(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 51936, 1153] NotebookOptionsPosition[ 50467, 1097] NotebookOutlinePosition[ 50803, 1112] CellTagsIndexPosition[ 50760, 1109] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[{ RowBox[{ RowBox[{"yy", "[", RowBox[{"x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], " ", ":=", " ", RowBox[{"a1", " ", "*", " ", RowBox[{"x", " ", "/", " ", RowBox[{"(", RowBox[{"a2", " ", "+", " ", "x"}], ")"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"r", "[", RowBox[{"y_", ",", " ", "x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], " ", ":=", " ", RowBox[{"y", " ", "-", " ", RowBox[{"yy", "[", RowBox[{"x", ",", " ", "a1", ",", " ", "a2"}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"rp1", "[", RowBox[{"x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], " ", ":=", " ", RowBox[{ RowBox[{"-", "x"}], "/", " ", RowBox[{"(", RowBox[{"a2", " ", "+", " ", "x"}], ")"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"rp2", "[", RowBox[{"x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], " ", ":=", " ", RowBox[{"a1", " ", RowBox[{"x", "/", " ", RowBox[{ RowBox[{"(", RowBox[{"a2", " ", "+", " ", "x"}], ")"}], "^", "2"}]}]}]}]}], "Input", CellChangeTimes->{{3.6887185761378317`*^9, 3.688718589261903*^9}, { 3.688718648725279*^9, 3.688718762356341*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"rr", "[", RowBox[{"{", RowBox[{"a1_", ",", " ", "a2_"}], "}"}], "]"}], " ", ":=", " ", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"r", "[", RowBox[{"0.050", ",", " ", "0.038", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"r", "[", RowBox[{"0.127", ",", " ", "0.194", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"r", "[", RowBox[{"0.094", ",", " ", "0.425", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"r", "[", RowBox[{"0.2122", ",", " ", "0.626", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"r", "[", RowBox[{"0.2729", ",", " ", "1.253", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"r", "[", RowBox[{"0.2665", ",", " ", "2.500", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"r", "[", RowBox[{"0.3317", ",", " ", "3.740", ",", " ", "a1", ",", " ", "a2"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input", CellChangeTimes->{{3.688718849759288*^9, 3.68871895553047*^9}, { 3.6887190352900352`*^9, 3.68871909397711*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"JJ", "[", RowBox[{"{", RowBox[{"a1_", ",", " ", "a2_"}], "}"}], "]"}], " ", ":=", " ", RowBox[{"Transpose", "[", RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"rp1", "[", RowBox[{"x", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", " ", RowBox[{"rp2", "[", RowBox[{"x", ",", " ", "a1", ",", " ", "a2"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"{", RowBox[{ "0.038", ",", " ", "0.194", ",", " ", "0.425", ",", " ", "0.626", ",", " ", "1.253", ",", " ", "2.500", ",", " ", "3.740"}], "}"}]}], "}"}]}], "\[IndentingNewLine]", "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.688718765306134*^9, 3.688718826635524*^9}, { 3.688718957930562*^9, 3.688718959746417*^9}, {3.688719124993137*^9, 3.688719127649055*^9}, {3.6887191793849277`*^9, 3.688719180824342*^9}, { 3.688719261183794*^9, 3.688719272287752*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aa0", " ", "=", " ", RowBox[{"{", RowBox[{"1", ",", " ", "1"}], "}"}]}]], "Input", CellChangeTimes->{{3.68871894181269*^9, 3.688718969082162*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}]], "Output", CellChangeTimes->{3.688718969441537*^9, 3.688719096977807*^9, 3.688719128771461*^9, 3.688719182323957*^9, 3.688719966097061*^9, 3.688720738994658*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"rr", "[", "aa0", "]"}], ".", RowBox[{"rr", "[", "aa0", "]"}]}]], "Input", CellChangeTimes->{{3.688719336819388*^9, 3.688719342134523*^9}}], Cell[BoxData["0.5629034885295303`"], "Output", CellChangeTimes->{3.688719343310339*^9, 3.6887199661791267`*^9, 3.68872073908258*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aa1", " ", "=", " ", RowBox[{"aa0", " ", "-", " ", RowBox[{ RowBox[{"Inverse", "[", RowBox[{ RowBox[{"JJ", "[", "aa0", "]"}], ".", RowBox[{"Transpose", "[", RowBox[{"JJ", "[", "aa0", "]"}], "]"}]}], "]"}], ".", RowBox[{"(", RowBox[{ RowBox[{"JJ", "[", "aa0", "]"}], ".", " ", RowBox[{"rr", "[", "aa0", "]"}]}], ")"}]}]}]}]], "Input", CellChangeTimes->{{3.688719214595397*^9, 3.6887192519274883`*^9}, { 3.6887192922009983`*^9, 3.6887193220709333`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"0.34712768041875597`", ",", "0.7573360624524019`"}], "}"}]], "Output", CellChangeTimes->{{3.688719216076914*^9, 3.688719252282782*^9}, { 3.688719289247444*^9, 3.688719323170806*^9}, 3.688719966259224*^9, 3.688720739175549*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"rr", "[", "aa1", "]"}], ".", RowBox[{"rr", "[", "aa1", "]"}]}]], "Input", CellChangeTimes->{{3.688719336819388*^9, 3.688719356310614*^9}}], Cell[BoxData["0.013309708547241741`"], "Output", CellChangeTimes->{{3.688719343310339*^9, 3.688719356589059*^9}, 3.6887199662653303`*^9, 3.6887207392631483`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aa2", " ", "=", " ", RowBox[{"aa1", " ", "-", " ", RowBox[{ RowBox[{"Inverse", "[", RowBox[{ RowBox[{"JJ", "[", "aa1", "]"}], ".", RowBox[{"Transpose", "[", RowBox[{"JJ", "[", "aa1", "]"}], "]"}]}], "]"}], ".", RowBox[{"(", RowBox[{ RowBox[{"JJ", "[", "aa1", "]"}], ".", " ", RowBox[{"rr", "[", "aa1", "]"}]}], ")"}]}]}]}]], "Input", CellChangeTimes->{{3.688719365165551*^9, 3.6887193782074614`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"0.359757305738592`", ",", "0.5073743002167994`"}], "}"}]], "Output",\ CellChangeTimes->{3.688719378984639*^9, 3.688719966351424*^9, 3.688720739353015*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"rr", "[", "aa2", "]"}], ".", RowBox[{"rr", "[", "aa2", "]"}]}]], "Input", CellChangeTimes->{{3.6887193865903683`*^9, 3.688719387654182*^9}}], Cell[BoxData["0.008023819185392729`"], "Output", CellChangeTimes->{3.68871938791595*^9, 3.688719966435747*^9, 3.6887207394427032`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aa3", " ", "=", " ", RowBox[{"aa2", " ", "-", " ", RowBox[{ RowBox[{"Inverse", "[", RowBox[{ RowBox[{"JJ", "[", "aa2", "]"}], ".", RowBox[{"Transpose", "[", RowBox[{"JJ", "[", "aa2", "]"}], "]"}]}], "]"}], ".", RowBox[{"(", RowBox[{ RowBox[{"JJ", "[", "aa2", "]"}], ".", " ", RowBox[{"rr", "[", "aa2", "]"}]}], ")"}]}]}]}]], "Input", CellChangeTimes->{{3.688719399230319*^9, 3.688719409182147*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"0.360901586873862`", ",", "0.5498017432081403`"}], "}"}]], "Output",\ CellChangeTimes->{3.688719409553731*^9, 3.688719966526167*^9, 3.68872073952791*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"rr", "[", "aa3", "]"}], ".", RowBox[{"rr", "[", "aa3", "]"}]}]], "Input", CellChangeTimes->{{3.6887193865903683`*^9, 3.688719387654182*^9}, { 3.6887194233500557`*^9, 3.688719425221861*^9}}], Cell[BoxData["0.007845187483415318`"], "Output", CellChangeTimes->{3.68871938791595*^9, 3.688719425575406*^9, 3.6887199666102552`*^9, 3.6887207396158743`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"t", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"rr", "[", RowBox[{"{", RowBox[{"a1", ",", " ", "a2"}], "}"}], "]"}], ".", RowBox[{"rr", "[", RowBox[{"{", RowBox[{"a1", ",", "a2"}], "}"}], "]"}]}], " ", "//", " ", "Simplify"}]}]], "Input", CellChangeTimes->{{3.6887198824960823`*^9, 3.6887198875781727`*^9}, { 3.688719944393311*^9, 3.688719945833048*^9}}], Cell[BoxData[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"0.05`", "\[VeryThinSpace]", "-", FractionBox[ RowBox[{"0.038`", " ", "a1"}], RowBox[{"0.038`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"0.127`", "\[VeryThinSpace]", "-", FractionBox[ RowBox[{"0.194`", " ", "a1"}], RowBox[{"0.194`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"0.094`", "\[VeryThinSpace]", "-", FractionBox[ RowBox[{"0.425`", " ", "a1"}], RowBox[{"0.425`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"0.2122`", "\[VeryThinSpace]", "-", FractionBox[ RowBox[{"0.626`", " ", "a1"}], RowBox[{"0.626`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"0.2729`", "\[VeryThinSpace]", "-", FractionBox[ RowBox[{"1.253`", " ", "a1"}], RowBox[{"1.253`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"0.2665`", "\[VeryThinSpace]", "-", FractionBox[ RowBox[{"2.5`", " ", "a1"}], RowBox[{"2.5`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"0.3317`", "\[VeryThinSpace]", "-", FractionBox[ RowBox[{"3.74`", " ", "a1"}], RowBox[{"3.74`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"]}]], "Output", CellChangeTimes->{ 3.688719888234453*^9, {3.6887199464822483`*^9, 3.68871996671472*^9}, 3.688720739756154*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"ContourPlot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"t", " ", "\[Equal]", " ", RowBox[{"1", "/", "5"}]}], ",", "\[IndentingNewLine]", RowBox[{"t", " ", "\[Equal]", " ", RowBox[{"1", "/", "10"}]}], ",", "\[IndentingNewLine]", RowBox[{"t", " ", "\[Equal]", " ", RowBox[{"1", "/", "100"}]}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"a1", ",", " ", RowBox[{"-", "0.2"}], ",", " ", RowBox[{"+", "1.2"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"a2", ",", " ", RowBox[{"-", "0.05"}], ",", " ", RowBox[{"+", "1.2"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", " ", "\[Rule]", " ", "30"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "aa0", "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", "\[IndentingNewLine]", RowBox[{"PlotMarkers", " ", "\[Rule]", " ", RowBox[{"{", "\"\<0\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "aa1", "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", "\[IndentingNewLine]", RowBox[{"PlotMarkers", " ", "\[Rule]", " ", RowBox[{"{", "\"\<1\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "aa2", "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", "\[IndentingNewLine]", RowBox[{"PlotMarkers", " ", "\[Rule]", " ", RowBox[{"{", "\"\<2\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "aa3", "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", "\[IndentingNewLine]", RowBox[{"PlotMarkers", " ", "\[Rule]", " ", RowBox[{"{", "\"\<3\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{ "\"\<fig-gauss-newton.pdf\>\"", ",", " ", "%", ",", " ", "\"\<PDF\>\""}], "]"}]}], "Input", CellChangeTimes->{{3.688719708901539*^9, 3.688719763923025*^9}, { 3.688719821578497*^9, 3.688719838850361*^9}, {3.688719886988105*^9, 3.6887199134499474`*^9}, {3.6887199834734592`*^9, 3.688720091920168*^9}, { 3.6887201495045652`*^9, 3.688720198591329*^9}, {3.688720253680603*^9, 3.6887203597337933`*^9}}], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxdfHc8lW/4P6K0UBo09EFapEVR6q1SGsoqREuKaGhqCMmM7MxKUbJlbx57 7+1Yxxn2pkX0O3y/Pd/X6+efXtfrnOd57vt+7vu63uM6CV8zVrvBwcbGlsXJ xjb7r1FxciqFow975v7G8WbAePM89j6I3m+TH5Ach0Wcw135zl4Q+QtVdAfH kHZ5HzuzsRclUWfeDlDGYOy54dO70l7EvXA5VpE5Bsf6gpLEzF7cUZCn2HwZ Q+01JfcLkb24tu3m96BXYxha+PLkyve94PkysDhBZwz58WwFk569SMhmi/M6 O4YTMiYRUla9+BX0SuPKtjFMCGdpFjztRWGpXPgu/jFIHXLPyrjSi6GB1zcF 20dBua3v8+BCL5yFPyQJ1Iziv3Z2z+/ne7G3xPX745JRzA1ToRdPp+jx4V9H YePAcy5tdy8anspp9VqOQmxz8T5nyV5snL382Si21MgcWby1F4l7wiIM7ozC cs2Spf/x9iLpqfpie9lRlB+Uv587rxeprG87Co8ihpnRRB/tAbUiMtPyzwga lWRl5w/0wLFfZGJgZATXtPRUeBp7oDI7jOIR7BVfIChU1AP3ZV3fI0NGkO7p ZTqd0oPdtI9uxx1HsN4liD8logddvAvkZu6NoFPG20jqSw947B6EGl8dwYYX N7bUWvbALM1r6aDgCLpGna6Is+IXjrMLMAJH6khI5cseyMS5c/1YPYKOUbt5 QhY9uPM3l/56xQjuZh3YKHKxB4kr/ygJfRpGgf/YlhL1Hmzkefqn8+UwOloz Trqd6IH87i2m21WGcWSjlkDPvh4sOi73uJd3GAupZ7hjN7HmwxWZea5qCG+p 9lV5/D0o4mg6+cliCCvG1iT/5emBxbGdsbK3h5B9NOsZ12Q3XrDuXrhhCBWy i/1Ch7qRxBX/QmpkEOu2XrloWteNq+5mInfsBiEvEeBIlHcjZHzV0f3Gg8i5 89+t9SXdeMmzaurE1UHweZmu0U3phulvSp6+0CCkTO4eXxDUDSO+PcFNVQO4 6uqdt+hTN+r6TrNGOICh8IZsed9uLItIpkwHDGBr7BbBtxas8Wxffz3t8AB8 Ui7xSN/vBhuNNTyeAewStrl57VI3ZIWeXPmT1g935fSz8drdcNiTb78mth9b Z7exRjdcPqRZ5gb0Q7zvj+Z5hW5INCe8dr/UD+qA4QFHqW7EpFhFfRTtx769 Dg+O/NeNh8+701vq+lAuovO1ZkU3tKpmB9iHcBe7kEyebuwv5zhY87YPR/Yb 7/oy3oVvQ8+oz7f3wU124PhoTxdmMldYc83vw4nWCT65ri5Ys0b79A/rXNkP Sr2gdSHupt3nTYO9kLnn7bItpwuyf34brmadGz5FFa17CV2IZr2tvtO9oDlZ lTt97oL2wui1hpysc5bamDLvfReuCPm5+PX2QFHC88Nqmy60zk7nXQ/YjnWC /qgLHTPCfn90erAwlHfjTb0uaB4UD/dc04PFLsZD2853gXt2O/R1Y/UOqVvp Z7pALF+ler2iG4/ar53o3s66346FmbEXupGXKXm8elMXBt6ZZXjJd+N39ljJ +MYuSH2ZfeHd6A92Paks0oWVAuwCvTtY67o2aN77GSbSF9b0DMd14aHKZuOh USauvtvCWvEuKOqOXQ7tYCL7kdff5qNdmBeb8XRlIxMh53NXRLKe8ya6tZa7 lIkFJ9icj08x4aD7IlU8m4k3rNltaWZCp1RO2C6KiV698OLzfkxYfFz44vU7 JkzpS+8+02CiYXqJ834nJpJnl2MLEx+fHkwYsGFCUDJNcSEPE3Np6iYTl6eT NNd/ZUBQ9m//5UtMNL31N4uxZOBYZPIfPW0mGLPb6ykDkieN8rhZ903xelTf ZsDA6WBF3YA9TARsvdF78wcdT9ZO+NVsZIJv9jgW0rGjg2KSyXqOvkxjZOgT OmqpPRFfFjHBrsa/5ZERHZXdozyJwwzIzW6bVXTE7zSd5KUykCizLaq/g4ar PLSE4/kMUGiMMisbGkqnbDrnpTFwU3/2j4abatWcAwkMDFESHWfO0dCw6ZTJ nUAG3DV1mrpX0PAzLSeEz5EBtunDWxNKOlEaFDQta83A29nlS+iEePIV19Jn DOQ9ZxJubp34tEODO/EKA+e3GN1sk++E4OVX9QmnGcia3X5cnRgTMyRMpBhI XsJ1aDCRCuuqbGUOCQauP3aqdn1HxXrRQ4VNKxgYmD2+56j4ffXnh/oFDHSn h3DISlJx1P4A4/wvOjhdsG7kVwe4Sw86RbfSoZz64pbsmQ44nT4gzceKhf48 3W15sgOD/U+b6S107LSd3Ykd0L5sk+/GivU1JnKuHe/AmQXuZgJRdPCoUcxf 7G/H4c+9Z+9+pMN+buO2wefkYp94O1bcsMXEVrkNStpp/wlY0tHtm7sqc2sb XmimPXigRwd1dpvbtiL2QXXCcTU6fg3JiR5a14q0fXXcZ3bS4XTS4KOmWgu4 PL0kKJvpkFGNvcUv1oItdV7vxkTp+E+/4Gb70hbs/9/3OH7iSu+xXAqmJyuk RCZoEOZVKhbjoGDppSBjyx4aXGenn9uMV8fHX+bV0bDxNXG++EwzbuuXXL6T R0Pe/McjB340Qe1w+I6V8TQczP1cdMC3CXuVJ+ctC6OhZ/vsgjRhJsBRR9+D hodPwyYjBxoh8bSjUv0RDY+uCXQ/kW+EF0dpYrkBDfKzj2NvhLkMTh67RkOu 4lOns/QGsCaRtleVhj0uq86a2TcgRKAuuHAHDWtkXJwutdbDWqbxU54oDT6L tM1CP9Xj3WPt0F9LaRiSvbfCa0s9LooEHdk13QnHeyEFPvV1mKL4LW9p68Ts 01xQB++3B2zHizqhcXf8R2F1Lcykx1de+NSJZUUBy1Ln1SL23LaP8OnE7Oo/ aq+BpK7CI9rbTuSVeF0PLq/B+9my7tiJb55PHgl9qoF14/Obrpc7sfLpRxGn 8mr45+/L7VRi7dt6b9YIq+HjUWjntrUTZ1eq6FpXVOH75L55XKw4sZRNjK+s CnNpcUsnHp2z2ru2pAoq7Nt3cXJ04vfscNdVQaZ3tdqhESoWN80MR3+qxGK5 0vw2ChWzp+p6YwUqdJb0pudTcXLPY48da1mxq8A2zmQqeFceijgdXI4FQ358 +bFUsL7MOonleKZu+IQSRIV484yrEWc5ZBpFj/iYUTGppxmSnlAKnWsPjD9e okJ97j2XICA3oHXTEdb1toavawuLcUGsr2+IjwpF7dxl2pJFKF+022WamwpO IQsZ6mghFDs9zfbNp6KtzkA9oqUQM39n/zpY+dj23cPwQvTQfZV+O3UgmR5p eXIqH8ffP24y1+hA/OTszspH19TrpgGeDiS0Lx4YX5uHrR9yL9RktmM5u3+n yFgO5LpO2/D4tOPG7HTu5IDrwbYTa9+0I+t5LXHhaA50/+fFoT4/i01iPBsB H7XdBzna4baNe2qNSRa+ONrdP5XXBvG5uktAMneRs96TNrxxMQjdpJ2BPNfZ FW2F8Hy+HEpdCrQFvRLyelqhetnxnUBtCorsypkfWPGbOXyYgk/fzW7+6G7F e3mzhTIVKTDgFRc4rNyK0isx98ceJOKHVM4DZdFWDBJfrzx/mAC605kh08EW DLLQW9SZeEycZ1Y/iWuBjj4jsHdNHG72Ly6xfNKCg3UpdwV7YvCx6dxp5vUW +M/tuxhsnsMFLci2V9xNvRmDvUcyS5ezznn+5R3tdtXfEKj/29iugoL3s+XM PRJas6fEm4KVE/6vyzLDkSN87vvZixQ858g0Uk4KxX1lUYmfUhRU2ZWur9YL gczC/Qejt7HyxCy84gmB6qTZtMPfZrQYXKmzLP4Kh7l5N2OYEmgSrxWEvVp2 f0yqmhE1hweC8ObcgI7M12aoZKz7ZrX8C8y9OvtyPjWjnmdt/Jq+z9h/w8NP 27gZl+fqbSD+S41cdIoV0z+PixxjxZ/ncFozpP9OlbbbB+LKhWZV1dvNMD3T XjfwKBB1Vg6L8uWaMb1lCdG3IwDp+bMvrBkWtvL90r0fYa8V1R7E1Yz1cwf+ IwZLAy9erGuCBn1Jj8u2D6ibPZahTRgq2fCdT/odVN0XC1zzb8LKb+7lh0P9 sJWhF7bErQnms8u2yA937LvZJQ1Yea5at8ZE1geDhtZM/+NN+CoftySjzwsr pE4KWfA0oWMuX78Fxyvtt4cnGlHe41Ks7+eB+SzUnUVvhMOFoes+P9yhPpgl v82lEcenjRN83rlAaA4nN+Kx+rIsbldnBNaOBLeZNUJqu4NN6gVndG+wear/ rBEvWafLbp4zNrFPzQTPNEAooVM28LktnDiNGzeVNODI7HGdfAWV2TKQ1oCI 4CCNin2v8GYzZ9Qy0wb4SUdelN1ljrnhazUgj7izJEzjOc6VTCvw/aj/X3xg DM5MGU7v7/U49lvnhVesMebgCCt+PZXvGxxhjAXmPz7NZ8VP10nWfn9nDL+5 fVYPix22d28XXYHznm90Pb16cND3rJqnq4q4uXNdD3n27hbbC8uIYvN5R536 6lD1bJZgaBE1i8x5O2vqECW6skZY7DJRNvdXh5h55Y+l6q4Qkn9W9T/OroPG vLKn6bd0CQZr9EOGdfi1dIqxteUWYXGu8V7YgTq4lZqb1fXfJ+avy80Z210H 10u0ywUPHxDTrNXnXVCHzNT8FSMbHxFightPtQ/Uwnv4bWu+vgmx7L586Z+I WpwV/c7gOvmcmN19u77UQl7t0tSGj8+JpQEuFkP+teC6el22e7kpIcFpUODk WPu/9eQFYfILpXpna5HR5HJMfJsFMfsW1A7XovXdYHXbJQvipYPV8yMStZgk 5k34P3tJyGzWOvtkugZVR2mN5Z6WxL86kxnZ8ku1xpJYYOZRWR9XAy+jI+Lm na+IqynBy7xMa5D8POKr2RJr4s3eC7eCz9WgR8Z27HCVNTG3jAI1qJisfsK8 bEtcWRo/1pxSjYk91WEHEu2JOViaUA0p7jTR9aX2hPMyQUGeuGr81pDgK2+y Jw5let/48bUaiXN16DWhXK376sulaiQkO1Ufu+BAhM1NqBqup1+/vK/sQEi2 ixUHzqtGyUxM8nMNR2KuTI1UgU/FucQh0ZH4rNKnn1FXBVtvgd/+e98Qs2j5 oFMVemUVds9IOBG1lKvPWNgNvW1W3x7QnYjvc4C3CluWuE3kxzkTf2Jz1ATa K+GsIxbtV+hCrJ1b6Ep0/ZK1/iXmSvTUn8lboFKJovDB5zQNV0JpjgdXYAM9 3k1typUIT/YMPbe0AiM/C/ck17gR5nPnpgIBBhZPXSluhI7PRNPnqXIMBTVq aVPdiMrJvM2JZeV4PreO7sQcvD9YDjeH7mZNPXdi0WSO2RXJcqxXol9otXUn 4kxP8hp7luH8+sWern3uxFyafFqG7ZvfCdqXuxNX1rQZx6uV4egbQV1LUQ9i QQ2vWnFnKTzLLlwtuuVBLJ+FN7GlENp3sttUzoMwajWkrzQphSTb+uDRAg9i j8qoB/eOUpxRFm7VG/cgZqvE24ESqC4y6zeL9iA2+owGmfqUwH7PVLLB/bdE p98CmcNmJVgkGB48YfmWmIMFm0qwwu+ETttWVhxjFShRXIxjHjvjVrB5EquL 7ju7ZxTjd2rfmc/cnsTs7lqjW4yNohWdgyFviQPfpd7W8RWDf4GpddYVT0Ka bW+zbncRIiXC3TebexJNc4ClCHtzN2stkPQkJr7l7BS5UIQHVuYRi/M8icK0 kTUmfEW4Nl5bQf/lSfwPTCsE3b9rj02KJ2Gn7G8pEliIU4LrTqlv9yKYwS4/ S2QKYRVyftPPp17EXLrkLYRKSO/r/NNexMXX+4UY/QVIMBL0/vvOi6hR9pe4 fLUAJw05Mu7PeBFz0z1VgPMjl4w0uL2Jy4OTD57sLcDN3kqaDZ83YXUtw2Kn XT4Uu2R5z772JubSh3U+UjM43LhtvYk/y9LWDFvmw1M6dNktR2+iOqSqwMAg H4KzcswHb2KOVmfm4YtKvad6sTcRKSf4XZQrDya6k+mnJryJue3/KxfqjrY2 oTPehDrnhbVve3NR+Tv3ROMiH2L3nA6Wi3PUsTqBvT7Egosf9RPtcrA6rEEj UMuHuP6/OEZsbIejm7EPsWMkpkBeKQcpztu+aDj4EJ6z8kRwNhhK+g+Gw3wI ofSCwq2Ls3FTXfOTfK4PUTBL2zuz8ErZO3Sk24dwuy7+KysyC207rA/LLPcl 5tLUuiwobzKr2bzJlxg7ul0005pA8O6srrUb/IjXfdNaD3QJxO9YcP+VsB+h /j8TBj/eenZf9yU4t8wstOrPgKlJ6H/37/oRDL/juw7RMjDoqqGlcd+PSJzT rTKQ4R/WJvrZlwhifrH7cysdi6ueHdzg60fUvrVS8zmRDmfrjWHjn/0IQd3Z hJaGUNu0u0nxfsTWac5t3f2pGP/jtaky24+gG7tEFn1LRWO2FsOj1o94MVeH U1H58YJ23So/wifgUVCqUQpuxPWv8uvyI3y3uHm/EUjBZE59g/u0H9E+p08l g1al/G79cT/iN223SmB3EuRUAx3tOd8ROsaD/NNWSbg8uIfOKfSOODxHkBKx zqim7pKBH/FGR33/ad1EaE2fXEBd9Y4w8WvNSx1PwOB5Od41O94RX+YKYgJ0 in/7e7Dmr50t982+Pp7Ff7nPtq5k3Y/vguAOo3g8F1aSk97yjpg/xyfjkLLt id8lDT+i3E0hNEA+DrvnaaXsmvAjTib7R/T3xUIleMNr7z9+hOEc/4nFZMnt I1tnfAlX2+1Kje9iYOjyarCItZ6fpcUe7zKNQavmMxszVlw2h/+jEfc44Qnb YV8iYEzSTsonCpThnM6mVm9C+1Z5s6dmFPrERuMqqryJjcKv3iSXRKInx1Cq 944XkaJec/vvvQgy/31s69yVdzoCu0ZrRi4buxKZ69WMEgUjyPrw+o34hMTa CGQECEwP5b0kPqc2XC5fFUHWw/lTfWJGrM81aaLDDuMmhO/JX8myuyLIem9+ X+TggFIElG5YKO29fQ3FF5qzH2lGkPjD15a668mNCLQVv5+Ok3+Cp7lfKr69 iiDxTWBnbF3Khwj4fd+z4783r3Gv4WzsyLcIEh/x+/5i9uRFgLJV6Nk9Kzfs /77pW8l4BHhu5LnvkfaGc3mU18fFkSS+E0i5RNm5KRIK98qipmQ/4NHuCC/r k5EwfTVv67OaT0gp33iAciOSxKvO3pY6vDaRCF+du2mdyRfULsp8f/tDJPoU gy1+Lf4K/YneIKeMSBI/h203s02mRoJ2gue/S0phqPnv6Ksdw5F40rFM+Jpi OPS5Zq4qCkWReJ0asKgLslEo3Mi2tpc3Gh2dvc4Nh6KQvIeXpnEkGtLX2D37 70eRfODCdpFdG5yikMcnKOrbGQu2RRozUy5RuFvO+aHhVyyEVLXnHcmNIvnG t/n3rdjps9dXFpqYJUAxLKLV9Ng3SGTlaipWJGND6t2L9+99I/nNDedIr8NP vmG0VrQmhkjFVEMyNZr+DZImASvVfDPxeOiTBOX7N5JPcXCmi7PPi8atjZ9d d3Jk4UMlU9r1YDSumUk8D9+ZA9sD2tTU49Ekf9NvWfGd70Q07voX5rkG5SBw F7X3uW00MoQaSu7w5yPI2WCXh0M0yQ83X3Ll2uQYjUO5XDtrT+bj3/7vzyw1 MQ8txM+7pRcqyqIhoXfWOHmoEBoL8m2ulkeT/FTwxamnDqw4ZWbetM73QpSf Kh87zxuD3VPiHPs9StBx48XPVStjSP5ryqOXl7QqBmHf73PLNbHqrs08ioZK DE7mNfw1lCnH1HFCrlk7huTXl72cNxRdioG2HrfXttRy3GxaS5tyiYHqzsOn pFm45ppH/VmafwzJ7/+uKS/9ExiD0n09eoFnqtCwgXnrZgWL56ULLj5+pBoy m//qXeuMIfWEh8s45jl2xeCxvN7O6oxqiGkVCacujoWtVYh7tGcNtqXXWlmK xJL6xT3eLRT/LbGo3H/HLnx7LY4Hx0gtOhELG37l9+d6ayHz1/ei7rVYUh+R Wq6scskwFlbJguGyH+oQ8PCDwl2rWNy6rHlu+0EWrk9Y6SsUEEvqL6Pq0RXM kFg471X3f7WkAQddF/L+zmDtOy664163BhQdrGyvbo8l9Z73MkeOq3fH4leT 7/U3po1oDT0xkfozFr1JW97dZjbCW67C2XVtHKkn3brauyBjYxwu7z+2+2Jf E9LD+K/k7IxDyGKNU2WyzXiwbo32Hc04Ur86wlFqtE83DsnWX9x+aFHwRlBs 1TrDOGyS1SLUnCngyKtPeOoeR+plPUuFzta9j8Mbp18WVwpbECGuZVb7KQ7P GGrG07QW3AmV2ZddFkfqcSJHqy0+N8Zhleklaz/pNrT77isZY8X25YzlJfva oG1+rE19fjyp9/mdEtt7ii+eVY++L1J90w7OIUm9Lyvi4avi0qv2pR17bloo ySGe1BO5TtYTe07EY6GEoMMItQOfBPl7BVTjIdox+ufxQioc32T+tX4ST+qZ sbbCVm8s4lETtXh7kx8VLjWxfAVvWNdTOxQisqiQPvTs3r5v8aReqs7lknox MR6jA5fUFI91ItWVpp1cGI/y8fKY8iedKBI6JnOxK57UY7330enhA/E42/y7 PW+4E+xfY1dOsSfA43OabYskDQOneiWm1iWQ+q+3kEbjS5EESPOq8Kr40dDX nWTlcyABi4UqehqYNGSeWfJ0rXoCqS/zfN/Z0qmZALvwNTt7FOiIIYSmfR+x 4j3s9Kz3dLgJng3PtU8g9evnGyzj694k4OOOl+/fDNNRIhK9mDsyAX/oioZ+ 6gxwrntQ/TsjgdTHVUv1Ei5nJyCOzzRdzo+Bnzoxr/oYCTA126tzfRETP2vX muWOJZB6PGecerH1d9bzJZ/P+6XARGSapseJdYlQHD9luyGbiV1XbOvFNieS ev+W2HKL01sToZy5czhjmImPN6+3b1FPhNMvenDZky7IKDkGiOkkkv5CV5Dr yqSLieDncp7v7NeFJR1XrNxeJ8Jn78Td25LduLDroGqhcyLpX+jrRr8odUlE Q3BDk8GxbjyTbthuTyTC4tELs7+Mbmy9oVC5OjuR9Es474XqvclhxU8of06N dCNo+dD0mpZEPJhd7qM9+Id3ZLqP8Yd49SDO3eEo9/dEuISsqpd+14MTYc+c VrLif37NL36JVFFWvGUo+Ko9K5bsvS6YsyUJ6U9Sd04f68Xly1a/a8WTSD/I 60fFlzKJJIgmXeg6rdaLtPsL5TdfTILkiYG/5SO9eCIXzhi/kkT6TVWvueL+ 6iXhp4KXAsfCPuTsk1x/wCUJGnvfdQa/62MhikNL2X2SSH/Ly2K5YI5fEsq2 8/BFEH1ovRZOZctJgsWtlOcOx/uh3L/BXLU4ifTP7uqWxApUJ+HIQ4/akyb9 YMTxvzadSAKlMvnx49F+hFxOE/vEkUz6dZeF7izmXpAM1ZLffK0SA9DNLu+O 3JQMtZGVr26+H8CljVvXntmVTPqBtkKB19/KJWOrePthPfoA9j/K/OKnlYwP 8sPqeoqD8G7Q7Km6lUz6j2x5cenZ95PBTddq6vAdxOMy98MKDsnI2BL8+cbY IPo2X69n90km/U22QZE6j6/J2NT1HmoqQ9jTHb8uMi0ZqXYu240/DOFIY+TB b7XJpH8adi94N09LMgRTbFtT5w/ju92Ph40DyXhv+yHG4sQwjC4fjrWbTib9 2RPO38SleFMwNraOZ03GMP7++K2fvz4F/sTGca/xYZikoFt9fwrpB3Nl3aFx H01BGDfH6mTZEdhWXf399GwKVt1TuqitPALTs6OCE7oppN/sf+TVGRfWTV45 PSxqfzuCGe3CFRPmKci3Drsx8GUEr8xu/Kr7mEL62ecbT+8vCU3Biu23jrKP jEB5nbuDzLcU6G+KN7WcHMHkuJSMdn4K6ZebEb3K6a0poAZVRG44PYpNoe4r T3SkoPJCnI2gyiiY2kMyxzlTST+eTbp82XHeVDT72jjEBo1CmctD+z0r3rno /qqDX0ch0Hx2Rf2WVNL/X9F/8/VZ+VTg5ONoualROFzwviWikIozVmxLHrCP 4VucokmKQSrZXyBB4bm/4X4q/PQ3jhSrjGEmIjFG+2kqVpkfDAu8OMbi1S8i 85xSyf6Fq0U1ZqkBqWD/I7lL++sYXir6lyhGpOJNie2qyqQxVB4qKzhUkkr2 R5SdeKMiXJOK65vULg5OjWHqedzugQ7W8wuuPPq5fBxB8DVPHk0l+y/2P7ns 8qOllIwV6MyvDwpLseWjYFX+mnFERNyoNo0qBc1GLN51ZAz331xK3fO1lHwe Izi6SdSrlFVvS/78LRxDYIunasvjUiTbOov/chtDq3X/xKhxKTmfqKWTBk+u l4J7ac57hcdjkLE2GAqSK0XDJCeX8p4xaJU+6hKXLSXXa1A/0NlwdymuSNSv fSsyhtPfI8/Wc5Rikfpmx7d1o7COlWhvYS8l38e3qC8nfvwtQaU+MTBUOYp/ +oivIe8vs+hRCG4LOf66ogRLinSeSpiNQpOP4NQtLyHf/w4pkReXS0pQYn4u lM1kFJeD5Pk/fyjBVnvNX9rbRlHVMPr5uU8Jub8Cs/jdXdxLkDvcaW2xehRK ny74XL3Net5lap5H4wgMLn1hahmUkPt3Y0t0xXbtEmw7mPVnMHkEQb0K8zP3 l6CFSjnVaD0C7bXLItskS8jzEacQkbRbuATQbtE8rT2CDKXlSkncJRDc/GhG bPcI/ioL6bz7W0yeP4pr9HXv7mJc7YsK2P5zGEJeistONBRj2josiY0Yhu6L 5XzHc4vJ870z9Onjc5HFUPjdv/Wj7DBSJ8qjbn0uxtNASmW54DCWX9Wx5/Aq JvNHzVjB/GsPirE1Lt6m13QIx49+37T+XjFqb4Rfi380hH96kT69dnW+whAM Hn8w/E+jmMxXX6euvxM4VIxjf8XPqFYO4s3CgMebZYthwBvC55U5iEcJX0/r bSsm86F9uPa2G0uK8SRGcn3r1kH86sy1PMFWDNqqJB5NdlZ+dLU+zzNQRObb 2I48j5OUIszI3ZUwtx7A/dMx53MKiqCSezll7OgARMTeSr5JLyLzeVHdtqXZ wUWQSIt6I9PRj/jTbilv3hTB4P68Awa2/Wh25ZjosCgi68WR/2h3Ch4VQaco 9fqS/f04VpDY6K9aBH6zCr/Yoj6cOVG7REGpiKxHPckvNp47XMTircTY5Ns+ /CfwQGJ4ZRGsG5al1CzqQ8OLi8ZXlhWR9e7d0Ndt15cWYe8guwsXqx6G/Ch8 +LC5EPzr95zOV+pFb76F1glW/K+eEiISP4ebCsGdNh21nRX/09P27poU7ZXv xao86uj9r4VYYjOeyAzqQWvYtZrPXwrJ+n1+aMjf/2Mh7PsXGii79MBkQvxb 2MNCzBxbIhDF1gPXtnApqnEhiR9qinpWnLpRiPP7T7NnVHdjzV2mipF8Ie47 eVq66XRjuD2fy2N/IYlPvk8cXrRrG2s81xoyZ/i7cfk70yRsSSGaD3decUvs wsOySzsSOAv/r79ir7fpiaECRNpobluu0YXmslMS15sKMHDikfy3ZV0YuVDA jooCEl9p6Ojes44pgFNWjveENxMKq87XunwugEi4dcPAbSZsLaWEt3gXkPgt jBbW1viwAC+NStZ/bmaA7Xb4UrG7BaBdPM6mVMRAdfKYscGVAhIfeo58VuWV LYDf33RJH1EGlKpuxzrsLcDdiRfD+msZ4Do9ODG2qYDEn0Vmt/6c4yqAvmtU tZc5HYs3qLnMn8qHZOTJfNdLdFB+1mYQg/kkvh3NmObgq87HWpUZ/fhmGhiu GoYfM/PxUYpz2O4jjVVcW9Ky4/JJ/NzT/YZf5n0+Xqjxl4xJ0dC4wDz3uGU+ 9jgV7DzZ2Qmhjm7f/qf5JD5PVlL7kaufj/aR0IXnXDuxybAnfOBIPsaj705V iXQiSdjHQfJgPon/j/zuNwjdmQ9b1f33KP1UOOUfsLeYlw9G/RrdtdepIJbs WfKcLZ/kF3EZxv2tv/PgmirjbK9IRefgqub+nDwc8zzFe+IUi68M935MY8X/ +EtDKN1NlRXv/mzglHO8A//0Uz3tFn7vXR0Qd/suPN8pD4YexfQH0234qXxA bYNjHsmX9tsyTmvb5CFgs514THkb/G2Etp7SzEPepVNPzse3gr70dv0x9TyS j/nQwh+wKebhQkhUa5ZKK/Q+bFVo+y8Pe3nN5tvdasGvt9oSO1fmkXzvvciZ PS8X5OEPm9x/Z2opcM04uCu2NxfP2c1fLBWl4Kpffo9kZy7JJ+s3dn/IKcjF +yOVyafPN0PxVklpSkwujon0vhumNGFmk3/K0g+5JF+Vv6Q+EmmdC8o+700x DY1I0X4SQHuaC4/WIElpj0YYelKsLG/lkny4gH2nsNjhXAxZrnl4T7MBD8tF 9QWQi6arBgrdpxvwTz9+rl+w+uXCBrAt/HEtQTiX5N9TqymtCgty0TeI4eR5 9Sha63xXlC0XC7j2fFZprkPyYrvOL6M5JL+fnvhz5nJlDh7dmyfgkVaL9hCP nwWZOfiycfAMt04t6r541+4NzSH1A5ldXaOeXjno0YviqXlYg37L1Jp+U9b1 TXThla3V+D2wcH31gxxSn5D4oR7TcDEHXZmBBy0kquGVzG54d18OzN0iDxhc rMLvmDVhveI5pP6xu7rZYoFIDoYbhINPl1Yi3+N5wKbRbISeNzFsTipHfsiN L78Gs0l9xUbn1X+LurJhUGL16euhciS5mBZ0h2QjdShbUjShBAKb+aMrWPE/ /Sbp6vpzKaw4Y2IyZGdcCf7p6ZPh1fbZISUYMy1Js3+djYg5n6sYTK7khX53 szGeYV1A3ViENnUfo3lG2aR+xHM9q/nN9Wzcu35xe1dCISpv+cN6TzaGVL9O 3vbOh4OBw55RyWxSr9pvknbymRBr/KKZmRsS8rDl6k5V1Z9ZUD7NX/BzUS7+ u7DhqeZIFqmHRZvdufm8IQvHBScDA2Oz8XVj+LehlCxM1zqmullkwY97qYd3 dBapt/mUS21we5OF3KMt5zouZuCJ5/btqqZZ6Pb++PV1XxpMO/ZHtxhnkXpe VNpIA9/hLLC/VXsfqJqEjPM+afMPZeF/fJck2F/5lRGxPwteu9rMnZsT8c8/ MF3aWlGkF4/foXXP5NdmkXoin/lNaRFWPPbW+UDM6Xh4tFET5aYIdAio/xTP icGTCNuwqJ8EqVeWXV+0mmuEQHicZ0ruqRgs/Rum2J9FoLf2Xfyym1F4Yi4a syiJIPXQH6K37syEEhiWWP5x2dsI6BWNxW8LJLC8mL2noDUcfqc0hax9CCjN 4ZcwqE1tNu2wJ9Dzc2NUklcoPowzvnTYEBA12ze1+kwoWiXtP/CYEqQ+S+w1 ozQaERAU7y3anPYV63o1zvoYErhcsHJnyPuvWKUfUCt6hSD7G4witvMMqxLQ /Wz8/Y7YF9xrSlsoeYbA3wdHHicEfwaDo4vN5BhB6sVB97yl+qUJaHl1t/5I +wQJi7/Llu0gyP6EAxvYDSK3EXiw4WrEgYoPkH5icvDteoLUp3es/i35dwWB VaFLi21+e8KHP3x15koCfZwSUhJ8HhBkG5R+w4r/6d9FRxTUnwgQCHsUpszH 6Yin2W658v8RSL5h5FqyyxZKmx8cPipOkHq66RWXYkVZAln9i5Vihc1xQHnX p0LW+Nf5WZycb/QUQ+fEVv3UI/5Pn0+XOZDqSEBm8njLixktFO0K/qwYQkDA 56jSJeZB1KvdkbelEqTe/2//cIov5D+pf4t45XLm9DyVLOz8Rp12e2pCmPTH DFrZZJH+wT8/a+nTwqqX3JbEDNdU9csD2RiMlu4v2WpNiJnT33NrZMNdnt/F 19ea9Meij+mKKaywJR615+scrMmGo3fb2MFiW+KX+dK3kro5+PF4i9T2Z/ak 38YXxuVv62xPxJwXPr3ycQ6OSHV2pqXZE19sxblPhOWQfkd3gO8Z/U2sfMrv vv1px2vSz/vA80FrUe5rorRmWWuLfC7gdTsorf81YacZFrKXVT+u9at/tzV1 IP3BbRmU9qyDDsRL+bB7Pnx5KFIKv+j+3IH4PvXWPiswDzybtd9bJzmQfmOI gxbn0A0H4mxdftNMUx44/66a7/fJgaiNSFAfNszH8zdDrtRAB9LPNO89+trs rAOh7DnGJcvCD0bLn65Lf+FApKnrOZVJF2BkcPmyi6cdSL90i7LOkqp9DkT9 vZ4fGToFMOBZHssUdSAsd6n1WHAVoqW6VXRhxmvSjxV7V94Y7f2aeELL3+ch UIhTLp3bvn15TRxqCtAXCS8k1+sfPv0vOezC21F7gn+By/TrV0WYX3xPYzTf jog6HpY1kFiElSrZ/N3+dqT/PGP2rOjvVVviR+iiqBFqMQjNaj/OIzakn920 hoNdYcKaWH1GgMP1eQmEtG5v8n5hTfrjgq7se94+tSI+jv8n6XewFLX98gvk g14RG6wM1kocLwMne7jq9Z6XpF+vb1PpUGnwkkh3eovDn8pw47i6K+/ll4SP +Prbm8TLMcyVqr3vnDnZD2B9cmUFI86MWF/q9NH8VDlEPVc5Pg4zI6Tki0Y0 vcvJ/VtVU2sWOFKOqo8CPGGiz8n+A7bW7IYak2fE3QjXW3IbKqBOfKH82fyM sFlwJi3EowJ2vwV3NR81IfsZ9D9RMy0VHxGLL0aejxKsBOX62ofLjz8khsu+ rP66rxI+O0P73ls8IPsjHJv3b7U+d5eIX3JE7cbyKuTce799hteA7K9gW8aV 5aJwndhyyfeAhEwV5lX2Tk5bXyMm3Or3fXlaRZ7Xf/0aA1kVDOkkNeJNXmLE luoqqDy6cGyx1mb86/dYcWTBii9GxzCVHklz2FqN49/eBWe4aONfv8j8qMai W9/00PAz36rwZjXiIgupy5bow3tHh9DykGoyn/zrT8nUXLZtcs992Ctqxph8 r8aauhP7DuU8wb/+lsBr0t9Vi55jrdEnn+iDNejeu3tBdLwZtMRqv9w2qoGH h9/XS3yW+Ncvo8WTXvxqwSuU7J62vGBZgz31+6K5NV5haJkYQl1qyPz3D+dM hyiIfYi3w4DMfVcNjlrsjeIPOcPhgH/9PL8U5Ip0zJyQt++r1c5TtWS+1Xtu Vd9iUQvZ+W6Ttdxu+Nc/dPFq9DnXA+5ouXnMT5pZS/aHveoVNxj9VYvOVSfv dCp74l9/ks3Ew6VEvyf+jk11We+uw/PJrSsLP3hjh9iRo3ev12Fqs9xVznRf /Ot/Yh/q8NX87cu6brfFZ6M6rPJNGTNl88NbSRFrl1t1ZP34108VMjPsU/7B H07n5/9Iqq/DR+/u7b68H3Ft1Y6INmodWY/+9Wv1S+Q5HW8IwDJeFacyuXqk ZVV6DogHImzo9P17p+rJ+vav/8uG57iJnu8XeLGrOUz616M8+tACnnFW7MnT KRReT9ZP57l0WI9FFylaBku/wlpmS+2rinoEcMyLzNT9Co8N54T1muqhMZcI v5L9Z+zhUvnO3sH4I/d71crpeqj4SL9TagzGd4HF7ZXzGsh6XsOecTdrWwOk r/VPnlYPBU3vSlmjSgMiHfi3HHwXhq8jBRbDGg0kXogiCnzsWbjb7tUPnsD6 MLI/zqUvp+NGaxgkbruYan9pIPGIssj+8w2RDVjBCPHyHo0k++3Ma53WGd6K gq/LfP7GwQb8mDt30YhYfIBLlYXzz+2Qora6RmPf7LYRaoTchnbL7Wtj8Cz3 uLWYVCOJj66X0aouqTXii9RCtne7Ysn+wCjprIMG4nFI3ntSXSugETpiA2xE cxzELO8u4U1sJPGYxJPQe85DjVhilxW32z4B9e8frsxf1oQPTf3TIuqJsBzh bh7Z2UTivX/9jIdcbzsqeyRht/LLTyqWTUgemrj+jC0F+5e9P04NaCLx479+ y9d8sSLGpumgxTC3J/I0o7tORbvLMR1LkteI6a5oRl3Jbe7x6HR0MB0cXtxr JvGqheqHyGPuzXhweXL7/vVZZD/psYgWvxz2bAQEZusP8FOw1Wrd396f2RA/ /ITw2EUh8fH7HKugG84UUCOP2CRm5KLGsWG78FsKNH2k70rW56K/29DKmU4h 8bflA6Htgota8FZDty41L5/snx1bvkO+bk0hNmcl3G172YKQU3+fU2ILse/+ Ied45xYS79+WM7gnl9CChG1nF99yLoKmVOk7+7EWFEWHBqwIKyb7e/kzHpv7 PyvBjxUz0dM7Wkn+IWTRE75NtxUKcrwvUr+W4uj8c723YlqxdaNw0cRyVt1Q iP8kkddK8hvGD2QHVbTCKevoKuOgcrIfWYHrR8iSjRWwvDf1MWZvGzbox/1t jKzEr9Al2+6qtJF8akeE0ADDtQ0+YmwX1sVWwXtd+6Gaj22Qnjips5VShcDu V1u+NbWRfG2FF2Hqx9GOtYoHeJbRq9F+JuWNik47Fok2ao8V1oBbuj4h5lo7 mScVB++t1zZoh8am9NP7+mrIfusFwlOZZUtrsfx6zreZ/HYU5639r/pHLcJ2 Hn5e39ZO8s9vDhInP6zsgFvl4c96lXWwjDD6endTB/I93xVVsddj55yu1IEW tbPb1GXq4TO5OtjrUgfJd2s/c5XTLDsgYXzP5eiyBogxTrHvy+2A3ZvV+81L G6CdEqErXdtB8us9yvFHN7Z3oNoggOvvhkayH/23/cHCm9aNeNFu9ct3LRV+ /5l8fburCUelpBNGRagkn3dq0jM4u4eKneeNiReZTdhAF9+QokjFhocPZJhH mzF+qlJr6AKV1AsY32e89R5SUb/glth8TQp2vLje3PSSCv9vyo94wihYFTxT 7eRGJfWIh/rFbb4fqCiihSYSt1vIfv5L96TFhO604p5mzZrIIirshH/HDr1s BSeHFadBMZXUP5a2jXD+KKEi4uRqX0uXVngnC2avGKXCOZ1Xl+bbhtjY+OT1 01RSX0nySbt5Zlkn0uTOisjcbcfD85y/7NZ0Yk1iytFf0e1YXDYo17y9k9Rz DKPvrDY/0omclyXhiSUd2CLXdozzfCcMF9u1CW1kjcOulDZytZPUi+ZPWymK GnUi5IB6+asHVPL3EiLR5+mdXVRwWime3uDeiRM3P2Re/EtFm9aksr9HJ6lP mZq1PU/26oTr2eWbNHg7EfU759aK5E54B9ZPcjl3IsIy4EZeduf/+dNGuszS +k6MC9emSP3qRO+InFR/eyfW9r1IZ66lYbP4jlrDkU5SX3vhcavVl5MGc2Uh RnkYDaHuEpzz+Wk4/icq6XYHDWfVw/I/bKCR+l2t0rOAoq00GK5ef2DLfjrU w+xH2JRZ132XTbTLp0PnVEaJGSv+pw/e1nXWK2XFtx74n84vopO/Z9lo+21o fQUde//6f35/g4bnc3o5A2nNjHanhzTUutxlXL/AQJH+2cPZpjRSn5T4hIMe 9jSIft6/6UUoA/c9D5qPe9OgaTVe+6CXgY7Swy1tQTRS/2yQEv6jn07DHZqm 7qNnTKhZuuZfz6bhtsrWZ3lvmAizV4lLraWR+qof7+aIM6x5W7ypk2la1IXn Z3ebPPtFw8xE+QeLu12gczuuWz9DI/Xb6P1dmX0cdGzMFpfxfddF/r6IZ0OL dtJAFxKLfAWnxejw7opZ3iDRDU/dkUDaFjqpF+flfE71k6RD5tSMka5yNx7/ KivYfIKOEmvhos7Mbpx8qLjwqiqd1KNXSgT5e+rRsT+V/5rcjh5sU1Q68NeI jhcqGrLqKj1QpI33qT6nk3p3kOltjL+hQ6XTK92F1gPZ30plz7zp2JdqZiHE 0wvNq9+Ssj/TSX190vG9540oOozcW7jlH/ciIkFe0reEjvsT87tVBnqhM129 MqWcTur37U9ujZhW0fHpxEn6pQV95O/F8sZKDPsP9EH/aOOI4yjr+mLhPzf8 +mBdZrxL5Tud9At+HisL9v9Dxw2VF352xX3QnJdYemo5A+qvSuwTt/fjsa+m tvl6BulHJMbJS62UZECbc33Moa+sz13e+wftYaBb4XataVY/Wr5Q5P2OMEi/ I1Z5pzznOQZ0J1afEjk3AD/dPgmHy6x9cnSwjPfVAEZP6io9vcUg/ZRk89VY +YgB/lMcy3l6BuDJtaTL0pmBn+e9Vty/NIjUVWZx+W4M0q9JsuYvSH3LgCEn 5cBj00Hy930qRo63r6YMQlVDpMwjnoGwH1en3XmHsFj785bYJAbpD42+3RIb nMGAbOquwVUyQ+A+tINzupYB7iXH3Fd8GcIij4x21VYG6UfZJIdNHh1g4NCh eTOHlw8j0D28bXycgfc6D2NXywyjWtG08iI7k/S7DNT4h2/zM/Fycfx/jmXD yKjnt1Ndw8QZo8wPg/3DMKXfNGrexCT9tOJc9jip3UwYVATerdg5gr7qHs9o RSZaV/9INr82gorn5acrlJikXxcv1hRupcrE2u7UkTWmI+TvNZOkh51VokfA L521OOMeE1dqBFbfzx9BVf1/bFseMEl/8AM1/VTdIyYmb83bOFAxAoG/Trm9 zkyIZ6/YDr5RPNmbXaLjxST9x71VCbJ8AUxYfElfNbZ/FLLCrjHekUxcMOF4 W6s9Ch7hI7UByUzS3ywZ29YbUcaEuXFwu2zQKH73+Dy8Xz7b5/LsG3fwKD59 ZLy2b2eSfqoGx8nvCn1MvK52Uz81MooT0hHcAb+YOFttXu+1fAxMhyelBWxd pF/btt7mvRZ3Fw4MrfYTPTAGt7f6O5Zu7ELt9SguefMxlCk/MLMT6yL94CId v4b+TV0Qky8YyLUZI3+/Swl3XtLnNYa3hnkpRgpdiHJd/6GjagwLeGf4fil2 kf5zlmuKg8/ZLkRU8bZY945BwpFI6dPtgoD+2YrJtePYpR/6ZdKwi/S37ZIa Ep24G9DMmexjmNuI8Zvh991n6pF96aWaSFgjbjqt66y2rSfxwe9lhx4tsK5H zoXur/cTG0j+U75v9G5Ddj3WX1opv3VNPeblZ7q2xdVjtb7xht3NtYj/VKP3 p5LFkyiRKd+barF+57u/X2sasPTPkZF37HXk/bfqrakdK60F9yuHwSNijRg5 e9TkJK0W6npV7nfEm3DY3V3JsqOWxBsN6tfOUNtrsamSmnrUuwna+9efDpqs haWKxYUik2ZYm+ym3hGuI/HGPKds/ua/tbjz9J5/xUoKGiLwWkigDqOm2znc MyjoDqhIPStUR+INhcvKwp8310GLGlti7NeCx7ycgpR9dTj8+ZuyJkcrNpuX WFjdqSPxxcy68t52tTq0vzwtu1GkDWp9fo8TtepQPI/IXnO8DYGZvBlnWHz0 H774x091xEOLiYE2rOtuPx5pXYf5tgGnJyzaceRDuY/O6zr4b71FZ8S1Q73j 8OOrmXUk3hDO5I2ISGTxXcPNhFF8B8qfBvKcK6wDv04k97ZNVDzpuaTm01hH 4o21kq/ur2PUoa50ReszEyq4eGQF+DjqEbojq2R4hIpS3YqFBxfWk/jibF8R NYqnHjpRpqlcKzpxeJmml5hwPbbN5dtO8v2v2uQYa8zCJYdCmH+TDtTjx3y9 RU+jO3Gb4rf4N4sP/8MfQaWBNhmH6pHkpufrkc6635PgHJvHrOsP24juU6Rh 1HDiG5PFj//hj5+BRwUj7OtxcIO1lIgzDVXLCkq+h7D4726D0nIqDXY7BbqT kupJ/PHbvqGSt6we27dFrMm/SIfbheGPu1j8eGOoCVPhBR3ajcUm5isaSPxh emxk5NOSBpS6jXsarmTgyO5lh9P5G9BWpfRBdTsDVE/TP8v2NJD4YljFlk/1 ZANenS/m6QhjgFKqrDGs14DJUg/rCFZe3erq3x5m0UDiiwI+qdfyrPjmqmZo HWWC17VkQWd4Axyk/UY1a5h4ZXX36MvoBhJfvPs1ccWVFW/z2N3c2cYk+XJ/ tK2X6V8mPn/dH8c12gCvl4fuhNzvgj210nVscSOJN6gXArIY8xqRZaQ5vSOM lXf6jl/+u70RE1o/+Kbnd+M3la039lAjiS/eeApOmmk0wvI/Gb4PFt1QOmxo c+k6C+d/TGxS+NiN1VDIzAxtJPFFVMXNIyWBjVjKdqtufE8PhPb6aa2NZp3b 1Pw/4lo9OBHRve1GdSOJL0w+JwYf6W6Eyd0/jOH8Hlyzpt7n422CDrui5fo9 vdCLLw4uW9NE4gtOtVDRzyJNGHbykprS6cUrHyUKl1wT1szpRL0k/36x6F3/ wuxepGswGvmvN8EqPNBFdbgXabcvcfs9byLxx6oFliK37jehpiHwgAdvH95r 2kzIRzfB5tfQWKtZH7KZlSqnxptIvDHfMEzNqr0JZQU6RnUjfTi/6Na06EgT FAlmPWNZP8nnk1retmXr9OPQ5EKPpKXNJP5I51Yc9ZdvRuTf1+es/fsR5Gan ePVSM559U1PipPTjdFZGlodXM4k/slC0TtKjmfU8jf17tw1gqc6r1LDIZhjN 7f8Bku+7ORJHDOIH0CtgZXuzpRm1P5fXWKcOwCoj8oZcezOJT4I4Uh8bMZrB HO8MphQMYEyFYTt2ngJpiUafS1KDqM/r4FJQbsGWyjHpxpuDJL/PYo8/0ak6 CI4fvq96brTg0Nx5GkTv9EFZrbstODi1v2kr636RMk5Lde+0kM8bF9LWPnOv BeGn7z1XSRyAl4/eCYGHLfg4p/8M4MfLZ7cWP27BOdWcYeq9AQxPreCIZn3/ 3/zcvpkK6D5oQXLARLzh6gHw7dq4v4D1+b/12bTp2Wsx4xbsUZBUUpw/AJP0 8ljuWy2QtfrE5qnXD6awr2WJYQu5/mtKn9l8uNmCtFGa2RetfnjFLRfw1GtB zlw+6yfnGx8XuCM6qw//BRddeqndgqjjggrXo/pwY0zWM4QV/9sPgnc/0AlW fFPT9FtOeB9mYnOTLA60wMmnWTxqcR9kq7xfjm1rIfdbws9jGgGsz1N/e42p DPbCmuN0v/26FqyY1xs5frMXqe4Oj6TYW8j9Hr++QapPoAVt7KlyCtt7kTPW PmM7TcFJy6ubDxX0YP6+qxVizRTyPH1Wsq52HKdA2PvhSe7bPTj8h/OTcTsF wwGDe9xFe/BSYCFbUwyFPK8C+7jbl5ZR8MsrIqI5tBstQkNrDxIUWF2tvjz2 shu88yUj6h0oZD5oT5+eyQyk4K33tlctXV3o77/MO/CRgo1/9ohfbe+Cilz5 RKsehcw3Meu/rk68T0FYZ+LWR0e64Np23qrlFgUBO3xPlK/vwiL+0bI8OQqZ 37g3cK3NOEKBgLGwTMdXJp4FJL8Q2k3BZHjC5WfqTGj8XCN9n1WX/+XPh17y 7KKrKRCkTPEUL2SisMFumdLvZoSc4Nvl/JqB3R6Xn5YPNpP5eTHdft9s/LX2 Wt03Fm7/d358HV1O9bMzsPFXne77zGas/3a7eg+Ll2ww9edvSW8m68GUw2Gb M6nNENks49uZzqoX6oFHQ9+x7jeH5+nwnOFeetq6Gc63+x59k6WD62dw7bhp M1l/orZyb681bsbmoPc+K/ppWMjXVF6i3IzhA+fV3T/RcI+5pKoPzWR943n0 KzRoSzMOiStnZa2hYYvIX8f9G5px9sPw7jguGplvTobnmu4p7ATnK1nRF5zN ZD3d+FRGxaezCVf/q6sMvdeJOk36btW6JlQlaJc7KXSiuiyizDaxiaznbB7Z d14GNOGYb7N1SisVEeFrDWmmTXBZa/rd5jYVH23pNSfuNZF4wX7fuXWKN5vQ fLBhU/IxKkLlFtnuUG4i//+Pf/n488s9q9aXdUBhaurlx82s7398uYjvegfm pTdnLBdtIvFKU8CroMK1Tfg99CBKRKQD4aGH6na3NaL7DDv15rF2jNS1KkWx 6s0/fLR5jWW5NKu+cOm4N/y52obnK2gzue8bIb6Db6B+fRvuxYXbvVduJPGX krqJ/8GzjTjx/vZ0IwufhXy+8slYuhGUmOjYo+4t6DzmTktkayTxnacip5/O dAOuBFdwfe+lkPU2i2ZtmF7Nes+2A6JMFs4tGF6lnFfYDPua9fuosQ0knvQP Pf7kVHwDrJg31SgZzbhqUB48T7kBa6zUOYxymxCs90i0dG8DiVf/f7z9/wDQ MApB "], {{}, {}, TagBox[ TooltipBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwl1kO0GAYQBdAf27Ya27aaxmls27btNLaTxmhj27Zt20nvP13c85azejOT pGG7Sm2DBAQExAkaEBCYIiAYwQlBSEIRmjCEJRzhiUBEIhGZKEQlGtGJQUxi ETtwBnGJR3wSkJBEJCYJSUnGbyQnBSlJRWrSkJZ0pCcDGclEZrKQlWxkJwc5 yUVu8pCXfOSnAAUpRGGKUJRiFKcEJfmdUvxBacpQlnKUpwIVqcSfVKYKValG dWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa0JJWtKYNbWlHezrQkU50pgtd6UZ3 etCTXvSmD33pR38GMJBBDGYIQxnGcEYwklGMZgxjGcd4JvAXE5nEZKYwlWlM ZwYzmcVs5jCXecxnAQtZxGKWsJS/WcZyVrCSVaxmDWtZx3r+4V82sJFNbGYL W9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJTnOYMZznHeS5wkUtc5gpX ucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle85g1vecd7PvCRT3zmC1/5 xnd+8JNfBJY/CEEJRnBCEJJQhCYMYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJ R3wSkJBEJCYJSUnGbyQnBSlJRWrSkJZ0pCcDGclEZrKQlWxkJwc5yUVu8pCX fOSnAAUpRGGKUJRiFKcEJfmdUvxBacpQlnKUpwIVqcSfVKYKValGdWpQk1rU pg51qUd9GtCQRjSmCU1pRnNa0JJWtKYNgcu7He3pQEc60ZkudKUb3elBT3rR mz70pR/9GcBABjGYIQxlGMMZwUhGMZoxjGUc45nAX0xkEpOZwlSmMZ0ZzGQW s5nDXOYxnwUsZBGLWcJS/mYZy1nBSlaxmjWsZR3r+Yd/2cBGNrGZLWxlG9vZ wU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nB TW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFP fhF4+IMQlGAEJwQhCUVowhCWcIQnAhGJRGSiEJVoRCcGMYlF7KD//xj/AQXy A1c= "]]}, RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.05`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.038`", " ", "a1"}], RowBox[{ RowBox[{"0.038`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.127`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.194`", " ", "a1"}], RowBox[{ RowBox[{"0.194`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.094`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.425`", " ", "a1"}], RowBox[{ RowBox[{"0.425`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2122`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.626`", " ", "a1"}], RowBox[{ RowBox[{"0.626`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2729`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"1.253`", " ", "a1"}], RowBox[{ RowBox[{"1.253`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2665`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"2.5`", " ", "a1"}], RowBox[{ RowBox[{"2.5`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.3317`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"3.74`", " ", "a1"}], RowBox[{ RowBox[{"3.74`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"]}], "\[Equal]", FractionBox["1", "5"]}]], Annotation[#, (0.05 - 0.038 $CellContext`a1/( 0.038 + $CellContext`a2))^2 + (0.127 - 0.194 $CellContext`a1/( 0.194 + $CellContext`a2))^2 + (0.094 - 0.425 $CellContext`a1/( 0.425 + $CellContext`a2))^2 + (0.2122 - 0.626 $CellContext`a1/( 0.626 + $CellContext`a2))^2 + (0.2729 - 1.253 $CellContext`a1/( 1.253 + $CellContext`a2))^2 + (0.2665 - 2.5 $CellContext`a1/( 2.5 + $CellContext`a2))^2 + (0.3317 - 3.74 $CellContext`a1/( 3.74 + $CellContext`a2))^2 == Rational[1, 5], "Tooltip"]& ], TagBox[ TooltipBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwN09NiHQgAANHbpFpbdWrbtpnadpvatm3btm3btm3veTjzBxNSq1loWLhA IPBMogQFAlGJRnRiEJNYhBCbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3p yUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJShFKacpQlnKU pwIVqURlqlCValSnBjWpRW3qUJd61KcBDWlEY5rQlDCa0ZwWtKQVrWlDW9rR ng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNYxjGe CUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rWsZ4N bGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5xngtc 5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGeD3zk E5/5wle+EQgOBMIRRDDhiUBEIhGZ7/ieH/iRn/iZX/iV3/idP/iTv/ibf/iX /4hCVKIRnRjEJBYhxCYOcYlHfBKQkEQkJglJSUZyUpCSVKQmDWlJR3oykJFM ZCYLWclGdnKQk1zkJg95yUd+ClCQQhSmCEUpRnFKUJJShFKaMpSlHOWpQEUq UZkqVKUa1alBTWpRmzrUpR71aUBDGtGYJjQljGY0pwUtaUVr2tCWdrSnAx3p RGe60JVudKcHPelFb/rQl370ZwADGcRghjCUYQxnBCMZxWjGMJZxjGcCE5nE ZKYwlWlMZwYzmcVs5jCXecxnAQtZxGKWsJRlLGcFK1nFatawlnWsZwMb2cRm trCVbWxnBzvZxW72sJd97OcABznEYY5wlGMc5wQnOcVpznCWc5znAhe5xGWu cJVrXOcGN7nFbe5wl3vc5wEPecRjnvCUZzznBS95xWve8JZ3vOcDH/nEZ77w lW8EwvufIIIJTwQiEonI/A8JNQWC "]]}, RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.05`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.038`", " ", "a1"}], RowBox[{ RowBox[{"0.038`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.127`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.194`", " ", "a1"}], RowBox[{ RowBox[{"0.194`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.094`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.425`", " ", "a1"}], RowBox[{ RowBox[{"0.425`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2122`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.626`", " ", "a1"}], RowBox[{ RowBox[{"0.626`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2729`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"1.253`", " ", "a1"}], RowBox[{ RowBox[{"1.253`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2665`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"2.5`", " ", "a1"}], RowBox[{ RowBox[{"2.5`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.3317`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"3.74`", " ", "a1"}], RowBox[{ RowBox[{"3.74`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"]}], "\[Equal]", FractionBox["1", "10"]}]], Annotation[#, (0.05 - 0.038 $CellContext`a1/( 0.038 + $CellContext`a2))^2 + (0.127 - 0.194 $CellContext`a1/( 0.194 + $CellContext`a2))^2 + (0.094 - 0.425 $CellContext`a1/( 0.425 + $CellContext`a2))^2 + (0.2122 - 0.626 $CellContext`a1/( 0.626 + $CellContext`a2))^2 + (0.2729 - 1.253 $CellContext`a1/( 1.253 + $CellContext`a2))^2 + (0.2665 - 2.5 $CellContext`a1/( 2.5 + $CellContext`a2))^2 + (0.3317 - 3.74 $CellContext`a1/( 3.74 + $CellContext`a2))^2 == Rational[1, 10], "Tooltip"]& ], TagBox[ TooltipBox[ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJwNw3dTyAEAANCfu/6RKCNJVqHska1QCJVVZioNlTKKhJCZKEVkb8rOqlBW +mjeu3uxxVXZlYOCIOhzcEgQhDrEMIc6zHAjHO4IRzrKSEcb5RijHWuM4xzv BCc6yVjjnOwUpxpvgtOc7gxnOsvZznGu85xvogtc6CIXu8SlLnO5SSa7wpWu MsVUV7vGtaa5zvVuMN0MM93oJje7xa1mme02t7vDne5ytznuMdc8891rgYUW Wew+Syy1zP2WW+EBD3rIw1Za5RGPWu0xazzuCU9a6ylPe8Y6z3rO817wopes 97INXvGqjTZ5zWZbvO4NW73pLdu87R3ves/7PvChj3zsE5/6zOe+8KXtdvjK 177xre987wc7/egnP/vFr3bZbY/f/O4Pe+3zp7/87R//2u8/B/wP7O5NiA== "]]}, RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.05`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.038`", " ", "a1"}], RowBox[{ RowBox[{"0.038`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.127`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.194`", " ", "a1"}], RowBox[{ RowBox[{"0.194`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.094`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.425`", " ", "a1"}], RowBox[{ RowBox[{"0.425`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2122`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"0.626`", " ", "a1"}], RowBox[{ RowBox[{"0.626`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2729`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"1.253`", " ", "a1"}], RowBox[{ RowBox[{"1.253`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.2665`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"2.5`", " ", "a1"}], RowBox[{ RowBox[{"2.5`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"0.3317`", "\[VeryThinSpace]"}], "-", FractionBox[ RowBox[{"3.74`", " ", "a1"}], RowBox[{ RowBox[{"3.74`", "\[VeryThinSpace]"}], "+", "a2"}]]}], ")"}], "2"]}], "\[Equal]", FractionBox["1", "100"]}]], Annotation[#, (0.05 - 0.038 $CellContext`a1/( 0.038 + $CellContext`a2))^2 + (0.127 - 0.194 $CellContext`a1/( 0.194 + $CellContext`a2))^2 + (0.094 - 0.425 $CellContext`a1/( 0.425 + $CellContext`a2))^2 + (0.2122 - 0.626 $CellContext`a1/( 0.626 + $CellContext`a2))^2 + (0.2729 - 1.253 $CellContext`a1/( 1.253 + $CellContext`a2))^2 + (0.2665 - 2.5 $CellContext`a1/( 2.5 + $CellContext`a2))^2 + (0.3317 - 3.74 $CellContext`a1/( 3.74 + $CellContext`a2))^2 == Rational[1, 100], "Tooltip"]& ]}], {{}, { {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], GeometricTransformationBox[ TagBox[InsetBox["0", {0., 0.}], "InsetString"], {{{1., 1.}}, {{1., 1.}}}]}, {}}, {}}, {{}, { {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], GeometricTransformationBox[ TagBox[InsetBox["1", {0., 0.}], "InsetString"], {{{0.34712768041875597`, 0.7573360624524019}}, {{ 0.34712768041875597`, 0.7573360624524019}}}]}, {}}, {}}, {{}, { {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], GeometricTransformationBox[ TagBox[InsetBox["2", {0., 0.}], "InsetString"], {{{0.359757305738592, 0.5073743002167994}}, {{ 0.359757305738592, 0.5073743002167994}}}]}, {}}, {}}, {{}, { {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], GeometricTransformationBox[ TagBox[InsetBox["3", {0., 0.}], "InsetString"], {{{0.360901586873862, 0.5498017432081403}}, {{ 0.360901586873862, 0.5498017432081403}}}]}, {}}, {}}}, AspectRatio->1, DisplayFunction->Identity, Frame->True, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{"DefaultBoundaryStyle" -> Automatic}, PlotRange->{{-0.2, 1.2}, {-0.05, 1.2}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.688719740254499*^9, 3.688719764552865*^9}, { 3.6887198321677*^9, 3.688719839641364*^9}, 3.688719913829591*^9, 3.688719966898114*^9, {3.688720013760631*^9, 3.688720092563056*^9}, 3.688720163530504*^9, 3.688720199236238*^9, {3.6887202575232477`*^9, 3.688720360280107*^9}, 3.688720740073442*^9}], Cell[BoxData["\<\"fig-gauss-newton.pdf\"\>"], "Output", CellChangeTimes->{{3.688719740254499*^9, 3.688719764552865*^9}, { 3.6887198321677*^9, 3.688719839641364*^9}, 3.688719913829591*^9, 3.688719966898114*^9, {3.688720013760631*^9, 3.688720092563056*^9}, 3.688720163530504*^9, 3.688720199236238*^9, {3.6887202575232477`*^9, 3.688720360280107*^9}, 3.68872074040215*^9}] }, Open ]] }, WindowSize->{958, 1179}, WindowMargins->{{0, Automatic}, {Automatic, 19}}, FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 1188, 32, 99, "Input"], Cell[1749, 54, 1296, 29, 209, "Input"], Cell[3048, 85, 1056, 25, 99, "Input"], Cell[CellGroupData[{ Cell[4129, 114, 178, 4, 32, "Input"], Cell[4310, 120, 231, 5, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4578, 130, 177, 4, 32, "Input"], Cell[4758, 136, 136, 2, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4931, 143, 540, 14, 32, "Input"], Cell[5474, 159, 277, 6, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5788, 170, 177, 4, 32, "Input"], Cell[5968, 176, 166, 2, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6171, 183, 487, 13, 32, "Input"], Cell[6661, 198, 199, 5, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6897, 208, 179, 4, 32, "Input"], Cell[7079, 214, 138, 2, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7254, 221, 485, 13, 32, "Input"], Cell[7742, 236, 198, 5, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7977, 246, 230, 5, 32, "Input"], Cell[8210, 253, 162, 2, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8409, 260, 424, 12, 32, "Input"], Cell[8836, 274, 1690, 52, 89, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10563, 331, 2939, 64, 715, "Input"], Cell[13505, 397, 36559, 690, 368, "Output"], Cell[50067, 1089, 384, 5, 32, "Output"] }, Open ]] } ] *) (* End of internal cache information *)