Newer
Older
Lecture_repo / Lectures_my / NumMet / 2016 / Lecture12 / gauss-newton.nb
@Danny van Dyk Danny van Dyk on 21 Nov 2016 50 KB Final version of lecture 12
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 10.3' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[     51936,       1153]
NotebookOptionsPosition[     50467,       1097]
NotebookOutlinePosition[     50803,       1112]
CellTagsIndexPosition[     50760,       1109]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
 RowBox[{
  RowBox[{"yy", "[", 
   RowBox[{"x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], " ", ":=", " ", 
  RowBox[{"a1", " ", "*", " ", 
   RowBox[{"x", " ", "/", " ", 
    RowBox[{"(", 
     RowBox[{"a2", " ", "+", " ", "x"}], ")"}]}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"r", "[", 
   RowBox[{"y_", ",", " ", "x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], 
  " ", ":=", " ", 
  RowBox[{"y", " ", "-", " ", 
   RowBox[{"yy", "[", 
    RowBox[{"x", ",", " ", "a1", ",", " ", "a2"}], 
    "]"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"rp1", "[", 
   RowBox[{"x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], " ", ":=", " ", 
  RowBox[{
   RowBox[{"-", "x"}], "/", " ", 
   RowBox[{"(", 
    RowBox[{"a2", " ", "+", " ", "x"}], ")"}]}]}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"rp2", "[", 
   RowBox[{"x_", ",", " ", "a1_", ",", " ", "a2_"}], "]"}], " ", ":=", " ", 
  RowBox[{"a1", " ", 
   RowBox[{"x", "/", " ", 
    RowBox[{
     RowBox[{"(", 
      RowBox[{"a2", " ", "+", " ", "x"}], ")"}], "^", "2"}]}]}]}]}], "Input",
 CellChangeTimes->{{3.6887185761378317`*^9, 3.688718589261903*^9}, {
  3.688718648725279*^9, 3.688718762356341*^9}}],

Cell[BoxData[
 RowBox[{
  RowBox[{"rr", "[", 
   RowBox[{"{", 
    RowBox[{"a1_", ",", " ", "a2_"}], "}"}], "]"}], " ", ":=", " ", 
  RowBox[{"{", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"r", "[", 
     RowBox[{"0.050", ",", " ", "0.038", ",", " ", "a1", ",", " ", "a2"}], 
     "]"}], ",", "\[IndentingNewLine]", 
    RowBox[{"r", "[", 
     RowBox[{"0.127", ",", " ", "0.194", ",", " ", "a1", ",", " ", "a2"}], 
     "]"}], ",", "\[IndentingNewLine]", 
    RowBox[{"r", "[", 
     RowBox[{"0.094", ",", " ", "0.425", ",", " ", "a1", ",", " ", "a2"}], 
     "]"}], ",", "\[IndentingNewLine]", 
    RowBox[{"r", "[", 
     RowBox[{"0.2122", ",", " ", "0.626", ",", " ", "a1", ",", " ", "a2"}], 
     "]"}], ",", "\[IndentingNewLine]", 
    RowBox[{"r", "[", 
     RowBox[{"0.2729", ",", " ", "1.253", ",", " ", "a1", ",", " ", "a2"}], 
     "]"}], ",", "\[IndentingNewLine]", 
    RowBox[{"r", "[", 
     RowBox[{"0.2665", ",", " ", "2.500", ",", " ", "a1", ",", " ", "a2"}], 
     "]"}], ",", "\[IndentingNewLine]", 
    RowBox[{"r", "[", 
     RowBox[{"0.3317", ",", " ", "3.740", ",", " ", "a1", ",", " ", "a2"}], 
     "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",
 CellChangeTimes->{{3.688718849759288*^9, 3.68871895553047*^9}, {
  3.6887190352900352`*^9, 3.68871909397711*^9}}],

Cell[BoxData[
 RowBox[{
  RowBox[{"JJ", "[", 
   RowBox[{"{", 
    RowBox[{"a1_", ",", " ", "a2_"}], "}"}], "]"}], " ", ":=", " ", 
  RowBox[{"Transpose", "[", 
   RowBox[{"Table", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"rp1", "[", 
        RowBox[{"x", ",", " ", "a1", ",", " ", "a2"}], "]"}], ",", " ", 
       RowBox[{"rp2", "[", 
        RowBox[{"x", ",", " ", "a1", ",", " ", "a2"}], "]"}]}], "}"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"{", 
        RowBox[{
        "0.038", ",", " ", "0.194", ",", " ", "0.425", ",", " ", "0.626", ",",
          " ", "1.253", ",", " ", "2.500", ",", " ", "3.740"}], "}"}]}], 
      "}"}]}], "\[IndentingNewLine]", "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.688718765306134*^9, 3.688718826635524*^9}, {
  3.688718957930562*^9, 3.688718959746417*^9}, {3.688719124993137*^9, 
  3.688719127649055*^9}, {3.6887191793849277`*^9, 3.688719180824342*^9}, {
  3.688719261183794*^9, 3.688719272287752*^9}}],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"aa0", " ", "=", " ", 
  RowBox[{"{", 
   RowBox[{"1", ",", " ", "1"}], "}"}]}]], "Input",
 CellChangeTimes->{{3.68871894181269*^9, 3.688718969082162*^9}}],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"1", ",", "1"}], "}"}]], "Output",
 CellChangeTimes->{3.688718969441537*^9, 3.688719096977807*^9, 
  3.688719128771461*^9, 3.688719182323957*^9, 3.688719966097061*^9, 
  3.688720738994658*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"rr", "[", "aa0", "]"}], ".", 
  RowBox[{"rr", "[", "aa0", "]"}]}]], "Input",
 CellChangeTimes->{{3.688719336819388*^9, 3.688719342134523*^9}}],

Cell[BoxData["0.5629034885295303`"], "Output",
 CellChangeTimes->{3.688719343310339*^9, 3.6887199661791267`*^9, 
  3.68872073908258*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"aa1", " ", "=", " ", 
  RowBox[{"aa0", " ", "-", " ", 
   RowBox[{
    RowBox[{"Inverse", "[", 
     RowBox[{
      RowBox[{"JJ", "[", "aa0", "]"}], ".", 
      RowBox[{"Transpose", "[", 
       RowBox[{"JJ", "[", "aa0", "]"}], "]"}]}], "]"}], ".", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"JJ", "[", "aa0", "]"}], ".", " ", 
      RowBox[{"rr", "[", "aa0", "]"}]}], ")"}]}]}]}]], "Input",
 CellChangeTimes->{{3.688719214595397*^9, 3.6887192519274883`*^9}, {
  3.6887192922009983`*^9, 3.6887193220709333`*^9}}],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"0.34712768041875597`", ",", "0.7573360624524019`"}], 
  "}"}]], "Output",
 CellChangeTimes->{{3.688719216076914*^9, 3.688719252282782*^9}, {
   3.688719289247444*^9, 3.688719323170806*^9}, 3.688719966259224*^9, 
   3.688720739175549*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"rr", "[", "aa1", "]"}], ".", 
  RowBox[{"rr", "[", "aa1", "]"}]}]], "Input",
 CellChangeTimes->{{3.688719336819388*^9, 3.688719356310614*^9}}],

Cell[BoxData["0.013309708547241741`"], "Output",
 CellChangeTimes->{{3.688719343310339*^9, 3.688719356589059*^9}, 
   3.6887199662653303`*^9, 3.6887207392631483`*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"aa2", " ", "=", " ", 
  RowBox[{"aa1", " ", "-", " ", 
   RowBox[{
    RowBox[{"Inverse", "[", 
     RowBox[{
      RowBox[{"JJ", "[", "aa1", "]"}], ".", 
      RowBox[{"Transpose", "[", 
       RowBox[{"JJ", "[", "aa1", "]"}], "]"}]}], "]"}], ".", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"JJ", "[", "aa1", "]"}], ".", " ", 
      RowBox[{"rr", "[", "aa1", "]"}]}], ")"}]}]}]}]], "Input",
 CellChangeTimes->{{3.688719365165551*^9, 3.6887193782074614`*^9}}],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"0.359757305738592`", ",", "0.5073743002167994`"}], "}"}]], "Output",\

 CellChangeTimes->{3.688719378984639*^9, 3.688719966351424*^9, 
  3.688720739353015*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"rr", "[", "aa2", "]"}], ".", 
  RowBox[{"rr", "[", "aa2", "]"}]}]], "Input",
 CellChangeTimes->{{3.6887193865903683`*^9, 3.688719387654182*^9}}],

Cell[BoxData["0.008023819185392729`"], "Output",
 CellChangeTimes->{3.68871938791595*^9, 3.688719966435747*^9, 
  3.6887207394427032`*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"aa3", " ", "=", " ", 
  RowBox[{"aa2", " ", "-", " ", 
   RowBox[{
    RowBox[{"Inverse", "[", 
     RowBox[{
      RowBox[{"JJ", "[", "aa2", "]"}], ".", 
      RowBox[{"Transpose", "[", 
       RowBox[{"JJ", "[", "aa2", "]"}], "]"}]}], "]"}], ".", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"JJ", "[", "aa2", "]"}], ".", " ", 
      RowBox[{"rr", "[", "aa2", "]"}]}], ")"}]}]}]}]], "Input",
 CellChangeTimes->{{3.688719399230319*^9, 3.688719409182147*^9}}],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"0.360901586873862`", ",", "0.5498017432081403`"}], "}"}]], "Output",\

 CellChangeTimes->{3.688719409553731*^9, 3.688719966526167*^9, 
  3.68872073952791*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"rr", "[", "aa3", "]"}], ".", 
  RowBox[{"rr", "[", "aa3", "]"}]}]], "Input",
 CellChangeTimes->{{3.6887193865903683`*^9, 3.688719387654182*^9}, {
  3.6887194233500557`*^9, 3.688719425221861*^9}}],

Cell[BoxData["0.007845187483415318`"], "Output",
 CellChangeTimes->{3.68871938791595*^9, 3.688719425575406*^9, 
  3.6887199666102552`*^9, 3.6887207396158743`*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"t", " ", "=", " ", 
  RowBox[{
   RowBox[{
    RowBox[{"rr", "[", 
     RowBox[{"{", 
      RowBox[{"a1", ",", " ", "a2"}], "}"}], "]"}], ".", 
    RowBox[{"rr", "[", 
     RowBox[{"{", 
      RowBox[{"a1", ",", "a2"}], "}"}], "]"}]}], " ", "//", " ", 
   "Simplify"}]}]], "Input",
 CellChangeTimes->{{3.6887198824960823`*^9, 3.6887198875781727`*^9}, {
  3.688719944393311*^9, 3.688719945833048*^9}}],

Cell[BoxData[
 RowBox[{
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"0.05`", "\[VeryThinSpace]", "-", 
     FractionBox[
      RowBox[{"0.038`", " ", "a1"}], 
      RowBox[{"0.038`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", 
  
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"0.127`", "\[VeryThinSpace]", "-", 
     FractionBox[
      RowBox[{"0.194`", " ", "a1"}], 
      RowBox[{"0.194`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", 
  
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"0.094`", "\[VeryThinSpace]", "-", 
     FractionBox[
      RowBox[{"0.425`", " ", "a1"}], 
      RowBox[{"0.425`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", 
  
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"0.2122`", "\[VeryThinSpace]", "-", 
     FractionBox[
      RowBox[{"0.626`", " ", "a1"}], 
      RowBox[{"0.626`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", 
  
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"0.2729`", "\[VeryThinSpace]", "-", 
     FractionBox[
      RowBox[{"1.253`", " ", "a1"}], 
      RowBox[{"1.253`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", 
  
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"0.2665`", "\[VeryThinSpace]", "-", 
     FractionBox[
      RowBox[{"2.5`", " ", "a1"}], 
      RowBox[{"2.5`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], "2"], "+", 
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"0.3317`", "\[VeryThinSpace]", "-", 
     FractionBox[
      RowBox[{"3.74`", " ", "a1"}], 
      RowBox[{"3.74`", "\[VeryThinSpace]", "+", "a2"}]]}], ")"}], 
   "2"]}]], "Output",
 CellChangeTimes->{
  3.688719888234453*^9, {3.6887199464822483`*^9, 3.68871996671472*^9}, 
   3.688720739756154*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{"Show", "[", "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"ContourPlot", "[", 
    RowBox[{
     RowBox[{"{", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{"t", " ", "\[Equal]", " ", 
        RowBox[{"1", "/", "5"}]}], ",", "\[IndentingNewLine]", 
       RowBox[{"t", " ", "\[Equal]", " ", 
        RowBox[{"1", "/", "10"}]}], ",", "\[IndentingNewLine]", 
       RowBox[{"t", " ", "\[Equal]", " ", 
        RowBox[{"1", "/", "100"}]}]}], "\[IndentingNewLine]", "}"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"{", 
      RowBox[{"a1", ",", " ", 
       RowBox[{"-", "0.2"}], ",", " ", 
       RowBox[{"+", "1.2"}]}], "}"}], ",", "\[IndentingNewLine]", 
     RowBox[{"{", 
      RowBox[{"a2", ",", " ", 
       RowBox[{"-", "0.05"}], ",", " ", 
       RowBox[{"+", "1.2"}]}], "}"}], ",", "\[IndentingNewLine]", 
     RowBox[{"PlotPoints", " ", "\[Rule]", " ", "30"}]}], 
    "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", "aa0", "}"}], ",", "\[IndentingNewLine]", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"PlotMarkers", " ", "\[Rule]", " ", 
      RowBox[{"{", "\"\<0\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", "aa1", "}"}], ",", "\[IndentingNewLine]", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"PlotMarkers", " ", "\[Rule]", " ", 
      RowBox[{"{", "\"\<1\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", "aa2", "}"}], ",", "\[IndentingNewLine]", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"PlotMarkers", " ", "\[Rule]", " ", 
      RowBox[{"{", "\"\<2\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", "aa3", "}"}], ",", "\[IndentingNewLine]", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"PlotMarkers", " ", "\[Rule]", " ", 
      RowBox[{"{", "\"\<3\>\"", "}"}]}]}], "\[IndentingNewLine]", "]"}]}], 
  "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", 
 RowBox[{"Export", "[", 
  RowBox[{
  "\"\<fig-gauss-newton.pdf\>\"", ",", " ", "%", ",", " ", "\"\<PDF\>\""}], 
  "]"}]}], "Input",
 CellChangeTimes->{{3.688719708901539*^9, 3.688719763923025*^9}, {
  3.688719821578497*^9, 3.688719838850361*^9}, {3.688719886988105*^9, 
  3.6887199134499474`*^9}, {3.6887199834734592`*^9, 3.688720091920168*^9}, {
  3.6887201495045652`*^9, 3.688720198591329*^9}, {3.688720253680603*^9, 
  3.6887203597337933`*^9}}],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxdfHc8lW/4P6K0UBo09EFapEVR6q1SGsoqREuKaGhqCMmM7MxKUbJlbx57
7+1Yxxn2pkX0O3y/Pd/X6+efXtfrnOd57vt+7vu63uM6CV8zVrvBwcbGlsXJ
xjb7r1FxciqFow975v7G8WbAePM89j6I3m+TH5Ach0Wcw135zl4Q+QtVdAfH
kHZ5HzuzsRclUWfeDlDGYOy54dO70l7EvXA5VpE5Bsf6gpLEzF7cUZCn2HwZ
Q+01JfcLkb24tu3m96BXYxha+PLkyve94PkysDhBZwz58WwFk569SMhmi/M6
O4YTMiYRUla9+BX0SuPKtjFMCGdpFjztRWGpXPgu/jFIHXLPyrjSi6GB1zcF
20dBua3v8+BCL5yFPyQJ1Iziv3Z2z+/ne7G3xPX745JRzA1ToRdPp+jx4V9H
YePAcy5tdy8anspp9VqOQmxz8T5nyV5snL382Si21MgcWby1F4l7wiIM7ozC
cs2Spf/x9iLpqfpie9lRlB+Uv587rxeprG87Co8ihpnRRB/tAbUiMtPyzwga
lWRl5w/0wLFfZGJgZATXtPRUeBp7oDI7jOIR7BVfIChU1AP3ZV3fI0NGkO7p
ZTqd0oPdtI9uxx1HsN4liD8logddvAvkZu6NoFPG20jqSw947B6EGl8dwYYX
N7bUWvbALM1r6aDgCLpGna6Is+IXjrMLMAJH6khI5cseyMS5c/1YPYKOUbt5
QhY9uPM3l/56xQjuZh3YKHKxB4kr/ygJfRpGgf/YlhL1Hmzkefqn8+UwOloz
Trqd6IH87i2m21WGcWSjlkDPvh4sOi73uJd3GAupZ7hjN7HmwxWZea5qCG+p
9lV5/D0o4mg6+cliCCvG1iT/5emBxbGdsbK3h5B9NOsZ12Q3XrDuXrhhCBWy
i/1Ch7qRxBX/QmpkEOu2XrloWteNq+5mInfsBiEvEeBIlHcjZHzV0f3Gg8i5
89+t9SXdeMmzaurE1UHweZmu0U3phulvSp6+0CCkTO4eXxDUDSO+PcFNVQO4
6uqdt+hTN+r6TrNGOICh8IZsed9uLItIpkwHDGBr7BbBtxas8Wxffz3t8AB8
Ui7xSN/vBhuNNTyeAewStrl57VI3ZIWeXPmT1g935fSz8drdcNiTb78mth9b
Z7exRjdcPqRZ5gb0Q7zvj+Z5hW5INCe8dr/UD+qA4QFHqW7EpFhFfRTtx769
Dg+O/NeNh8+701vq+lAuovO1ZkU3tKpmB9iHcBe7kEyebuwv5zhY87YPR/Yb
7/oy3oVvQ8+oz7f3wU124PhoTxdmMldYc83vw4nWCT65ri5Ys0b79A/rXNkP
Sr2gdSHupt3nTYO9kLnn7bItpwuyf34brmadGz5FFa17CV2IZr2tvtO9oDlZ
lTt97oL2wui1hpysc5bamDLvfReuCPm5+PX2QFHC88Nqmy60zk7nXQ/YjnWC
/qgLHTPCfn90erAwlHfjTb0uaB4UD/dc04PFLsZD2853gXt2O/R1Y/UOqVvp
Z7pALF+ler2iG4/ar53o3s66346FmbEXupGXKXm8elMXBt6ZZXjJd+N39ljJ
+MYuSH2ZfeHd6A92Paks0oWVAuwCvTtY67o2aN77GSbSF9b0DMd14aHKZuOh
USauvtvCWvEuKOqOXQ7tYCL7kdff5qNdmBeb8XRlIxMh53NXRLKe8ya6tZa7
lIkFJ9icj08x4aD7IlU8m4k3rNltaWZCp1RO2C6KiV698OLzfkxYfFz44vU7
JkzpS+8+02CiYXqJ834nJpJnl2MLEx+fHkwYsGFCUDJNcSEPE3Np6iYTl6eT
NNd/ZUBQ9m//5UtMNL31N4uxZOBYZPIfPW0mGLPb6ykDkieN8rhZ903xelTf
ZsDA6WBF3YA9TARsvdF78wcdT9ZO+NVsZIJv9jgW0rGjg2KSyXqOvkxjZOgT
OmqpPRFfFjHBrsa/5ZERHZXdozyJwwzIzW6bVXTE7zSd5KUykCizLaq/g4ar
PLSE4/kMUGiMMisbGkqnbDrnpTFwU3/2j4abatWcAwkMDFESHWfO0dCw6ZTJ
nUAG3DV1mrpX0PAzLSeEz5EBtunDWxNKOlEaFDQta83A29nlS+iEePIV19Jn
DOQ9ZxJubp34tEODO/EKA+e3GN1sk++E4OVX9QmnGcia3X5cnRgTMyRMpBhI
XsJ1aDCRCuuqbGUOCQauP3aqdn1HxXrRQ4VNKxgYmD2+56j4ffXnh/oFDHSn
h3DISlJx1P4A4/wvOjhdsG7kVwe4Sw86RbfSoZz64pbsmQ44nT4gzceKhf48
3W15sgOD/U+b6S107LSd3Ykd0L5sk+/GivU1JnKuHe/AmQXuZgJRdPCoUcxf
7G/H4c+9Z+9+pMN+buO2wefkYp94O1bcsMXEVrkNStpp/wlY0tHtm7sqc2sb
XmimPXigRwd1dpvbtiL2QXXCcTU6fg3JiR5a14q0fXXcZ3bS4XTS4KOmWgu4
PL0kKJvpkFGNvcUv1oItdV7vxkTp+E+/4Gb70hbs/9/3OH7iSu+xXAqmJyuk
RCZoEOZVKhbjoGDppSBjyx4aXGenn9uMV8fHX+bV0bDxNXG++EwzbuuXXL6T
R0Pe/McjB340Qe1w+I6V8TQczP1cdMC3CXuVJ+ctC6OhZ/vsgjRhJsBRR9+D
hodPwyYjBxoh8bSjUv0RDY+uCXQ/kW+EF0dpYrkBDfKzj2NvhLkMTh67RkOu
4lOns/QGsCaRtleVhj0uq86a2TcgRKAuuHAHDWtkXJwutdbDWqbxU54oDT6L
tM1CP9Xj3WPt0F9LaRiSvbfCa0s9LooEHdk13QnHeyEFPvV1mKL4LW9p68Ts
01xQB++3B2zHizqhcXf8R2F1Lcykx1de+NSJZUUBy1Ln1SL23LaP8OnE7Oo/
aq+BpK7CI9rbTuSVeF0PLq/B+9my7tiJb55PHgl9qoF14/Obrpc7sfLpRxGn
8mr45+/L7VRi7dt6b9YIq+HjUWjntrUTZ1eq6FpXVOH75L55XKw4sZRNjK+s
CnNpcUsnHp2z2ru2pAoq7Nt3cXJ04vfscNdVQaZ3tdqhESoWN80MR3+qxGK5
0vw2ChWzp+p6YwUqdJb0pudTcXLPY48da1mxq8A2zmQqeFceijgdXI4FQ358
+bFUsL7MOonleKZu+IQSRIV484yrEWc5ZBpFj/iYUTGppxmSnlAKnWsPjD9e
okJ97j2XICA3oHXTEdb1toavawuLcUGsr2+IjwpF7dxl2pJFKF+022WamwpO
IQsZ6mghFDs9zfbNp6KtzkA9oqUQM39n/zpY+dj23cPwQvTQfZV+O3UgmR5p
eXIqH8ffP24y1+hA/OTszspH19TrpgGeDiS0Lx4YX5uHrR9yL9RktmM5u3+n
yFgO5LpO2/D4tOPG7HTu5IDrwbYTa9+0I+t5LXHhaA50/+fFoT4/i01iPBsB
H7XdBzna4baNe2qNSRa+ONrdP5XXBvG5uktAMneRs96TNrxxMQjdpJ2BPNfZ
FW2F8Hy+HEpdCrQFvRLyelqhetnxnUBtCorsypkfWPGbOXyYgk/fzW7+6G7F
e3mzhTIVKTDgFRc4rNyK0isx98ceJOKHVM4DZdFWDBJfrzx/mAC605kh08EW
DLLQW9SZeEycZ1Y/iWuBjj4jsHdNHG72Ly6xfNKCg3UpdwV7YvCx6dxp5vUW
+M/tuxhsnsMFLci2V9xNvRmDvUcyS5ezznn+5R3tdtXfEKj/29iugoL3s+XM
PRJas6fEm4KVE/6vyzLDkSN87vvZixQ858g0Uk4KxX1lUYmfUhRU2ZWur9YL
gczC/Qejt7HyxCy84gmB6qTZtMPfZrQYXKmzLP4Kh7l5N2OYEmgSrxWEvVp2
f0yqmhE1hweC8ObcgI7M12aoZKz7ZrX8C8y9OvtyPjWjnmdt/Jq+z9h/w8NP
27gZl+fqbSD+S41cdIoV0z+PixxjxZ/ncFozpP9OlbbbB+LKhWZV1dvNMD3T
XjfwKBB1Vg6L8uWaMb1lCdG3IwDp+bMvrBkWtvL90r0fYa8V1R7E1Yz1cwf+
IwZLAy9erGuCBn1Jj8u2D6ibPZahTRgq2fCdT/odVN0XC1zzb8LKb+7lh0P9
sJWhF7bErQnms8u2yA937LvZJQ1Yea5at8ZE1geDhtZM/+NN+CoftySjzwsr
pE4KWfA0oWMuX78Fxyvtt4cnGlHe41Ks7+eB+SzUnUVvhMOFoes+P9yhPpgl
v82lEcenjRN83rlAaA4nN+Kx+rIsbldnBNaOBLeZNUJqu4NN6gVndG+wear/
rBEvWafLbp4zNrFPzQTPNEAooVM28LktnDiNGzeVNODI7HGdfAWV2TKQ1oCI
4CCNin2v8GYzZ9Qy0wb4SUdelN1ljrnhazUgj7izJEzjOc6VTCvw/aj/X3xg
DM5MGU7v7/U49lvnhVesMebgCCt+PZXvGxxhjAXmPz7NZ8VP10nWfn9nDL+5
fVYPix22d28XXYHznm90Pb16cND3rJqnq4q4uXNdD3n27hbbC8uIYvN5R536
6lD1bJZgaBE1i8x5O2vqECW6skZY7DJRNvdXh5h55Y+l6q4Qkn9W9T/OroPG
vLKn6bd0CQZr9EOGdfi1dIqxteUWYXGu8V7YgTq4lZqb1fXfJ+avy80Z210H
10u0ywUPHxDTrNXnXVCHzNT8FSMbHxFightPtQ/Uwnv4bWu+vgmx7L586Z+I
WpwV/c7gOvmcmN19u77UQl7t0tSGj8+JpQEuFkP+teC6el22e7kpIcFpUODk
WPu/9eQFYfILpXpna5HR5HJMfJsFMfsW1A7XovXdYHXbJQvipYPV8yMStZgk
5k34P3tJyGzWOvtkugZVR2mN5Z6WxL86kxnZ8ku1xpJYYOZRWR9XAy+jI+Lm
na+IqynBy7xMa5D8POKr2RJr4s3eC7eCz9WgR8Z27HCVNTG3jAI1qJisfsK8
bEtcWRo/1pxSjYk91WEHEu2JOViaUA0p7jTR9aX2hPMyQUGeuGr81pDgK2+y
Jw5let/48bUaiXN16DWhXK376sulaiQkO1Ufu+BAhM1NqBqup1+/vK/sQEi2
ixUHzqtGyUxM8nMNR2KuTI1UgU/FucQh0ZH4rNKnn1FXBVtvgd/+e98Qs2j5
oFMVemUVds9IOBG1lKvPWNgNvW1W3x7QnYjvc4C3CluWuE3kxzkTf2Jz1ATa
K+GsIxbtV+hCrJ1b6Ep0/ZK1/iXmSvTUn8lboFKJovDB5zQNV0JpjgdXYAM9
3k1typUIT/YMPbe0AiM/C/ck17gR5nPnpgIBBhZPXSluhI7PRNPnqXIMBTVq
aVPdiMrJvM2JZeV4PreO7sQcvD9YDjeH7mZNPXdi0WSO2RXJcqxXol9otXUn
4kxP8hp7luH8+sWern3uxFyafFqG7ZvfCdqXuxNX1rQZx6uV4egbQV1LUQ9i
QQ2vWnFnKTzLLlwtuuVBLJ+FN7GlENp3sttUzoMwajWkrzQphSTb+uDRAg9i
j8qoB/eOUpxRFm7VG/cgZqvE24ESqC4y6zeL9iA2+owGmfqUwH7PVLLB/bdE
p98CmcNmJVgkGB48YfmWmIMFm0qwwu+ETttWVhxjFShRXIxjHjvjVrB5EquL
7ju7ZxTjd2rfmc/cnsTs7lqjW4yNohWdgyFviQPfpd7W8RWDf4GpddYVT0Ka
bW+zbncRIiXC3TebexJNc4ClCHtzN2stkPQkJr7l7BS5UIQHVuYRi/M8icK0
kTUmfEW4Nl5bQf/lSfwPTCsE3b9rj02KJ2Gn7G8pEliIU4LrTqlv9yKYwS4/
S2QKYRVyftPPp17EXLrkLYRKSO/r/NNexMXX+4UY/QVIMBL0/vvOi6hR9pe4
fLUAJw05Mu7PeBFz0z1VgPMjl4w0uL2Jy4OTD57sLcDN3kqaDZ83YXUtw2Kn
XT4Uu2R5z772JubSh3U+UjM43LhtvYk/y9LWDFvmw1M6dNktR2+iOqSqwMAg
H4KzcswHb2KOVmfm4YtKvad6sTcRKSf4XZQrDya6k+mnJryJue3/KxfqjrY2
oTPehDrnhbVve3NR+Tv3ROMiH2L3nA6Wi3PUsTqBvT7Egosf9RPtcrA6rEEj
UMuHuP6/OEZsbIejm7EPsWMkpkBeKQcpztu+aDj4EJ6z8kRwNhhK+g+Gw3wI
ofSCwq2Ls3FTXfOTfK4PUTBL2zuz8ErZO3Sk24dwuy7+KysyC207rA/LLPcl
5tLUuiwobzKr2bzJlxg7ul0005pA8O6srrUb/IjXfdNaD3QJxO9YcP+VsB+h
/j8TBj/eenZf9yU4t8wstOrPgKlJ6H/37/oRDL/juw7RMjDoqqGlcd+PSJzT
rTKQ4R/WJvrZlwhifrH7cysdi6ueHdzg60fUvrVS8zmRDmfrjWHjn/0IQd3Z
hJaGUNu0u0nxfsTWac5t3f2pGP/jtaky24+gG7tEFn1LRWO2FsOj1o94MVeH
U1H58YJ23So/wifgUVCqUQpuxPWv8uvyI3y3uHm/EUjBZE59g/u0H9E+p08l
g1al/G79cT/iN223SmB3EuRUAx3tOd8ROsaD/NNWSbg8uIfOKfSOODxHkBKx
zqim7pKBH/FGR33/ad1EaE2fXEBd9Y4w8WvNSx1PwOB5Od41O94RX+YKYgJ0
in/7e7Dmr50t982+Pp7Ff7nPtq5k3Y/vguAOo3g8F1aSk97yjpg/xyfjkLLt
id8lDT+i3E0hNEA+DrvnaaXsmvAjTib7R/T3xUIleMNr7z9+hOEc/4nFZMnt
I1tnfAlX2+1Kje9iYOjyarCItZ6fpcUe7zKNQavmMxszVlw2h/+jEfc44Qnb
YV8iYEzSTsonCpThnM6mVm9C+1Z5s6dmFPrERuMqqryJjcKv3iSXRKInx1Cq
944XkaJec/vvvQgy/31s69yVdzoCu0ZrRi4buxKZ69WMEgUjyPrw+o34hMTa
CGQECEwP5b0kPqc2XC5fFUHWw/lTfWJGrM81aaLDDuMmhO/JX8myuyLIem9+
X+TggFIElG5YKO29fQ3FF5qzH2lGkPjD15a668mNCLQVv5+Ok3+Cp7lfKr69
iiDxTWBnbF3Khwj4fd+z4783r3Gv4WzsyLcIEh/x+/5i9uRFgLJV6Nk9Kzfs
/77pW8l4BHhu5LnvkfaGc3mU18fFkSS+E0i5RNm5KRIK98qipmQ/4NHuCC/r
k5EwfTVv67OaT0gp33iAciOSxKvO3pY6vDaRCF+du2mdyRfULsp8f/tDJPoU
gy1+Lf4K/YneIKeMSBI/h203s02mRoJ2gue/S0phqPnv6Ksdw5F40rFM+Jpi
OPS5Zq4qCkWReJ0asKgLslEo3Mi2tpc3Gh2dvc4Nh6KQvIeXpnEkGtLX2D37
70eRfODCdpFdG5yikMcnKOrbGQu2RRozUy5RuFvO+aHhVyyEVLXnHcmNIvnG
t/n3rdjps9dXFpqYJUAxLKLV9Ng3SGTlaipWJGND6t2L9+99I/nNDedIr8NP
vmG0VrQmhkjFVEMyNZr+DZImASvVfDPxeOiTBOX7N5JPcXCmi7PPi8atjZ9d
d3Jk4UMlU9r1YDSumUk8D9+ZA9sD2tTU49Ekf9NvWfGd70Q07voX5rkG5SBw
F7X3uW00MoQaSu7w5yPI2WCXh0M0yQ83X3Ll2uQYjUO5XDtrT+bj3/7vzyw1
MQ8txM+7pRcqyqIhoXfWOHmoEBoL8m2ulkeT/FTwxamnDqw4ZWbetM73QpSf
Kh87zxuD3VPiHPs9StBx48XPVStjSP5ryqOXl7QqBmHf73PLNbHqrs08ioZK
DE7mNfw1lCnH1HFCrlk7huTXl72cNxRdioG2HrfXttRy3GxaS5tyiYHqzsOn
pFm45ppH/VmafwzJ7/+uKS/9ExiD0n09eoFnqtCwgXnrZgWL56ULLj5+pBoy
m//qXeuMIfWEh8s45jl2xeCxvN7O6oxqiGkVCacujoWtVYh7tGcNtqXXWlmK
xJL6xT3eLRT/LbGo3H/HLnx7LY4Hx0gtOhELG37l9+d6ayHz1/ei7rVYUh+R
Wq6scskwFlbJguGyH+oQ8PCDwl2rWNy6rHlu+0EWrk9Y6SsUEEvqL6Pq0RXM
kFg471X3f7WkAQddF/L+zmDtOy664163BhQdrGyvbo8l9Z73MkeOq3fH4leT
7/U3po1oDT0xkfozFr1JW97dZjbCW67C2XVtHKkn3brauyBjYxwu7z+2+2Jf
E9LD+K/k7IxDyGKNU2WyzXiwbo32Hc04Ur86wlFqtE83DsnWX9x+aFHwRlBs
1TrDOGyS1SLUnCngyKtPeOoeR+plPUuFzta9j8Mbp18WVwpbECGuZVb7KQ7P
GGrG07QW3AmV2ZddFkfqcSJHqy0+N8Zhleklaz/pNrT77isZY8X25YzlJfva
oG1+rE19fjyp9/mdEtt7ii+eVY++L1J90w7OIUm9Lyvi4avi0qv2pR17bloo
ySGe1BO5TtYTe07EY6GEoMMItQOfBPl7BVTjIdox+ufxQioc32T+tX4ST+qZ
sbbCVm8s4lETtXh7kx8VLjWxfAVvWNdTOxQisqiQPvTs3r5v8aReqs7lknox
MR6jA5fUFI91ItWVpp1cGI/y8fKY8iedKBI6JnOxK57UY7330enhA/E42/y7
PW+4E+xfY1dOsSfA43OabYskDQOneiWm1iWQ+q+3kEbjS5EESPOq8Kr40dDX
nWTlcyABi4UqehqYNGSeWfJ0rXoCqS/zfN/Z0qmZALvwNTt7FOiIIYSmfR+x
4j3s9Kz3dLgJng3PtU8g9evnGyzj694k4OOOl+/fDNNRIhK9mDsyAX/oioZ+
6gxwrntQ/TsjgdTHVUv1Ei5nJyCOzzRdzo+Bnzoxr/oYCTA126tzfRETP2vX
muWOJZB6PGecerH1d9bzJZ/P+6XARGSapseJdYlQHD9luyGbiV1XbOvFNieS
ev+W2HKL01sToZy5czhjmImPN6+3b1FPhNMvenDZky7IKDkGiOkkkv5CV5Dr
yqSLieDncp7v7NeFJR1XrNxeJ8Jn78Td25LduLDroGqhcyLpX+jrRr8odUlE
Q3BDk8GxbjyTbthuTyTC4tELs7+Mbmy9oVC5OjuR9Es474XqvclhxU8of06N
dCNo+dD0mpZEPJhd7qM9+Id3ZLqP8Yd49SDO3eEo9/dEuISsqpd+14MTYc+c
VrLif37NL36JVFFWvGUo+Ko9K5bsvS6YsyUJ6U9Sd04f68Xly1a/a8WTSD/I
60fFlzKJJIgmXeg6rdaLtPsL5TdfTILkiYG/5SO9eCIXzhi/kkT6TVWvueL+
6iXhp4KXAsfCPuTsk1x/wCUJGnvfdQa/62MhikNL2X2SSH/Ly2K5YI5fEsq2
8/BFEH1ovRZOZctJgsWtlOcOx/uh3L/BXLU4ifTP7uqWxApUJ+HIQ4/akyb9
YMTxvzadSAKlMvnx49F+hFxOE/vEkUz6dZeF7izmXpAM1ZLffK0SA9DNLu+O
3JQMtZGVr26+H8CljVvXntmVTPqBtkKB19/KJWOrePthPfoA9j/K/OKnlYwP
8sPqeoqD8G7Q7Km6lUz6j2x5cenZ95PBTddq6vAdxOMy98MKDsnI2BL8+cbY
IPo2X69n90km/U22QZE6j6/J2NT1HmoqQ9jTHb8uMi0ZqXYu240/DOFIY+TB
b7XJpH8adi94N09LMgRTbFtT5w/ju92Ph40DyXhv+yHG4sQwjC4fjrWbTib9
2RPO38SleFMwNraOZ03GMP7++K2fvz4F/sTGca/xYZikoFt9fwrpB3Nl3aFx
H01BGDfH6mTZEdhWXf399GwKVt1TuqitPALTs6OCE7oppN/sf+TVGRfWTV45
PSxqfzuCGe3CFRPmKci3Drsx8GUEr8xu/Kr7mEL62ecbT+8vCU3Biu23jrKP
jEB5nbuDzLcU6G+KN7WcHMHkuJSMdn4K6ZebEb3K6a0poAZVRG44PYpNoe4r
T3SkoPJCnI2gyiiY2kMyxzlTST+eTbp82XHeVDT72jjEBo1CmctD+z0r3rno
/qqDX0ch0Hx2Rf2WVNL/X9F/8/VZ+VTg5ONoualROFzwviWikIozVmxLHrCP
4VucokmKQSrZXyBB4bm/4X4q/PQ3jhSrjGEmIjFG+2kqVpkfDAu8OMbi1S8i
85xSyf6Fq0U1ZqkBqWD/I7lL++sYXir6lyhGpOJNie2qyqQxVB4qKzhUkkr2
R5SdeKMiXJOK65vULg5OjWHqedzugQ7W8wuuPPq5fBxB8DVPHk0l+y/2P7ns
8qOllIwV6MyvDwpLseWjYFX+mnFERNyoNo0qBc1GLN51ZAz331xK3fO1lHwe
Izi6SdSrlFVvS/78LRxDYIunasvjUiTbOov/chtDq3X/xKhxKTmfqKWTBk+u
l4J7ac57hcdjkLE2GAqSK0XDJCeX8p4xaJU+6hKXLSXXa1A/0NlwdymuSNSv
fSsyhtPfI8/Wc5Rikfpmx7d1o7COlWhvYS8l38e3qC8nfvwtQaU+MTBUOYp/
+oivIe8vs+hRCG4LOf66ogRLinSeSpiNQpOP4NQtLyHf/w4pkReXS0pQYn4u
lM1kFJeD5Pk/fyjBVnvNX9rbRlHVMPr5uU8Jub8Cs/jdXdxLkDvcaW2xehRK
ny74XL3Net5lap5H4wgMLn1hahmUkPt3Y0t0xXbtEmw7mPVnMHkEQb0K8zP3
l6CFSjnVaD0C7bXLItskS8jzEacQkbRbuATQbtE8rT2CDKXlSkncJRDc/GhG
bPcI/ioL6bz7W0yeP4pr9HXv7mJc7YsK2P5zGEJeistONBRj2josiY0Yhu6L
5XzHc4vJ870z9Onjc5HFUPjdv/Wj7DBSJ8qjbn0uxtNASmW54DCWX9Wx5/Aq
JvNHzVjB/GsPirE1Lt6m13QIx49+37T+XjFqb4Rfi380hH96kT69dnW+whAM
Hn8w/E+jmMxXX6euvxM4VIxjf8XPqFYO4s3CgMebZYthwBvC55U5iEcJX0/r
bSsm86F9uPa2G0uK8SRGcn3r1kH86sy1PMFWDNqqJB5NdlZ+dLU+zzNQRObb
2I48j5OUIszI3ZUwtx7A/dMx53MKiqCSezll7OgARMTeSr5JLyLzeVHdtqXZ
wUWQSIt6I9PRj/jTbilv3hTB4P68Awa2/Wh25ZjosCgi68WR/2h3Ch4VQaco
9fqS/f04VpDY6K9aBH6zCr/Yoj6cOVG7REGpiKxHPckvNp47XMTircTY5Ns+
/CfwQGJ4ZRGsG5al1CzqQ8OLi8ZXlhWR9e7d0Ndt15cWYe8guwsXqx6G/Ch8
+LC5EPzr95zOV+pFb76F1glW/K+eEiISP4ebCsGdNh21nRX/09P27poU7ZXv
xao86uj9r4VYYjOeyAzqQWvYtZrPXwrJ+n1+aMjf/2Mh7PsXGii79MBkQvxb
2MNCzBxbIhDF1gPXtnApqnEhiR9qinpWnLpRiPP7T7NnVHdjzV2mipF8Ie47
eVq66XRjuD2fy2N/IYlPvk8cXrRrG2s81xoyZ/i7cfk70yRsSSGaD3decUvs
wsOySzsSOAv/r79ir7fpiaECRNpobluu0YXmslMS15sKMHDikfy3ZV0YuVDA
jooCEl9p6Ojes44pgFNWjveENxMKq87XunwugEi4dcPAbSZsLaWEt3gXkPgt
jBbW1viwAC+NStZ/bmaA7Xb4UrG7BaBdPM6mVMRAdfKYscGVAhIfeo58VuWV
LYDf33RJH1EGlKpuxzrsLcDdiRfD+msZ4Do9ODG2qYDEn0Vmt/6c4yqAvmtU
tZc5HYs3qLnMn8qHZOTJfNdLdFB+1mYQg/kkvh3NmObgq87HWpUZ/fhmGhiu
GoYfM/PxUYpz2O4jjVVcW9Ky4/JJ/NzT/YZf5n0+Xqjxl4xJ0dC4wDz3uGU+
9jgV7DzZ2Qmhjm7f/qf5JD5PVlL7kaufj/aR0IXnXDuxybAnfOBIPsaj705V
iXQiSdjHQfJgPon/j/zuNwjdmQ9b1f33KP1UOOUfsLeYlw9G/RrdtdepIJbs
WfKcLZ/kF3EZxv2tv/PgmirjbK9IRefgqub+nDwc8zzFe+IUi68M935MY8X/
+EtDKN1NlRXv/mzglHO8A//0Uz3tFn7vXR0Qd/suPN8pD4YexfQH0234qXxA
bYNjHsmX9tsyTmvb5CFgs514THkb/G2Etp7SzEPepVNPzse3gr70dv0x9TyS
j/nQwh+wKebhQkhUa5ZKK/Q+bFVo+y8Pe3nN5tvdasGvt9oSO1fmkXzvvciZ
PS8X5OEPm9x/Z2opcM04uCu2NxfP2c1fLBWl4Kpffo9kZy7JJ+s3dn/IKcjF
+yOVyafPN0PxVklpSkwujon0vhumNGFmk3/K0g+5JF+Vv6Q+EmmdC8o+700x
DY1I0X4SQHuaC4/WIElpj0YYelKsLG/lkny4gH2nsNjhXAxZrnl4T7MBD8tF
9QWQi6arBgrdpxvwTz9+rl+w+uXCBrAt/HEtQTiX5N9TqymtCgty0TeI4eR5
9Sha63xXlC0XC7j2fFZprkPyYrvOL6M5JL+fnvhz5nJlDh7dmyfgkVaL9hCP
nwWZOfiycfAMt04t6r541+4NzSH1A5ldXaOeXjno0YviqXlYg37L1Jp+U9b1
TXThla3V+D2wcH31gxxSn5D4oR7TcDEHXZmBBy0kquGVzG54d18OzN0iDxhc
rMLvmDVhveI5pP6xu7rZYoFIDoYbhINPl1Yi3+N5wKbRbISeNzFsTipHfsiN
L78Gs0l9xUbn1X+LurJhUGL16euhciS5mBZ0h2QjdShbUjShBAKb+aMrWPE/
/Sbp6vpzKaw4Y2IyZGdcCf7p6ZPh1fbZISUYMy1Js3+djYg5n6sYTK7khX53
szGeYV1A3ViENnUfo3lG2aR+xHM9q/nN9Wzcu35xe1dCISpv+cN6TzaGVL9O
3vbOh4OBw55RyWxSr9pvknbymRBr/KKZmRsS8rDl6k5V1Z9ZUD7NX/BzUS7+
u7DhqeZIFqmHRZvdufm8IQvHBScDA2Oz8XVj+LehlCxM1zqmullkwY97qYd3
dBapt/mUS21we5OF3KMt5zouZuCJ5/btqqZZ6Pb++PV1XxpMO/ZHtxhnkXpe
VNpIA9/hLLC/VXsfqJqEjPM+afMPZeF/fJck2F/5lRGxPwteu9rMnZsT8c8/
MF3aWlGkF4/foXXP5NdmkXoin/lNaRFWPPbW+UDM6Xh4tFET5aYIdAio/xTP
icGTCNuwqJ8EqVeWXV+0mmuEQHicZ0ruqRgs/Rum2J9FoLf2Xfyym1F4Yi4a
syiJIPXQH6K37syEEhiWWP5x2dsI6BWNxW8LJLC8mL2noDUcfqc0hax9CCjN
4ZcwqE1tNu2wJ9Dzc2NUklcoPowzvnTYEBA12ze1+kwoWiXtP/CYEqQ+S+w1
ozQaERAU7y3anPYV63o1zvoYErhcsHJnyPuvWKUfUCt6hSD7G4witvMMqxLQ
/Wz8/Y7YF9xrSlsoeYbA3wdHHicEfwaDo4vN5BhB6sVB97yl+qUJaHl1t/5I
+wQJi7/Llu0gyP6EAxvYDSK3EXiw4WrEgYoPkH5icvDteoLUp3es/i35dwWB
VaFLi21+e8KHP3x15koCfZwSUhJ8HhBkG5R+w4r/6d9FRxTUnwgQCHsUpszH
6Yin2W658v8RSL5h5FqyyxZKmx8cPipOkHq66RWXYkVZAln9i5Vihc1xQHnX
p0LW+Nf5WZycb/QUQ+fEVv3UI/5Pn0+XOZDqSEBm8njLixktFO0K/qwYQkDA
56jSJeZB1KvdkbelEqTe/2//cIov5D+pf4t45XLm9DyVLOz8Rp12e2pCmPTH
DFrZZJH+wT8/a+nTwqqX3JbEDNdU9csD2RiMlu4v2WpNiJnT33NrZMNdnt/F
19ea9Meij+mKKaywJR615+scrMmGo3fb2MFiW+KX+dK3kro5+PF4i9T2Z/ak
38YXxuVv62xPxJwXPr3ycQ6OSHV2pqXZE19sxblPhOWQfkd3gO8Z/U2sfMrv
vv1px2vSz/vA80FrUe5rorRmWWuLfC7gdTsorf81YacZFrKXVT+u9at/tzV1
IP3BbRmU9qyDDsRL+bB7Pnx5KFIKv+j+3IH4PvXWPiswDzybtd9bJzmQfmOI
gxbn0A0H4mxdftNMUx44/66a7/fJgaiNSFAfNszH8zdDrtRAB9LPNO89+trs
rAOh7DnGJcvCD0bLn65Lf+FApKnrOZVJF2BkcPmyi6cdSL90i7LOkqp9DkT9
vZ4fGToFMOBZHssUdSAsd6n1WHAVoqW6VXRhxmvSjxV7V94Y7f2aeELL3+ch
UIhTLp3bvn15TRxqCtAXCS8k1+sfPv0vOezC21F7gn+By/TrV0WYX3xPYzTf
jog6HpY1kFiElSrZ/N3+dqT/PGP2rOjvVVviR+iiqBFqMQjNaj/OIzakn920
hoNdYcKaWH1GgMP1eQmEtG5v8n5hTfrjgq7se94+tSI+jv8n6XewFLX98gvk
g14RG6wM1kocLwMne7jq9Z6XpF+vb1PpUGnwkkh3eovDn8pw47i6K+/ll4SP
+Prbm8TLMcyVqr3vnDnZD2B9cmUFI86MWF/q9NH8VDlEPVc5Pg4zI6Tki0Y0
vcvJ/VtVU2sWOFKOqo8CPGGiz8n+A7bW7IYak2fE3QjXW3IbKqBOfKH82fyM
sFlwJi3EowJ2vwV3NR81IfsZ9D9RMy0VHxGLL0aejxKsBOX62ofLjz8khsu+
rP66rxI+O0P73ls8IPsjHJv3b7U+d5eIX3JE7cbyKuTce799hteA7K9gW8aV
5aJwndhyyfeAhEwV5lX2Tk5bXyMm3Or3fXlaRZ7Xf/0aA1kVDOkkNeJNXmLE
luoqqDy6cGyx1mb86/dYcWTBii9GxzCVHklz2FqN49/eBWe4aONfv8j8qMai
W9/00PAz36rwZjXiIgupy5bow3tHh9DykGoyn/zrT8nUXLZtcs992Ctqxph8
r8aauhP7DuU8wb/+lsBr0t9Vi55jrdEnn+iDNejeu3tBdLwZtMRqv9w2qoGH
h9/XS3yW+Ncvo8WTXvxqwSuU7J62vGBZgz31+6K5NV5haJkYQl1qyPz3D+dM
hyiIfYi3w4DMfVcNjlrsjeIPOcPhgH/9PL8U5Ip0zJyQt++r1c5TtWS+1Xtu
Vd9iUQvZ+W6Ttdxu+Nc/dPFq9DnXA+5ouXnMT5pZS/aHveoVNxj9VYvOVSfv
dCp74l9/ks3Ew6VEvyf+jk11We+uw/PJrSsLP3hjh9iRo3ev12Fqs9xVznRf
/Ot/Yh/q8NX87cu6brfFZ6M6rPJNGTNl88NbSRFrl1t1ZP34108VMjPsU/7B
H07n5/9Iqq/DR+/u7b68H3Ft1Y6INmodWY/+9Wv1S+Q5HW8IwDJeFacyuXqk
ZVV6DogHImzo9P17p+rJ+vav/8uG57iJnu8XeLGrOUz616M8+tACnnFW7MnT
KRReT9ZP57l0WI9FFylaBku/wlpmS+2rinoEcMyLzNT9Co8N54T1muqhMZcI
v5L9Z+zhUvnO3sH4I/d71crpeqj4SL9TagzGd4HF7ZXzGsh6XsOecTdrWwOk
r/VPnlYPBU3vSlmjSgMiHfi3HHwXhq8jBRbDGg0kXogiCnzsWbjb7tUPnsD6
MLI/zqUvp+NGaxgkbruYan9pIPGIssj+8w2RDVjBCPHyHo0k++3Ma53WGd6K
gq/LfP7GwQb8mDt30YhYfIBLlYXzz+2Qora6RmPf7LYRaoTchnbL7Wtj8Cz3
uLWYVCOJj66X0aouqTXii9RCtne7Ysn+wCjprIMG4nFI3ntSXSugETpiA2xE
cxzELO8u4U1sJPGYxJPQe85DjVhilxW32z4B9e8frsxf1oQPTf3TIuqJsBzh
bh7Z2UTivX/9jIdcbzsqeyRht/LLTyqWTUgemrj+jC0F+5e9P04NaCLx479+
y9d8sSLGpumgxTC3J/I0o7tORbvLMR1LkteI6a5oRl3Jbe7x6HR0MB0cXtxr
JvGqheqHyGPuzXhweXL7/vVZZD/psYgWvxz2bAQEZusP8FOw1Wrd396f2RA/
/ITw2EUh8fH7HKugG84UUCOP2CRm5KLGsWG78FsKNH2k70rW56K/29DKmU4h
8bflA6Htgota8FZDty41L5/snx1bvkO+bk0hNmcl3G172YKQU3+fU2ILse/+
Ied45xYS79+WM7gnl9CChG1nF99yLoKmVOk7+7EWFEWHBqwIKyb7e/kzHpv7
PyvBjxUz0dM7Wkn+IWTRE75NtxUKcrwvUr+W4uj8c723YlqxdaNw0cRyVt1Q
iP8kkddK8hvGD2QHVbTCKevoKuOgcrIfWYHrR8iSjRWwvDf1MWZvGzbox/1t
jKzEr9Al2+6qtJF8akeE0ADDtQ0+YmwX1sVWwXtd+6Gaj22Qnjips5VShcDu
V1u+NbWRfG2FF2Hqx9GOtYoHeJbRq9F+JuWNik47Fok2ao8V1oBbuj4h5lo7
mScVB++t1zZoh8am9NP7+mrIfusFwlOZZUtrsfx6zreZ/HYU5639r/pHLcJ2
Hn5e39ZO8s9vDhInP6zsgFvl4c96lXWwjDD6endTB/I93xVVsddj55yu1IEW
tbPb1GXq4TO5OtjrUgfJd2s/c5XTLDsgYXzP5eiyBogxTrHvy+2A3ZvV+81L
G6CdEqErXdtB8us9yvFHN7Z3oNoggOvvhkayH/23/cHCm9aNeNFu9ct3LRV+
/5l8fburCUelpBNGRagkn3dq0jM4u4eKneeNiReZTdhAF9+QokjFhocPZJhH
mzF+qlJr6AKV1AsY32e89R5SUb/glth8TQp2vLje3PSSCv9vyo94wihYFTxT
7eRGJfWIh/rFbb4fqCiihSYSt1vIfv5L96TFhO604p5mzZrIIirshH/HDr1s
BSeHFadBMZXUP5a2jXD+KKEi4uRqX0uXVngnC2avGKXCOZ1Xl+bbhtjY+OT1
01RSX0nySbt5Zlkn0uTOisjcbcfD85y/7NZ0Yk1iytFf0e1YXDYo17y9k9Rz
DKPvrDY/0omclyXhiSUd2CLXdozzfCcMF9u1CW1kjcOulDZytZPUi+ZPWymK
GnUi5IB6+asHVPL3EiLR5+mdXVRwWime3uDeiRM3P2Re/EtFm9aksr9HJ6lP
mZq1PU/26oTr2eWbNHg7EfU759aK5E54B9ZPcjl3IsIy4EZeduf/+dNGuszS
+k6MC9emSP3qRO+InFR/eyfW9r1IZ66lYbP4jlrDkU5SX3vhcavVl5MGc2Uh
RnkYDaHuEpzz+Wk4/icq6XYHDWfVw/I/bKCR+l2t0rOAoq00GK5ef2DLfjrU
w+xH2JRZ132XTbTLp0PnVEaJGSv+pw/e1nXWK2XFtx74n84vopO/Z9lo+21o
fQUde//6f35/g4bnc3o5A2nNjHanhzTUutxlXL/AQJH+2cPZpjRSn5T4hIMe
9jSIft6/6UUoA/c9D5qPe9OgaTVe+6CXgY7Swy1tQTRS/2yQEv6jn07DHZqm
7qNnTKhZuuZfz6bhtsrWZ3lvmAizV4lLraWR+qof7+aIM6x5W7ypk2la1IXn
Z3ebPPtFw8xE+QeLu12gczuuWz9DI/Xb6P1dmX0cdGzMFpfxfddF/r6IZ0OL
dtJAFxKLfAWnxejw7opZ3iDRDU/dkUDaFjqpF+flfE71k6RD5tSMka5yNx7/
KivYfIKOEmvhos7Mbpx8qLjwqiqd1KNXSgT5e+rRsT+V/5rcjh5sU1Q68NeI
jhcqGrLqKj1QpI33qT6nk3p3kOltjL+hQ6XTK92F1gPZ30plz7zp2JdqZiHE
0wvNq9+Ssj/TSX190vG9540oOozcW7jlH/ciIkFe0reEjvsT87tVBnqhM129
MqWcTur37U9ujZhW0fHpxEn6pQV95O/F8sZKDPsP9EH/aOOI4yjr+mLhPzf8
+mBdZrxL5Tud9At+HisL9v9Dxw2VF352xX3QnJdYemo5A+qvSuwTt/fjsa+m
tvl6BulHJMbJS62UZECbc33Moa+sz13e+wftYaBb4XataVY/Wr5Q5P2OMEi/
I1Z5pzznOQZ0J1afEjk3AD/dPgmHy6x9cnSwjPfVAEZP6io9vcUg/ZRk89VY
+YgB/lMcy3l6BuDJtaTL0pmBn+e9Vty/NIjUVWZx+W4M0q9JsuYvSH3LgCEn
5cBj00Hy930qRo63r6YMQlVDpMwjnoGwH1en3XmHsFj785bYJAbpD42+3RIb
nMGAbOquwVUyQ+A+tINzupYB7iXH3Fd8GcIij4x21VYG6UfZJIdNHh1g4NCh
eTOHlw8j0D28bXycgfc6D2NXywyjWtG08iI7k/S7DNT4h2/zM/Fycfx/jmXD
yKjnt1Ndw8QZo8wPg/3DMKXfNGrexCT9tOJc9jip3UwYVATerdg5gr7qHs9o
RSZaV/9INr82gorn5acrlJikXxcv1hRupcrE2u7UkTWmI+TvNZOkh51VokfA
L521OOMeE1dqBFbfzx9BVf1/bFseMEl/8AM1/VTdIyYmb83bOFAxAoG/Trm9
zkyIZ6/YDr5RPNmbXaLjxST9x71VCbJ8AUxYfElfNbZ/FLLCrjHekUxcMOF4
W6s9Ch7hI7UByUzS3ywZ29YbUcaEuXFwu2zQKH73+Dy8Xz7b5/LsG3fwKD59
ZLy2b2eSfqoGx8nvCn1MvK52Uz81MooT0hHcAb+YOFttXu+1fAxMhyelBWxd
pF/btt7mvRZ3Fw4MrfYTPTAGt7f6O5Zu7ELt9SguefMxlCk/MLMT6yL94CId
v4b+TV0Qky8YyLUZI3+/Swl3XtLnNYa3hnkpRgpdiHJd/6GjagwLeGf4fil2
kf5zlmuKg8/ZLkRU8bZY945BwpFI6dPtgoD+2YrJtePYpR/6ZdKwi/S37ZIa
Ep24G9DMmexjmNuI8Zvh991n6pF96aWaSFgjbjqt66y2rSfxwe9lhx4tsK5H
zoXur/cTG0j+U75v9G5Ddj3WX1opv3VNPeblZ7q2xdVjtb7xht3NtYj/VKP3
p5LFkyiRKd+barF+57u/X2sasPTPkZF37HXk/bfqrakdK60F9yuHwSNijRg5
e9TkJK0W6npV7nfEm3DY3V3JsqOWxBsN6tfOUNtrsamSmnrUuwna+9efDpqs
haWKxYUik2ZYm+ym3hGuI/HGPKds/ua/tbjz9J5/xUoKGiLwWkigDqOm2znc
MyjoDqhIPStUR+INhcvKwp8310GLGlti7NeCx7ycgpR9dTj8+ZuyJkcrNpuX
WFjdqSPxxcy68t52tTq0vzwtu1GkDWp9fo8TtepQPI/IXnO8DYGZvBlnWHz0
H774x091xEOLiYE2rOtuPx5pXYf5tgGnJyzaceRDuY/O6zr4b71FZ8S1Q73j
8OOrmXUk3hDO5I2ISGTxXcPNhFF8B8qfBvKcK6wDv04k97ZNVDzpuaTm01hH
4o21kq/ur2PUoa50ReszEyq4eGQF+DjqEbojq2R4hIpS3YqFBxfWk/jibF8R
NYqnHjpRpqlcKzpxeJmml5hwPbbN5dtO8v2v2uQYa8zCJYdCmH+TDtTjx3y9
RU+jO3Gb4rf4N4sP/8MfQaWBNhmH6pHkpufrkc6635PgHJvHrOsP24juU6Rh
1HDiG5PFj//hj5+BRwUj7OtxcIO1lIgzDVXLCkq+h7D4726D0nIqDXY7BbqT
kupJ/PHbvqGSt6we27dFrMm/SIfbheGPu1j8eGOoCVPhBR3ajcUm5isaSPxh
emxk5NOSBpS6jXsarmTgyO5lh9P5G9BWpfRBdTsDVE/TP8v2NJD4YljFlk/1
ZANenS/m6QhjgFKqrDGs14DJUg/rCFZe3erq3x5m0UDiiwI+qdfyrPjmqmZo
HWWC17VkQWd4Axyk/UY1a5h4ZXX36MvoBhJfvPs1ccWVFW/z2N3c2cYk+XJ/
tK2X6V8mPn/dH8c12gCvl4fuhNzvgj210nVscSOJN6gXArIY8xqRZaQ5vSOM
lXf6jl/+u70RE1o/+Kbnd+M3la039lAjiS/eeApOmmk0wvI/Gb4PFt1QOmxo
c+k6C+d/TGxS+NiN1VDIzAxtJPFFVMXNIyWBjVjKdqtufE8PhPb6aa2NZp3b
1Pw/4lo9OBHRve1GdSOJL0w+JwYf6W6Eyd0/jOH8Hlyzpt7n422CDrui5fo9
vdCLLw4uW9NE4gtOtVDRzyJNGHbykprS6cUrHyUKl1wT1szpRL0k/36x6F3/
wuxepGswGvmvN8EqPNBFdbgXabcvcfs9byLxx6oFliK37jehpiHwgAdvH95r
2kzIRzfB5tfQWKtZH7KZlSqnxptIvDHfMEzNqr0JZQU6RnUjfTi/6Na06EgT
FAlmPWNZP8nnk1retmXr9OPQ5EKPpKXNJP5I51Yc9ZdvRuTf1+es/fsR5Gan
ePVSM559U1PipPTjdFZGlodXM4k/slC0TtKjmfU8jf17tw1gqc6r1LDIZhjN
7f8Bku+7ORJHDOIH0CtgZXuzpRm1P5fXWKcOwCoj8oZcezOJT4I4Uh8bMZrB
HO8MphQMYEyFYTt2ngJpiUafS1KDqM/r4FJQbsGWyjHpxpuDJL/PYo8/0ak6
CI4fvq96brTg0Nx5GkTv9EFZrbstODi1v2kr636RMk5Lde+0kM8bF9LWPnOv
BeGn7z1XSRyAl4/eCYGHLfg4p/8M4MfLZ7cWP27BOdWcYeq9AQxPreCIZn3/
3/zcvpkK6D5oQXLARLzh6gHw7dq4v4D1+b/12bTp2Wsx4xbsUZBUUpw/AJP0
8ljuWy2QtfrE5qnXD6awr2WJYQu5/mtKn9l8uNmCtFGa2RetfnjFLRfw1GtB
zlw+6yfnGx8XuCM6qw//BRddeqndgqjjggrXo/pwY0zWM4QV/9sPgnc/0AlW
fFPT9FtOeB9mYnOTLA60wMmnWTxqcR9kq7xfjm1rIfdbws9jGgGsz1N/e42p
DPbCmuN0v/26FqyY1xs5frMXqe4Oj6TYW8j9Hr++QapPoAVt7KlyCtt7kTPW
PmM7TcFJy6ubDxX0YP6+qxVizRTyPH1Wsq52HKdA2PvhSe7bPTj8h/OTcTsF
wwGDe9xFe/BSYCFbUwyFPK8C+7jbl5ZR8MsrIqI5tBstQkNrDxIUWF2tvjz2
shu88yUj6h0oZD5oT5+eyQyk4K33tlctXV3o77/MO/CRgo1/9ohfbe+Cilz5
RKsehcw3Meu/rk68T0FYZ+LWR0e64Np23qrlFgUBO3xPlK/vwiL+0bI8OQqZ
37g3cK3NOEKBgLGwTMdXJp4FJL8Q2k3BZHjC5WfqTGj8XCN9n1WX/+XPh17y
7KKrKRCkTPEUL2SisMFumdLvZoSc4Nvl/JqB3R6Xn5YPNpP5eTHdft9s/LX2
Wt03Fm7/d358HV1O9bMzsPFXne77zGas/3a7eg+Ll2ww9edvSW8m68GUw2Gb
M6nNENks49uZzqoX6oFHQ9+x7jeH5+nwnOFeetq6Gc63+x59k6WD62dw7bhp
M1l/orZyb681bsbmoPc+K/ppWMjXVF6i3IzhA+fV3T/RcI+5pKoPzWR943n0
KzRoSzMOiStnZa2hYYvIX8f9G5px9sPw7jguGplvTobnmu4p7ATnK1nRF5zN
ZD3d+FRGxaezCVf/q6sMvdeJOk36btW6JlQlaJc7KXSiuiyizDaxiaznbB7Z
d14GNOGYb7N1SisVEeFrDWmmTXBZa/rd5jYVH23pNSfuNZF4wX7fuXWKN5vQ
fLBhU/IxKkLlFtnuUG4i//+Pf/n488s9q9aXdUBhaurlx82s7398uYjvegfm
pTdnLBdtIvFKU8CroMK1Tfg99CBKRKQD4aGH6na3NaL7DDv15rF2jNS1KkWx
6s0/fLR5jWW5NKu+cOm4N/y52obnK2gzue8bIb6Db6B+fRvuxYXbvVduJPGX
krqJ/8GzjTjx/vZ0IwufhXy+8slYuhGUmOjYo+4t6DzmTktkayTxnacip5/O
dAOuBFdwfe+lkPU2i2ZtmF7Nes+2A6JMFs4tGF6lnFfYDPua9fuosQ0knvQP
Pf7kVHwDrJg31SgZzbhqUB48T7kBa6zUOYxymxCs90i0dG8DiVf/f7z9/wDQ
MApB
    "], {{}, {}, 
     TagBox[
      TooltipBox[
       {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], 
        LineBox[CompressedData["
1:eJwl1kO0GAYQBdAf27Ya27aaxmls27btNLaTxmhj27Zt20nvP13c85azejOT
pGG7Sm2DBAQExAkaEBCYIiAYwQlBSEIRmjCEJRzhiUBEIhGZKEQlGtGJQUxi
ETtwBnGJR3wSkJBEJCYJSUnGbyQnBSlJRWrSkJZ0pCcDGclEZrKQlWxkJwc5
yUVu8pCXfOSnAAUpRGGKUJRiFKcEJfmdUvxBacpQlnKUpwIVqcSfVKYKValG
dWpQk1rUpg51qUd9GtCQRjSmCU1pRnNa0JJWtKYNbWlHezrQkU50pgtd6UZ3
etCTXvSmD33pR38GMJBBDGYIQxnGcEYwklGMZgxjGcd4JvAXE5nEZKYwlWlM
ZwYzmcVs5jCXecxnAQtZxGKWsJS/WcZyVrCSVaxmDWtZx3r+4V82sJFNbGYL
W9nGdnawk13sZg972cd+DnCQQxzmCEc5xnFOcJJTnOYMZznHeS5wkUtc5gpX
ucZ1bnCTW9zmDne5x30e8JBHPOYJT3nGc17wkle85g1vecd7PvCRT3zmC1/5
xnd+8JNfBJY/CEEJRnBCEJJQhCYMYQlHeCIQkUhEJgpRiUZ0YhCTWMQmDnGJ
R3wSkJBEJCYJSUnGbyQnBSlJRWrSkJZ0pCcDGclEZrKQlWxkJwc5yUVu8pCX
fOSnAAUpRGGKUJRiFKcEJfmdUvxBacpQlnKUpwIVqcSfVKYKValGdWpQk1rU
pg51qUd9GtCQRjSmCU1pRnNa0JJWtKYNgcu7He3pQEc60ZkudKUb3elBT3rR
mz70pR/9GcBABjGYIQxlGMMZwUhGMZoxjGUc45nAX0xkEpOZwlSmMZ0ZzGQW
s5nDXOYxnwUsZBGLWcJS/mYZy1nBSlaxmjWsZR3r+Yd/2cBGNrGZLWxlG9vZ
wU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nB
TW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFP
fhF4+IMQlGAEJwQhCUVowhCWcIQnAhGJRGSiEJVoRCcGMYlF7KD//xj/AQXy
A1c=
         "]]},
       RowBox[{
         RowBox[{
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.05`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.038`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.038`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.127`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.194`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.194`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.094`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.425`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.425`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2122`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.626`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.626`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2729`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"1.253`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"1.253`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2665`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"2.5`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"2.5`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.3317`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"3.74`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"3.74`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"]}], "\[Equal]", 
         FractionBox["1", "5"]}]],
      Annotation[#, (0.05 - 0.038 $CellContext`a1/(
          0.038 + $CellContext`a2))^2 + (0.127 - 0.194 $CellContext`a1/(
          0.194 + $CellContext`a2))^2 + (0.094 - 0.425 $CellContext`a1/(
          0.425 + $CellContext`a2))^2 + (0.2122 - 0.626 $CellContext`a1/(
          0.626 + $CellContext`a2))^2 + (0.2729 - 1.253 $CellContext`a1/(
          1.253 + $CellContext`a2))^2 + (0.2665 - 2.5 $CellContext`a1/(
          2.5 + $CellContext`a2))^2 + (0.3317 - 3.74 $CellContext`a1/(
          3.74 + $CellContext`a2))^2 == Rational[1, 5], "Tooltip"]& ], 
     TagBox[
      TooltipBox[
       {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], 
        LineBox[CompressedData["
1:eJwN09NiHQgAANHbpFpbdWrbtpnadpvatm3btm3btm3veTjzBxNSq1loWLhA
IPBMogQFAlGJRnRiEJNYhBCbOMQlHvFJQEISkZgkJCUZyUlBSlKRmjSkJR3p
yUBGMpGZLGQlG9nJQU5ykZs85CUf+SlAQQpRmCIUpRjFKUFJShFKacpQlnKU
pwIVqURlqlCValSnBjWpRW3qUJd61KcBDWlEY5rQlDCa0ZwWtKQVrWlDW9rR
ng50pBOd6UJXutGdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSjGcNYxjGe
CUxkEpOZwlSmMZ0ZzGQWs5nDXOYxnwUsZBGLWcJSlrGcFaxkFatZw1rWsZ4N
bGQTm9nCVraxnR3sZBe72cNe9rGfAxzkEIc5wlGOcZwTnOQUpznDWc5xngtc
5BKXucJVrnGdG9zkFre5w13ucZ8HPOQRj3nCU57xnBe85BWvecNb3vGeD3zk
E5/5wle+EQgOBMIRRDDhiUBEIhGZ7/ieH/iRn/iZX/iV3/idP/iTv/ibf/iX
/4hCVKIRnRjEJBYhxCYOcYlHfBKQkEQkJglJSUZyUpCSVKQmDWlJR3oykJFM
ZCYLWclGdnKQk1zkJg95yUd+ClCQQhSmCEUpRnFKUJJShFKaMpSlHOWpQEUq
UZkqVKUa1alBTWpRmzrUpR71aUBDGtGYJjQljGY0pwUtaUVr2tCWdrSnAx3p
RGe60JVudKcHPelFb/rQl370ZwADGcRghjCUYQxnBCMZxWjGMJZxjGcCE5nE
ZKYwlWlMZwYzmcVs5jCXecxnAQtZxGKWsJRlLGcFK1nFatawlnWsZwMb2cRm
trCVbWxnBzvZxW72sJd97OcABznEYY5wlGMc5wQnOcVpznCWc5znAhe5xGWu
cJVrXOcGN7nFbe5wl3vc5wEPecRjnvCUZzznBS95xWve8JZ3vOcDH/nEZ77w
lW8EwvufIIIJTwQiEonI/A8JNQWC
         "]]},
       RowBox[{
         RowBox[{
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.05`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.038`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.038`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.127`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.194`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.194`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.094`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.425`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.425`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2122`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.626`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.626`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2729`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"1.253`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"1.253`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2665`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"2.5`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"2.5`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.3317`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"3.74`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"3.74`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"]}], "\[Equal]", 
         FractionBox["1", "10"]}]],
      Annotation[#, (0.05 - 0.038 $CellContext`a1/(
          0.038 + $CellContext`a2))^2 + (0.127 - 0.194 $CellContext`a1/(
          0.194 + $CellContext`a2))^2 + (0.094 - 0.425 $CellContext`a1/(
          0.425 + $CellContext`a2))^2 + (0.2122 - 0.626 $CellContext`a1/(
          0.626 + $CellContext`a2))^2 + (0.2729 - 1.253 $CellContext`a1/(
          1.253 + $CellContext`a2))^2 + (0.2665 - 2.5 $CellContext`a1/(
          2.5 + $CellContext`a2))^2 + (0.3317 - 3.74 $CellContext`a1/(
          3.74 + $CellContext`a2))^2 == Rational[1, 10], "Tooltip"]& ], 
     TagBox[
      TooltipBox[
       {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], 
        LineBox[CompressedData["
1:eJwNw3dTyAEAANCfu/6RKCNJVqHska1QCJVVZioNlTKKhJCZKEVkb8rOqlBW
+mjeu3uxxVXZlYOCIOhzcEgQhDrEMIc6zHAjHO4IRzrKSEcb5RijHWuM4xzv
BCc6yVjjnOwUpxpvgtOc7gxnOsvZznGu85xvogtc6CIXu8SlLnO5SSa7wpWu
MsVUV7vGtaa5zvVuMN0MM93oJje7xa1mme02t7vDne5ytznuMdc8891rgYUW
Wew+Syy1zP2WW+EBD3rIw1Za5RGPWu0xazzuCU9a6ylPe8Y6z3rO817wopes
97INXvGqjTZ5zWZbvO4NW73pLdu87R3ves/7PvChj3zsE5/6zOe+8KXtdvjK
177xre987wc7/egnP/vFr3bZbY/f/O4Pe+3zp7/87R//2u8/B/wP7O5NiA==

         "]]},
       RowBox[{
         RowBox[{
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.05`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.038`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.038`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.127`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.194`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.194`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.094`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.425`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.425`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2122`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"0.626`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"0.626`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2729`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"1.253`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"1.253`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.2665`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"2.5`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"2.5`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"], "+", 
           SuperscriptBox[
            RowBox[{"(", 
              RowBox[{
                RowBox[{"0.3317`", "\[VeryThinSpace]"}], "-", 
                FractionBox[
                 RowBox[{"3.74`", " ", "a1"}], 
                 RowBox[{
                   RowBox[{"3.74`", "\[VeryThinSpace]"}], "+", "a2"}]]}], 
              ")"}], "2"]}], "\[Equal]", 
         FractionBox["1", "100"]}]],
      Annotation[#, (0.05 - 0.038 $CellContext`a1/(
          0.038 + $CellContext`a2))^2 + (0.127 - 0.194 $CellContext`a1/(
          0.194 + $CellContext`a2))^2 + (0.094 - 0.425 $CellContext`a1/(
          0.425 + $CellContext`a2))^2 + (0.2122 - 0.626 $CellContext`a1/(
          0.626 + $CellContext`a2))^2 + (0.2729 - 1.253 $CellContext`a1/(
          1.253 + $CellContext`a2))^2 + (0.2665 - 2.5 $CellContext`a1/(
          2.5 + $CellContext`a2))^2 + (0.3317 - 3.74 $CellContext`a1/(
          3.74 + $CellContext`a2))^2 == Rational[1, 100], 
       "Tooltip"]& ]}], {{}, {
     {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], 
      GeometricTransformationBox[
       TagBox[InsetBox["0", {0., 0.}],
        "InsetString"], {{{1., 1.}}, {{1., 1.}}}]}, {}}, {}}, {{}, {
     {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], 
      GeometricTransformationBox[
       TagBox[InsetBox["1", {0., 0.}],
        "InsetString"], {{{0.34712768041875597`, 0.7573360624524019}}, {{
       0.34712768041875597`, 0.7573360624524019}}}]}, {}}, {}}, {{}, {
     {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], 
      GeometricTransformationBox[
       TagBox[InsetBox["2", {0., 0.}],
        "InsetString"], {{{0.359757305738592, 0.5073743002167994}}, {{
       0.359757305738592, 0.5073743002167994}}}]}, {}}, {}}, {{}, {
     {RGBColor[1, 0, 0], AbsolutePointSize[6], AbsoluteThickness[1.6], 
      GeometricTransformationBox[
       TagBox[InsetBox["3", {0., 0.}],
        "InsetString"], {{{0.360901586873862, 0.5498017432081403}}, {{
       0.360901586873862, 0.5498017432081403}}}]}, {}}, {}}},
  AspectRatio->1,
  DisplayFunction->Identity,
  Frame->True,
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{"DefaultBoundaryStyle" -> Automatic},
  PlotRange->{{-0.2, 1.2}, {-0.05, 1.2}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.688719740254499*^9, 3.688719764552865*^9}, {
   3.6887198321677*^9, 3.688719839641364*^9}, 3.688719913829591*^9, 
   3.688719966898114*^9, {3.688720013760631*^9, 3.688720092563056*^9}, 
   3.688720163530504*^9, 3.688720199236238*^9, {3.6887202575232477`*^9, 
   3.688720360280107*^9}, 3.688720740073442*^9}],

Cell[BoxData["\<\"fig-gauss-newton.pdf\"\>"], "Output",
 CellChangeTimes->{{3.688719740254499*^9, 3.688719764552865*^9}, {
   3.6887198321677*^9, 3.688719839641364*^9}, 3.688719913829591*^9, 
   3.688719966898114*^9, {3.688720013760631*^9, 3.688720092563056*^9}, 
   3.688720163530504*^9, 3.688720199236238*^9, {3.6887202575232477`*^9, 
   3.688720360280107*^9}, 3.68872074040215*^9}]
}, Open  ]]
},
WindowSize->{958, 1179},
WindowMargins->{{0, Automatic}, {Automatic, 19}},
FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1188, 32, 99, "Input"],
Cell[1749, 54, 1296, 29, 209, "Input"],
Cell[3048, 85, 1056, 25, 99, "Input"],
Cell[CellGroupData[{
Cell[4129, 114, 178, 4, 32, "Input"],
Cell[4310, 120, 231, 5, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[4578, 130, 177, 4, 32, "Input"],
Cell[4758, 136, 136, 2, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[4931, 143, 540, 14, 32, "Input"],
Cell[5474, 159, 277, 6, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[5788, 170, 177, 4, 32, "Input"],
Cell[5968, 176, 166, 2, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[6171, 183, 487, 13, 32, "Input"],
Cell[6661, 198, 199, 5, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[6897, 208, 179, 4, 32, "Input"],
Cell[7079, 214, 138, 2, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[7254, 221, 485, 13, 32, "Input"],
Cell[7742, 236, 198, 5, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[7977, 246, 230, 5, 32, "Input"],
Cell[8210, 253, 162, 2, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[8409, 260, 424, 12, 32, "Input"],
Cell[8836, 274, 1690, 52, 89, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[10563, 331, 2939, 64, 715, "Input"],
Cell[13505, 397, 36559, 690, 368, "Output"],
Cell[50067, 1089, 384, 5, 32, "Output"]
}, Open  ]]
}
]
*)

(* End of internal cache information *)