia1Lo7 eRjr5XNB7zQnGHjlG8zUoFtNN989P8mATcLutVnopkLJ4N1TDBxst/A3Qdv7 9dtV8xg4NA3c5NANi6tZKwkDKfXf9bpD8PulNVcxnc9A73OD4afouuTYKYZh oMDCMC0O/X9qInkK "]]}, {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVjHk01AkAxx2rhmcd5UjZoocmZtGKNYovUul8YR3ZjWrFjpUpeVvRWjYz K61IJVk3IYwZSQfVzxFNOTJmNrbXqqSJMXbHMGOcv23/+LzPH5/3PpZHmf7H NNTU1PZ94n9vPpGgpaYmQ3OkqtX5hQjR1soCL3UZkpUjcVd6RCh5ddLlvIYM wfwC3ckuEfS2M6KWackgbTo3V8MXYdQs5JmujgxxhXYtFm0i/NHunGFmJEPC SzuFVqMIGqaTRk5UGUoFXCMiTwTBoyiryAMy9B6eLpEeE6Forw4rs1IGITW5 114uRGoO3U2ukuFlEyX8ZqoQm/kc94e+k+gNTw4ZNxXCeMvAr7uKJqHMyeSn Fvfjc0aGuYFsElKOjWurQz++HlTN3Ngpx+LylXSrOwLYOdyyvFggx9U02t1I ugAuXuKixgk5vPm9Pvc6+hB3dTC8zGcKej4PLDR39qGjNDj++bUp8Cdu3rEr eoHh3DUDIR+mkG+ZHT91uxeb+q4mVm+ZRn5ZUGsMrwfX2/LinX+fRkLwWLzj o27YKwO5599PY3WaDSe2oQtZhkGudLoCVlWMAym1z6E9OmxMvaDAWkow63Lj MzSQVs6v3ijgqRNgJq/kI75/qqrDUYmR9rMSbvVTRIlPh8WnKeH92qO1IKcT VsOeR9OHlFgovCdQY3dAlZvT9Jf9DDw9nDeEsZ9gMavkGylrBpTYB4whZjvM fOjbXAdmUP4x4CAnug3kkHHyuI0KAhtDdh6jFabNlUtHflbhsYZrNsevBTv8 OwWGvSqo9Pc4WV5/jArbPHGq9SzcL0TR3Q49hEBye1d44iyG0svS7GhNWBkZ on6qaxZia0efm+vug72+YW7X+jncHj7Gqv/QCIO8PN/QU3MQ0b8UP+lrQMRs 54igbQ4R2wyO13XUQ3Kjqk3XbB4/sKqC9NZw8ZvCRJHMmMdesUehvbIagdlu jPst8yjfQDd/droCbhLJpo0rFkAzimzO314Kyca3vupHF9BSmh34yC8fXdXp Jfn3F7CqR1WWGnUF7eLW/Se1F2Fg8CQnxoGNie/r3LWPLMLT5Pg/HP5hvOO/ SaDcW8RbY02b9UMJhHS0QNdr+RLUCv82Yw9mENTdhm+3hi0hZFnbx9zu60Ri pCEljvupmzIHTSjFRG50UJIeuQRzpuiu+opy4iP3gEtsIInv7C+ZyJhVxD7e gPfyChKhSW/6HX6pJZ5H3bVmVpKw4G+i7bxcS/iuu0YZqCKRJdzjFFZWS/hc 8u+tqCGxlBqx++LTWmJrTM/BHfUkunu0brzT5xA0avsJ1kMStrOKwqRiDqFb XFeoKSSRFLCOdba1jkgPzkj5UUSCUjsezhbWERT9mAjhnyQ07oyPZH+oIz5L 2mhbNkii+pzRRLU2l1j4trzRe+jT//Go/KUfl5Ca5nWnjJGQ1OU3rx3mEtEv znDHJCTkoaDZTHOJUXZwtp+UxKrgilITTR4xojAKsfyXhHvWatcvjHnEa2Hm +5ZpElwz/QAqnUeEXoztpCpJmKcn1th684hB7323smZIKGg1A7Q9PEJUr8M8 PEeCT66ucTzEI/wZY378eRK5NR7+X0XyiD4L/mbHRRI/pUi7nZg8Yv9ghWnu Egmqp8ka5zM8ojuTNUeSJIQVnK0uKTziP78phL4= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{1., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{1, 2}, {-0.06447161656765425, 0.581865223202336}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.687951519211877*^9, 3.6879528977846212`*^9, 3.6880962698158503`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"z2next", " ", "\[Equal]", " ", RowBox[{"z2curr", " ", "+", " ", RowBox[{"h", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "z2next"}], " ", "/", " ", "x"}], " ", "-", " ", RowBox[{ RowBox[{"(", RowBox[{"1", " ", "-", " ", RowBox[{"1", "/", RowBox[{"x", "^", "2"}]}]}], ")"}], " ", "z1next"}]}], ")"}]}]}]}], ",", "\[IndentingNewLine]", RowBox[{"z1next", " ", "\[Equal]", " ", RowBox[{"z1curr", " ", "+", " ", RowBox[{"h", " ", "z2next"}]}]}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"z1next", ",", " ", "z2next"}], "}"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.68795255574511*^9, 3.6879526211878357`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"z1next", "\[Rule]", FractionBox[ RowBox[{"x", " ", RowBox[{"(", RowBox[{ RowBox[{"h", " ", "z1curr"}], "+", RowBox[{"x", " ", "z1curr"}], "+", RowBox[{"h", " ", "x", " ", "z2curr"}]}], ")"}]}], RowBox[{ RowBox[{"-", SuperscriptBox["h", "2"]}], "+", RowBox[{"h", " ", "x"}], "+", SuperscriptBox["x", "2"], "+", RowBox[{ SuperscriptBox["h", "2"], " ", SuperscriptBox["x", "2"]}]}]]}], ",", RowBox[{"z2next", "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "h"}], " ", "z1curr"}], "+", RowBox[{"h", " ", SuperscriptBox["x", "2"], " ", "z1curr"}], "-", RowBox[{ SuperscriptBox["x", "2"], " ", "z2curr"}]}], RowBox[{ RowBox[{"-", SuperscriptBox["h", "2"]}], "+", RowBox[{"h", " ", "x"}], "+", SuperscriptBox["x", "2"], "+", RowBox[{ SuperscriptBox["h", "2"], " ", SuperscriptBox["x", "2"]}]}]]}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{3.68795262166017*^9, 3.68795289781152*^9, 3.688096269923039*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"next", "[", RowBox[{ RowBox[{"{", RowBox[{"z1curr_", ",", " ", "z2curr_"}], "}"}], ",", " ", "myx_", ",", " ", "h_"}], "]"}], " ", ":=", " ", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"z1next", ",", " ", "z2next", ",", " ", RowBox[{"x", " ", "=", " ", RowBox[{"myx", " ", "+", " ", "h"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"z1next", " ", "=", " ", FractionBox[ RowBox[{"x", " ", RowBox[{"(", RowBox[{ RowBox[{"h", " ", "z1curr"}], "+", RowBox[{"x", " ", "z1curr"}], "+", RowBox[{"h", " ", "x", " ", "z2curr"}]}], ")"}]}], RowBox[{ RowBox[{"-", SuperscriptBox["h", "2"]}], "+", RowBox[{"h", " ", "x"}], "+", SuperscriptBox["x", "2"], "+", RowBox[{ SuperscriptBox["h", "2"], " ", SuperscriptBox["x", "2"]}]}]]}], ";", "\[IndentingNewLine]", RowBox[{"z2next", " ", "=", " ", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "h"}], " ", "z1curr"}], "+", RowBox[{"h", " ", SuperscriptBox["x", "2"], " ", "z1curr"}], "-", RowBox[{ SuperscriptBox["x", "2"], " ", "z2curr"}]}], RowBox[{ RowBox[{"-", SuperscriptBox["h", "2"]}], "+", RowBox[{"h", " ", "x"}], "+", SuperscriptBox["x", "2"], "+", RowBox[{ SuperscriptBox["h", "2"], " ", SuperscriptBox["x", "2"]}]}]]}]}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"z1next", ",", " ", "z2next"}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.687952654994615*^9, 3.6879526669313927`*^9}, { 3.68795270699533*^9, 3.687952774571446*^9}, {3.687952810690868*^9, 3.687952812858673*^9}, {3.68795312977686*^9, 3.687953131712039*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"xv", " ", "=", " ", RowBox[{"{", "1", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"zv", " ", "=", " ", RowBox[{"{", RowBox[{"{", RowBox[{"0.44005058574493355`", ",", "0.32514710081303305`"}], "}"}], "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.687952819885274*^9, 3.687952867466277*^9}, { 3.687952936314144*^9, 3.687952943521549*^9}, {3.687953115720479*^9, 3.6879531173360987`*^9}, {3.688096393658708*^9, 3.688096395027461*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"h", " ", "=", " ", "0.05"}], ";"}]], "Input", CellChangeTimes->{{3.68795298243886*^9, 3.687952986832855*^9}}], Cell[BoxData[ RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"AppendTo", "[", RowBox[{"zv", ",", " ", RowBox[{"Evaluate", "[", RowBox[{"next", "[", RowBox[{ RowBox[{"zv", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}], ",", " ", RowBox[{"xv", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}], ",", " ", "h"}], "]"}], "]"}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"xv", ",", " ", RowBox[{ RowBox[{"xv", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}], " ", "+", " ", "h"}]}], "]"}]}], ",", "\[IndentingNewLine]", "20"}], "\[IndentingNewLine]", "]"}]], "Input",\ CellChangeTimes->{{3.687952951550411*^9, 3.687952998700535*^9}, { 3.687953031128552*^9, 3.6879530947921257`*^9}, {3.688096398887005*^9, 3.688096405793003*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"BesselJ", "[", RowBox[{"1", ",", " ", "x"}], "]"}], ",", " ", "dBesselJ1"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", "1", ",", " ", "2"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", RowBox[{"{", RowBox[{"Blue", ",", " ", "Red"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"xv", "[", RowBox[{"[", "i", "]"}], "]"}], ",", " ", RowBox[{"zv", "[", RowBox[{"[", RowBox[{"i", ",", " ", "1"}], "]"}], "]"}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"i", ",", " ", "1", ",", " ", "20"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Blue"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"xv", "[", RowBox[{"[", "i", "]"}], "]"}], ",", " ", RowBox[{"zv", "[", RowBox[{"[", RowBox[{"i", ",", " ", "2"}], "]"}], "]"}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"i", ",", " ", "1", ",", " ", "20"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.687953151463984*^9, 3.687953187447447*^9}, { 3.687953219177075*^9, 3.6879532547988777`*^9}, {3.6880964183986797`*^9, 3.6880964264261427`*^9}}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV13k4VO0bB3AS4UURSZssCW8pGkLLLXkRUoQspUL2aJGihCQlS0kilDap pJTQppB+hDIiFDInhFR2kznPnN89f831uc65nnme77PdR8Uj2H7vNCEhIRFh ISHBL2t/uKiQ0BCo/lMyXqPVDv5LJrI3CA+BvUalZuC/7XD9ywGDmGlDsPnQ hLHM8naQ+c/PR0x0CO661NJ2K9uhT8m5RkpyCMY8eOMtBu2QWamfqCQ/BIts Ol52bGyHaYrD8qs0h2BGADe5YWc7sF/5qHtvHQKvhvRe+wvtcM1GMjb5zhBo vJl0Xc20w6k0I+MR7hBYxw6Hpnl2AKv6wbqXlsPg3v7FoqOyAxTWtJzcdG0Y krSXa3ZrdYK0X+KCWUPDsH+LShv7dCesbuVOZliMwKqfqiVC/Z3w74q7Kuey RyBHbOjUR/NvYLCh99rTXyOg9Xn676nMb3AwtXXXTbNRcDpdblY5/g2qbmwP eX9pFKKkr8qkqHUBlT6/xblnFJoW/Wdua9UFug2px+6tGQNXneqGGYe64HLF lRD9hDFwf9IxXnu5C3QmHB/GfB+D3QrF663LuuC8rJOhkdE42GmKWxVRXSDR Rylonh2HigTpMn8RDjxh1PW/fBuHjMKAjrglHAhpHM2rWjkBXWHZSfJmHPDp PeIecmYCXPW8zd56ckCdMvGI75yAULaDSXA0B7jpac/bdCZBOllrOTuTA+T8 dYfB2ElwHRWOEirhgJKZ0UbDlknQcvd3/+cjB5hOhaifGlwwGNLNc+3hgOKL O/w9EVxgK/o2qdEcMLd/x5b9wIWUHLOrsrMoyNW+0ntqyV9o635vqq9OAXvg 8aZdx/6Cfsz245EGFMz2dhY+VPsXdsysm7/GnILTqk+mNqlOgfu+pswWRwpm Xbli6XpoCpbrPpGQ9qTA6++7bnbFFLRvKJUpDaJgICOvQkqJB/VZNk+GwyiI G58zHuXHA98PhZdkYyiYivnR2OHPA7HEUAsDdJBc6SPjQB68kHzV5Yp2WOES OBbEg69qH2tuohf7ZX73CeGBMFcslHWKguftyo22kTyI/FtmYBdLwe9KzYcL LvEgI0rD5WgcBY4pxn6lb3iw+A1ZHHGOgqJtO5fxy/H/3U8+yEDLK0T92VjJ g3nT7qsXo5suVx3+WMUDCfe+xt9o++ytJ3vf88AwYfaKXQkU2OZ5Z8o38yAL lveuSaTAsiylfn8/D64+itzSk0SB8cCArpYcDcyq+JncCxQYvTZP8Z1Nw9uW ngaZFAoMU2+M3JGn4fbX5xFL0PrrXZ9oKNKwSJWdYY9emVLDUl9AQ9eph1/v ozWM81Yra9CQVG982vUiBXLxe9cpGNMQPu99aF4qBbK7yrMd1tCgHuBx5yV6 Fmsh/+JaGgZMDlc2oKU7m8rkgAa9O5JlXLS4npnJLDMalqWOv7S4RAG/TXXj P7bY3lAzh4Me0OqyFPagQV5sTrXYZczzk2mxmycN65fZ9iihhyNuqxV70WAl 7TmwDM1l+/P9fWj4a6GWb48WCx9/0hRIg+M1RjobrfpeUjnvCA0vLA2tl6dT 4OqvP26bSEP/AVb+mgwK3OXTPe4m0dAcolVljd5TNvVR5DwNt4pJlRvaV+7N vdIUGqq2mkUeQ4c+t9qtmk7DLzebhmfoFMndteM3aADtHYO6VyiovRd/PauU ht5OdelZmbg+4mDs2zMaOFdTNy5A3/MaM1d7QUNA0bS9muj4Re6Dd1/R8Gr1 F18TtFWK7uqSChqEJcNCgtE1Ya117Doa9p07m1mDLnVKVFb4QEPeov7oJnTe KtODzh9p6Dlgue0b+syv+4rf2DTkFouVjKEt90R6DH6mIWjbqZOLsij4n6UG V4yD74tkaAWhi5d8tbKiaAhrZ14fQedOO5+d+J2G1CmfDdHo0y//msr30hAY uFY0FW2+sj5R5ScNrCHu+VJ0lWKI2tpxGhYsbCkl6KIxzdDICRqy3N0Z0WwK brE7qismMZ/TfStl0KfOWQRtmsI8R0UdF6HNmHnPnBga8k18r69DV/aW2x6Q IDC7grI6ii5Njyj4KEmA8W9rjkTnWxnJ6EgRYDkss4xDpxU8qh+QIRAb9oO6 hPYNvWbjJU/AS6FkqBC9U9Mtv0IBn1ddLC5F23+ZI6WiSOBmR73na/Sa9Um1 HUoEfNtdQ+rQMmIRVtuVCWQYt+/rQU8rNbz3dDGBv1vygn6iJ/3GJORVCTjz G52G0V31ATUN6gSsys06aPSTS66WVtoElJZerZC7SoHzEkPzdfoERtWt/xih bVpGb2caENi8abb3evSGsw9Fp1YTyDy19q0pWvuXRlWxMfav+7GBNZoUKZit NCFQ1LhqzBU94s2+mbSBwHd9iVx3dO/cRJFfpgR4tAl4oBuOT6+8+x8Btd2t S/3QN8xGN6hZE9BVu88+jL48UXA92obA8c3pZUfRCXn+wl2bCYzr9qccQx+W ot5kbcXxtRQPR6H9y7IX8+wIXPyz6ngM2n2/S5TLNuzvfoXfsWjLpgaY40TA cafYmXj02tMJ10K2E4hSmfMoAa1raMk0OhMIZuJfJ6HnZb0uS3YjoPLiVmoK eqbtsUW/dxA4N7LJNRU9XWj1CRt3AiKTDjPS0L88C9ZJ7CEwMj9bMQMdpXXT eI8HgUeHMkKuoOX/XF79zJNAZOW3Z5novKIEluxeAvkG+39kCfoTHq3r503g FteKZAvygVCdch/Mi7WfdxXtJRrwr5IfgUDFLs41NPf9Ls0D/gRqa688yhHk c95hSU0AAfkTOT7X0YudNqmq7MP15TosdgNdNH+9clgQro+ExCSBLTl6C9jB BAxND/MF/pq7VEnrAIG83Dynm+igwAVzog8SGOxdelngaXqys9sOEWhaMfpa 4LRJ0Vm6hwmYF0iyBdZ+NSV1NpSAU3LQe4HLTv6R4BzB9oWU8wW2t+wWMwoj YKyzIFTgXuk2kQvhBFrMvTUFDvtUL9R/jMDdI6RC0B+pjApiEkHA7zfnP4Fz 3Eum0k9gHq2zCwXjY6nnTw5FEnDde3G6wNX9OWOW0QQKynebCPLY8fDScM5J AmsXHPcS5DUUEv+bG0Ng382e/YI8TxlH/twaS6A+NnuvIO+5QiF9eacJiI/c NBXMR36Vb4/QGdwPc/7OEMyXybmdlPNZXI9q2U8F8+szx6JdPIFA98PGGsH8 T31d07Y7EddjktfKS+ik6ys/lyYRuCBrHnkRXbxsXoPvBQLDb7nNyWirEZn6 NykEKhzedySiO0tE3s9NJXDHcrD+HFps46/K6jQCQQtVfeLQV8SpN4vTCUjt MpglWM86Hz6/OppBwOBd5vWTaEeXNyWaWQQUq10jItC3gi/eP3Md99NEwdyD aEP9M3ldNwjYvbabHoyumzp+2/AWgT2rLVoD0KOx3tf6cgmc5Wkb7UWbZhld tMwnsMv2a6cT+vMenfM5Dwi4iCtJbxPst6VqidwCAqYi99W2oFMeS8XlFRKI jquTsEBzqr+Fi5cQWOHxz3N9tEe5xs5NpQQmWXLhumjq2T6If4Z5OkcvWS7w PZ6I1EsCAcYZ69UFTlBMnFlOIEyqKEwW3b11y7U5tdjethez+/D88tqUFr29 jkDcMrd4Ct29ocMzvZ6Anqj3YLvAegGa8xoIvPJ8dZCN7pGPK1zYTIB9+8iZ Z+je1rJK9W8ENipsaI1Fe7NFc/d2EbC+cVtUcH731ticyeUQ2D55ZJHgfP/x /IuNZjcBjYfecv7ovqyJ5n/7CWRtOyCyGd2/W6dPb5SAdJGn5Ez0YF+21IYZ fDC1mf4gBu+bA8U/eVnifLjQ//l4GHoixugnV4IPk31RrGC0kHJzzSMpPriJ 7XBzRcs7SsUtluPDYKJ+3Ar0mvJwYaGFfJBvy9/eLLiPM7ZPlOnx4ZloYIcM eqbP7Z55LD5Itt3OE0anskabQvX50Kzw2m0M7/urH5Oe6BjyYe7n82Ft6Mei 7/ZfXYf9KS+9eAPddoD1M8KSD6prHE1XojWtZLvWuvNhce21eCOsHzKsCoui d2H7/3vrrY2WtLY7+243H9Sf9i+fj/5lfUFvqycf5m9hRdBYvzzeLBvr6cuH H42NymXodXay2vEH+bDNyPfwOrS9s2xIy2k+3J110VNQH1U6F1ouOMOHec6a OfPQLBe7hXvO8uEG8/Z/4mhF1wvvBs7xodVTobU7jYJ2N1kl/nk+NBoqkUy0 9y7ZMvVMPmQv/+4shj7mLSt+8CEfvmcYuNRiPZcQPhD26BEfHIa5O0vQWUmV P38X8sHMINP2Jvpl8eGPAUWYz/Go0XA0X+xL2t5nfHC53WSthT5558YSl0o+ NOi0GZzE+jK+b9VGkxY+9GwU46pj/Znu73RChuGD86uvLJ1kCh5sMyA+QgzU Sn6Wm42uWDvneLkwA6k5em2TWP/+kvkcFjKdARV6tnI52vSJ4+EvEgxYfY1K tkcP8hwCc+UZ2DloK3IA62eTxG2u67UZ0BFRMcrCevvHw60GQY4M8OJXDd/H +n3zoxbTGbkMeI9QuU6RFLz3KV4SfIcB9p6keB20pfIl8ZY8fG5W6yCGNkuy /5B7nwGOLi/r6Qm8fwLrXcwLGUh3N6Hl0Ms0K/fHvmQAZrybqD6O53FOwVWR TwwEzZ3sVAnH8W9PjA5oYuCOXNGlCfxeEZ8Z6PWpmQHbjbKratHTT2hp32xl oEy7QCUETbvdemraycDtLZEf3h7F8SleqYvuZ6BuV7/3niN4nnw8+rB/gIF3 96k4Frrv9PYUu0EGFOpikmegu8flnVX+MFAc+tr+QSjO/6fk72/GGEia1Lo7 eRjr5XNB7zQnGHjlG8zUoFtNN989P8mATcLutVnopkLJ4N1TDBxst/A3Qdv7 9dtV8xg4NA3c5NANi6tZKwkDKfXf9bpD8PulNVcxnc9A73OD4afouuTYKYZh oMDCMC0O/X9qInkK "]]}, {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVjHk01AkAxx2rhmcd5UjZoocmZtGKNYovUul8YR3ZjWrFjpUpeVvRWjYz K61IJVk3IYwZSQfVzxFNOTJmNrbXqqSJMXbHMGOcv23/+LzPH5/3PpZHmf7H NNTU1PZ94n9vPpGgpaYmQ3OkqtX5hQjR1soCL3UZkpUjcVd6RCh5ddLlvIYM wfwC3ckuEfS2M6KWackgbTo3V8MXYdQs5JmujgxxhXYtFm0i/NHunGFmJEPC SzuFVqMIGqaTRk5UGUoFXCMiTwTBoyiryAMy9B6eLpEeE6Forw4rs1IGITW5 114uRGoO3U2ukuFlEyX8ZqoQm/kc94e+k+gNTw4ZNxXCeMvAr7uKJqHMyeSn Fvfjc0aGuYFsElKOjWurQz++HlTN3Ngpx+LylXSrOwLYOdyyvFggx9U02t1I ugAuXuKixgk5vPm9Pvc6+hB3dTC8zGcKej4PLDR39qGjNDj++bUp8Cdu3rEr eoHh3DUDIR+mkG+ZHT91uxeb+q4mVm+ZRn5ZUGsMrwfX2/LinX+fRkLwWLzj o27YKwO5599PY3WaDSe2oQtZhkGudLoCVlWMAym1z6E9OmxMvaDAWkow63Lj MzSQVs6v3ijgqRNgJq/kI75/qqrDUYmR9rMSbvVTRIlPh8WnKeH92qO1IKcT VsOeR9OHlFgovCdQY3dAlZvT9Jf9DDw9nDeEsZ9gMavkGylrBpTYB4whZjvM fOjbXAdmUP4x4CAnug3kkHHyuI0KAhtDdh6jFabNlUtHflbhsYZrNsevBTv8 OwWGvSqo9Pc4WV5/jArbPHGq9SzcL0TR3Q49hEBye1d44iyG0svS7GhNWBkZ on6qaxZia0efm+vug72+YW7X+jncHj7Gqv/QCIO8PN/QU3MQ0b8UP+lrQMRs 54igbQ4R2wyO13XUQ3Kjqk3XbB4/sKqC9NZw8ZvCRJHMmMdesUehvbIagdlu jPst8yjfQDd/droCbhLJpo0rFkAzimzO314Kyca3vupHF9BSmh34yC8fXdXp Jfn3F7CqR1WWGnUF7eLW/Se1F2Fg8CQnxoGNie/r3LWPLMLT5Pg/HP5hvOO/ SaDcW8RbY02b9UMJhHS0QNdr+RLUCv82Yw9mENTdhm+3hi0hZFnbx9zu60Ri pCEljvupmzIHTSjFRG50UJIeuQRzpuiu+opy4iP3gEtsIInv7C+ZyJhVxD7e gPfyChKhSW/6HX6pJZ5H3bVmVpKw4G+i7bxcS/iuu0YZqCKRJdzjFFZWS/hc 8u+tqCGxlBqx++LTWmJrTM/BHfUkunu0brzT5xA0avsJ1kMStrOKwqRiDqFb XFeoKSSRFLCOdba1jkgPzkj5UUSCUjsezhbWERT9mAjhnyQ07oyPZH+oIz5L 2mhbNkii+pzRRLU2l1j4trzRe+jT//Go/KUfl5Ca5nWnjJGQ1OU3rx3mEtEv znDHJCTkoaDZTHOJUXZwtp+UxKrgilITTR4xojAKsfyXhHvWatcvjHnEa2Hm +5ZpElwz/QAqnUeEXoztpCpJmKcn1th684hB7323smZIKGg1A7Q9PEJUr8M8 PEeCT66ucTzEI/wZY378eRK5NR7+X0XyiD4L/mbHRRI/pUi7nZg8Yv9ghWnu Egmqp8ka5zM8ojuTNUeSJIQVnK0uKTziP78phL4= "]]}}, {{}, {{}, {RGBColor[0, 0, 1], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf7HN5pr87qXnH/uwZEPhgH9ZR9ipJ7a79rJkg 8NHe4u1xk3Mi9+zT00Dgk73sG1HplV/u2ZsYg8Bn+/x5didmHL1vzwg274v9 rB+ZZkudH9ifA5v3xX5twKKNO+c8sJ8NNu+rvdbiK8tfvH1gnwE275v9rdQe WVHzh/amYPO+2+dwm4eqVTy0h7jxh/3kz2Y32Dc+tD8PNu+HfabPgtqVDx/a zwGb99Oe5+jsvP+cj+wzweb9svc4n6PBpPXI3gxs3m/7tS+latY5PrJnBpv3 x/4J7/5u1sBH9hfA5v2xj35bfpQn4pH9XLB5f+1/qHDeORv2yD4LbN4/+wmM 2nvDfB/Zm4PN+29vdWVi607rR/YAhL+aaw== "]]}, {}}, {}}, {{}, {{}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf7ItTJU6anr9if/YMCHyw91tXuvbz7sv2s2aC wEf7ow+jzyUuuGSfngYCn+zPvhT/J1l70d7EGAQ+2ze9023fGXTBnhFs3hf7 he9Cth90Pmd/DmzeF3uOttmNaddO288Gm/fV/uuxne/XxJ20zwCb981+/7Wc k0/uHrM3BZv33X7l3uDUxNAj9hA3/rC/0vPjfcWxg/bnweb9sNdtu57InrrP fg7YvJ/2amnac7eZ7rTPBJv3y/59yjKlLYxb7M3A5v22t/+3YGbG9LX2zGDz /tjbuOr2XtZZbH8BbN4f+3kr9PwEJk20nws27699/uXly21eZezPApv3z56p NUL77Mrp+83B5v23l1hdUd/Ksmw/AGb5npA= "]]}, {}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{1., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{1, 2}, {-0.06447161656765425, 0.581865223202336}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.687953146432378*^9, 3.687953187966303*^9, 3.687953219983635*^9, { 3.687953251654253*^9, 3.687953255151575*^9}, 3.688096270324798*^9, 3.688096430646126*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"xv", "[", RowBox[{"[", "i", "]"}], "]"}], ",", " ", RowBox[{"zv", "[", RowBox[{"[", RowBox[{"i", ",", " ", "1"}], "]"}], "]"}], ",", " ", RowBox[{"zv", "[", RowBox[{"[", RowBox[{"i", ",", " ", "2"}], "]"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"i", ",", " ", "1", ",", " ", "20"}], "}"}]}], "\[IndentingNewLine]", "]"}], " ", "//", " ", "TableForm"}]], "Input", CellChangeTimes->{{3.687953282490951*^9, 3.6879533023903112`*^9}, { 3.688096436313034*^9, 3.68809643970492*^9}}], Cell[BoxData[ TagBox[GridBox[{ {"1", "0.44005058574493355`", "0.32514710081303305`"}, {"1.05`", "0.45546791931895336`", "0.3083466714803976`"}, {"1.1`", "0.47001986650839767`", "0.29103894378888767`"}, {"1.1500000000000001`", "0.4836828960903306`", "0.2732605916386575`"}, {"1.2000000000000002`", "0.4964353518975945`", "0.2550491161452798`"}, {"1.2500000000000002`", "0.5082574904224828`", "0.23644277049776455`"}, {"1.3000000000000003`", "0.5191315144934571`", "0.21748048141948595`"}, {"1.3500000000000003`", "0.5290416028920835`", "0.19820176797252712`"}, {"1.4000000000000004`", "0.5379739358060605`", "0.17864665827953805`"}, {"1.4500000000000004`", "0.5459167160373517`", "0.15885560462582518`"}, {"1.5000000000000004`", "0.5528601859037842`", "0.13886939732865378`"}, {"1.5500000000000005`", "0.5587966397892049`", "0.11872907770841641`"}, {"1.6000000000000005`", "0.563720432312182`", "0.09847585045954385`"}, {"1.6500000000000006`", "0.5676279820968171`", "0.07815099569269866`"}, {"1.7000000000000006`", "0.5705177711418422`", "0.05779578090050252`"}, {"1.7500000000000007`", "0.5723903397960695`", "0.0374513730845458`"}, {"1.8000000000000007`", "0.5732482773595778`", "0.017158751270166854`"}, {"1.8500000000000008`", "0.5730962083408988`", RowBox[{"-", "0.003041380373583306`"}]}, {"1.9000000000000008`", "0.5719407744109493`", RowBox[{"-", "0.0231086785989918`"}]}, {"1.9500000000000008`", "0.5697906121046181`", RowBox[{"-", "0.04300324612662204`"}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[2.0999999999999996`]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.687953298055676*^9, 3.68795330274361*^9}, 3.6880962705620747`*^9, 3.688096440033141*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"0.44051", " ", "/", " ", RowBox[{"-", "0.781213"}]}], ")"}], " ", RowBox[{"BesselY", "[", RowBox[{"1", ",", " ", "1"}], "]"}]}], " ", "//", " ", "N"}]], "Input", CellChangeTimes->{{3.688096283121851*^9, 3.6880963427830563`*^9}}], Cell[BoxData["0.4405098992348951`"], "Output", CellChangeTimes->{{3.688096296808793*^9, 3.6880962999412107`*^9}, 3.688096343042938*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"dBesselY1", " ", "=", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"BesselY", "[", RowBox[{"1", ",", " ", "x"}], "]"}], ",", " ", "x"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"0.44051", " ", "/", " ", RowBox[{"-", "0.781213"}]}], ")"}], " ", "%"}], " ", "//.", " ", RowBox[{"x", " ", "\[Rule]", " ", "1"}]}], " ", "//", " ", "N"}]}], "Input",\ CellChangeTimes->{{3.6880963488655243`*^9, 3.688096376037588*^9}, { 3.688096458710487*^9, 3.688096472498193*^9}, {3.6880965816590633`*^9, 3.688096584528266*^9}}], Cell[BoxData[ RowBox[{"-", "0.4902761925590563`"}]], "Output", CellChangeTimes->{{3.688096358302816*^9, 3.688096376305706*^9}, { 3.688096451237818*^9, 3.6880964735801697`*^9}, 3.688096586179656*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{ RowBox[{"(", RowBox[{"0.44051", " ", "/", " ", RowBox[{"-", "0.781213"}]}], ")"}], RowBox[{"BesselY", "[", RowBox[{"1", ",", " ", "x"}], "]"}]}], ",", " ", RowBox[{ RowBox[{"(", RowBox[{"0.44051", " ", "/", " ", RowBox[{"-", "0.781213"}]}], ")"}], "dBesselY1"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", "1", ",", " ", "2", ",", " ", "0.05"}], "}"}]}], "\[IndentingNewLine]", "]"}], " ", "//", " ", "TableForm"}]], "Input", CellChangeTimes->{{3.687951256849247*^9, 3.687951349621264*^9}, { 3.688096576891368*^9, 3.688096601391418*^9}}], Cell[BoxData[ TagBox[GridBox[{ {"1.`", "0.4405098992348951`", RowBox[{"-", "0.4902761925590563`"}]}, {"1.05`", "0.4165722418543332`", RowBox[{"-", "0.46792416184695335`"}]}, {"1.1`", "0.3936553121945078`", RowBox[{"-", "0.44930897228105887`"}]}, {"1.15`", "0.37159146668466003`", RowBox[{"-", "0.4336914390067379`"}]}, {"1.2`", "0.35024607455734225`", RowBox[{"-", "0.4204833417722396`"}]}, {"1.25`", "0.3295109039010836`", RowBox[{"-", "0.4092119136667375`"}]}, {"1.3`", "0.309299034007155`", RowBox[{"-", "0.3994937493107006`"}]}, {"1.35`", "0.28954089612251704`", RowBox[{"-", "0.39101538614739567`"}]}, {"1.4`", "0.2701811588123735`", RowBox[{"-", "0.38351868058717653`"}]}, {"1.45`", "0.25117625273849076`", RowBox[{"-", "0.3767896744962259`"}]}, {"1.5`", "0.23249238462273106`", RowBox[{"-", "0.37065003304818167`"}]}, {"1.55`", "0.21410392912845047`", RowBox[{"-", "0.3649503980003679`"}]}, {"1.6`", "0.1959921153653018`", RowBox[{"-", "0.35956518248307073`"}]}, {"1.65`", "0.1781439450429483`", RowBox[{"-", "0.354388461014997`"}]}, {"1.7000000000000002`", "0.1605512942221554`", RowBox[{"-", "0.34933069903748687`"}]}, {"1.75`", "0.14321016168340858`", RowBox[{"-", "0.34431613128255356`"}]}, {"1.8`", "0.12612003522612755`", RowBox[{"-", "0.33928064546528164`"}]}, {"1.85`", "0.10928335347877638`", RowBox[{"-", "0.3341700623609435`"}]}, {"1.9`", "0.09270504557629103`", RowBox[{"-", "0.32893872889794035`"}]}, {"1.9500000000000002`", "0.07639213472975706`", RowBox[{"-", "0.32354835997934156`"}]}, {"2.`", "0.06035339455193191`", RowBox[{"-", "0.31796707910389155`"}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[2.0999999999999996`]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.687951293721142*^9, 3.687951349903165*^9}, 3.687952897700285*^9, 3.6880962695947113`*^9, {3.6880965905617533`*^9, 3.688096601940598*^9}}] }, Open ]] }, WindowSize->{958, 1059}, WindowMargins->{{0, Automatic}, {2, Automatic}}, FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 156, 3, 32, "Input"], Cell[739, 27, 205, 5, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[981, 37, 257, 6, 32, "Input"], Cell[1241, 45, 362, 11, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[1640, 61, 800, 24, 32, "Input"], Cell[2443, 87, 172, 2, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2652, 94, 507, 12, 99, "Input"], Cell[3162, 108, 2026, 41, 383, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5225, 154, 568, 15, 121, "Input"], Cell[5796, 171, 7813, 142, 230, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13646, 318, 979, 25, 165, "Input"], Cell[14628, 345, 1270, 39, 54, "Output"] }, Open ]], Cell[15913, 387, 1968, 54, 198, "Input"], Cell[17884, 443, 513, 12, 55, "Input"], Cell[18400, 457, 145, 3, 32, "Input"], Cell[18548, 462, 948, 26, 121, "Input"], Cell[CellGroupData[{ Cell[19521, 492, 1998, 51, 341, "Input"], Cell[21522, 545, 9025, 164, 230, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[30584, 714, 712, 19, 99, "Input"], Cell[31299, 735, 2152, 39, 366, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[33488, 779, 309, 8, 32, "Input"], Cell[33800, 789, 140, 2, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[33977, 796, 644, 18, 55, "Input"], Cell[34624, 816, 203, 3, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34864, 824, 812, 21, 99, "Input"], Cell[35679, 847, 2430, 59, 383, "Output"] }, Open ]] } ] *) (* End of internal cache information *)