(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 22574, 528] NotebookOptionsPosition[ 21461, 486] NotebookOutlinePosition[ 21798, 501] CellTagsIndexPosition[ 21755, 498] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"f", "[", RowBox[{"x_", ",", " ", "\[Epsilon]_"}], "]"}], " ", ":=", " ", RowBox[{"1", " ", "-", " ", RowBox[{"\[Epsilon]", "/", RowBox[{"(", RowBox[{ RowBox[{"x", "^", "2"}], " ", "+", " ", "\[Epsilon]"}], ")"}]}]}]}]], "Input", CellChangeTimes->{{3.685522664678437*^9, 3.68552268302462*^9}, { 3.685522742927903*^9, 3.6855227663596888`*^9}, {3.685522810599539*^9, 3.6855228111512327`*^9}, {3.6855228661831017`*^9, 3.6855228728946533`*^9}, { 3.685523930821341*^9, 3.6855239310050707`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"fDataGeneric7", " ", "=", " ", RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"f", "[", RowBox[{"x", ",", " ", RowBox[{"1", "/", "9"}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "3"}], ",", " ", RowBox[{"+", "4"}], ",", " ", RowBox[{"7", "/", "6"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.685522896958269*^9, 3.68552304398955*^9}, { 3.685523098901132*^9, 3.685523192412067*^9}, {3.685523871750024*^9, 3.68552387185387*^9}, {3.685523911277623*^9, 3.685523911461322*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"fDataSpecificA", " ", "=", " ", RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"f", "[", RowBox[{"x", ",", " ", RowBox[{"1", "/", "9"}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "3"}], ",", " ", "0", ",", " ", RowBox[{"3", "/", "2"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fDataSpecificB", " ", "=", " ", RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"f", "[", RowBox[{"x", ",", " ", RowBox[{"1", "/", "9"}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", "0", ",", " ", RowBox[{"+", "4"}], ",", " ", "2"}], "}"}]}], "\[IndentingNewLine]", "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.685523648623685*^9, 3.685523662839806*^9}, { 3.685523875534165*^9, 3.685523877101618*^9}, {3.685523914581822*^9, 3.685523916509296*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "[", RowBox[{"x", ",", " ", RowBox[{"1", "/", "9"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "5"}], ",", " ", RowBox[{"+", "4"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotRange", " ", "\[Rule]", " ", "All"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{"fDataGeneric7", ",", " ", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Black"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"Join", "[", RowBox[{"fDataSpecificA", ",", " ", "fDataSpecificB"}], "]"}], ",", " ", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.6855226872609577`*^9, 3.685522730751862*^9}, { 3.685522771991954*^9, 3.685522799287492*^9}, {3.685522861703998*^9, 3.685522862270746*^9}, {3.685523049709237*^9, 3.685523089260763*^9}, 3.685523196308086*^9, {3.685523674303648*^9, 3.6855236969673*^9}, { 3.685523880558132*^9, 3.685523880637704*^9}, {3.685523919717774*^9, 3.6855239198052998`*^9}}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV13k4Fd8bAPBrp3ATCamskYQoCV/vJKVSKm2ShIRkJxRKkYpIpSgUEZKK rFGdsVfWLFH2/eLeGfu+/Ob31zyfZ57zzrzvOe+ZM9LWLiaX2Wk02gAbjfb/ a0hg+sTKijCeg/2OwFtJqNv23Fx5SRjXqHI4n0t5XeOtMtN5YVzMNEc6nXK8 3MmozElhnPn9ZEIU5dyyOe1LQ8K4aIibozPlHh7DO+X1wniUD5/aBsp7Hnav CXsrjOddFDrv9o8ERqSoioSRMJ4YkfmB/peEqIZUkaXgtfj+ax3xv5pIMHFa XuyoFcLvizcZmtWTELykdc1UUgg/YmyWEV5DwqrCmBcvz63B9VPlPbp/krA7 JfBWniEdbzxw+XJfKQkL6lJyld8E8Bsm30bTvpOQ8T6YIaDDj5/1PWwUlkfC rX8eGcb1q/C9u2ea6j6RQF7KrJMy4sP5rMRrx96S4JN4bXK0nQfn9TaLXH5J glJb4JhpCw9uZbWM11JuE3lC4PU8+J/s7dXxlLHgj4yICh68qzs3UJ8y75XB NrVMHvxfo7xt0AsqP5VzZa5BPPgcZ1Q/WzRVry+6z0eVeHBvwQujPZEkTNRy aI16c+Mu0XnFu8JJWHPY40aHGzfOG/Fs9VwYCcqlPV+rrnLj33fzyX2lbJNf tPfdRW68XL2veC/lP/G3jKwNufE59a+fDz8kocBtwaJRlBv39n6vfDKEhADh ibv5OVx4hpIn73/BJAie7WkImODEFeqmztj5k8DBvCjYzOLEy8cii6Qpzwa0 H9zO4MTDfjVNtvqR0J3W8u1vGyf+wsEk+xjl7OWaFPVyTlx+/nvETl8SzicX +vZFc+KSBq9DJnxISJ2KlD2ox4m/SvCvNPAkYV+koQf9AQdeNTaULO9AwhuH LRMjdzjwYpdenp9XSGDfy+Xxw48DV2M4CjtSxlnF7rddOXBlzjDFTHsS9Az1 3CfOcuBid67CbjsStOZ3ujVv4cC1KhpxdRsSVCxlXF6XsuNtW+tmey+QEK7J Rvp+Z8cPDD5q9KXM4u9yNs1nx+tkAo8IU07/EucslM6Oi8rw0veak7BVWNw5 8Ck7vjvYry7KjAS5crqTnTU7zh898nvHWRLElZccVGnsuN2SC5/IcWo+lM6n KM6z4fu1csLij1Hzr/ilV3qSDa+Tn4pXpmwrd81chMGGj0+Ku+8zJuGzJOvo XC0bHmqT8/HqERIOC7Srlbxmw92sOPmTD5LgR3ydPgNseGev8tw3jIRHTAmN 43vY8NXtE9t1KL8Z9nE5pMGGey5fa88DEn4M7GToKLDhXqat7z7pUf3Zmf5X is6Gj1nu6ovWJeFjbezX4Q4arlVzW+eEFgldGX53bt6k4af9TomcUiWh6icj t9OHhj/SHNvzU4WEvJ5TI5gHDe/OWWn6j3K4yPZTHPY0vP/La2f57STo+rTL 3z9Bw//CiAChREI06P18LEfD/ZUrLW22UPtB7Mrmw89W0H/+vjOdkiR41zTf 5w9ZQWbbIrz0KRvTMsZqbq6g7ZsUTyZtIGHxkmXJSfsVtH7+irStBAmm24ps L+isoEiJ2Lnu9dT6L7jzwbV7GeW0ztZ8WUut32Yunajty0hdYrtjLw9V/4fx KrbSy2hO+uQzKcotmI7MrnXLyO8sd6s5Nwlqaa58DYtLyKbleW49J5W/X2uz YNUS2nnG4l4WGzVfMpmewQ5LKIoZYXxwgQCak/nHaymLqNhVuSmLRUC69EyC Qcwi4rS++Pk3kwDTP4+fCT9aRA8Ofb1BjBCQARV+mV6LaI5zskxumADLtepG rP2LSNHyuUjQAAF4Hg/Dpm8BvZWOmV3dScBt9izpU9ILCH26t1ejloAO5hWu iXULKOVl2G3dGgK0m6WGHq9aQB8dLrwwqCZg8n14Ru3EPEpz4zp0opIA+9MO YFQ+jy6Ym3qaVxBgnCp9Qf/qPIpTZxzVQgRsMI6IVsuZQ+mtwU0zHwjw0TL0 q303h4rktfe0pBPQKLN80fnVHLol8kQ97z0B4TNXFdLvzSEB3Z9tru8IYE8w zFUwm0MzT7yr6pMIYEwsN2xamUUnaU/HjGMIyHnhRBc4NIsaN6pziN4jYIB7 0D9fdxZpztu0pdwlQMzTknlJbRb1TuSk7A4iwM/45M+C9bOo444S14nbBBhw 7Am0H5hBO969d3TwJaDekXOmJHAGmai+O7fThYBRiOm48X0avaocnOU6TYDM B5GjWz5PI+vra1qOniTglER44e+306hOYEL86QkC8icDohXDppHoda7MdcYE 3Hpna/Ln/DT65usYNX+AAEFh9fIdc1Mo02LSTU+LgG0DPz4wNKaQf0ByY5AY AaVvsGfVClMoLgR98BYlwOJivt/nDVPo9oVnB+xECIhoSTHy45hCJ7bcjNVd Q8D0r+AhesMkyubIFEM8BBR/MpDf7T6JvqV5C2+cZoHpdTz2bsYEShBgbuWp Y8H4Lq0gh6QJVKKuGRpYzYLQ8U9Xj0VPIA/hzk8Lv1jw/eprbfGACSTBom/q LGOBrMXNlvRjE8g0+0egWyELCH1dkUZiHAW/5a8pfMuCIP78UJnt4yhktZZd jBcLapaNLjVLj6PdH8xmMj1YIDbWqf1QdBwNaVxNLnFlwYcmnuGplTE0pz6i 2eLAgj+vzh78WT+G5O+eHy+1YIHCjhlOV58x9KVg58Kb/Sz4dVrz5reSURRy RE5Jks4CkYO/Trvnj6ImL6zu1moWWGhbbFf4MIr4pzDudh4WTGwKbot4Poo6 /30fCKSxQJLRpG1zZRRdj7Gtvz3GBKcb12ZW0UdRDe1EuFo9EzbrXenOyCbQ tLXGbHcYEywURZM1YglkdNjk0tR9JsSuLXHIDSTQppfHUpYDmSA2KDlZaEIg RdXfxuPXmbA2oo67YpSFZMIXN5y/zATunt3K7cosNL1ryyNxbSYYVPWNXhRh IY3GEkP/nUwIzH2c07PARP1KpZxNKkyghY7oMX4x0fDxCj5LWSbMabw+MWHP RBMiSy+6VjOBeZfbm+/tCPIsLNFz+jcCSq5ZOg8fjiATiYqNbI0jcMXMkkb3 HEE+v/Dy4OoRGFApeCCybwQdO1/fbIuPQFezU+zm7mEUIPztzrW3I9Cwtalo 18Zh5H664E2K4wgUVCfyWz9joH39nZtFiWEwk32QGXSTgVY5BT3cODAM8z7O Z1LsGCjSsfmEcMcwaMvtiWfuYSDda+vlf1YPQ8GNGg3vjkH0TXNfoGk6ZYU5 s4cKg0g/Vr6q5TIVz79j5eOaQXQ6O+jfB3MqXn1J0u+5AXSkUnjK6SQV72Y4 IVo1gLYWTth8xKjxjbJ3ElwH0GrbucStEpRvG7/L/dKPHGoY3fU/hsCsWcP4 75t+lMou/lvn+xDMK4tPLIT2o+HJ5rrQrCHQbunV3WvRjzRJDUZn3BAUqFyv q2TvR1ND1U+Pu1FuTZzpMupDyXfeca4Vprxrbv/qjh4Uck6e0QwM2KrU2hZf 0YO2Kmocrd/BgOhN3zw0M3uQsF5DSposA7x4bidYBfUg2Zb5sgluBmj85V3K U+pB+Y7rlNsrByHdTyzbxrsbBTW/rc8xHoQNbvOH5y270Q1tg0QrvUEIudzW /ehwNxJ781Wqf/sg2BvH0ws3dqOq3gpXN/5BkJNSvCpU2oWUSbfzTysGIK5k t8z3NV3I59iA5YtdAyDmquGeMtmJStQMA0JlBmDadOZ1fUUnWn5WvdWYPgBZ SrcWFJ07kX1S6Z59jH5Qrgn/3FTQgaJmWjk6o/ph47qPUqqn2lHXXvY7bqw+ oCUyF7uD/yG/E2x9Mc69oB5VcBrO/ENq11qGb5j0gk3o/Y+x8v/Q86InAms0 e+Gnh5zl2dK/qNF87RWzxR54YmBeUsX2F5XKFptY3u0BuYHKB3l+zchVc2xD 8f1uKtSLHpEjzWi1UmdbmV033K+x03Hf0IyY9tH7fQ50AyuXg6Vc8Ac58in+ GWTvhtx7OsffzDShP4YKA8PeXXBo63vRMPdGtHbCW6ksqQP8Nl53Gd7biLRn 0919TDvgo5DhD0OhRhQ9w1cdvLoD1s73XGfPaEDK6/bT81zaoe2XRLs3qx4l 68cb+Km1gbNjSKK1/W/kVxP5OjvyL8hdbLB0/VqFJss6QnJnG4A+dfxpmlUV ChqjW/5IaID5kJqyPu4qFKHLxxVzuAHqcn8qnTtRifBVxRuiYurBTxCf3Dvw E5k2Ha0P1PkNDd/S7wuvqUAMYfV72FgVfD+pVHg0pxxFVtA2iOytgtShFNY9 s3IkFXFURPtxJdxcl2iymFSGIgvlryD1X6Dk9EKyf08pKnVevBfpVwF3JIMz ci8VoR8zB3SQTjE4feboHeUtQl9Prfqm+6IITA/eXrftI46yBc6r683iYM6Y ndQbQ8i++f6fA14IsqP676/Z8A3Fp3jWFH4ogJCSLlbQ5a+IMfXhOH73C1iS rSZznwrRrLXLZhXrfOA3rJfsMShAUjf32c0p5sKl6e8ZWc55KGB4X+SuiUzQ kilYp/glF2HEYJzDRAYIGufciOXIRaNnHTT/jX+CgrfvDe5GZyOakXWtgGo6 RPxOfjfXk4Wk5u4YDlxMA9ulBEHn7VkIe/pN9ENcKqw9Hd1ypjgTjQoeXGO0 9y0wAp7+V8mfiTLWV07gKYnwPT38DZzNQBGfks2tJd9AI++qv8dbPiBsuWU0 wfoVBFjSEvc4paP4qF+rzifFgHL+tKMM+3tE8/8uksr5AoLsemmT21IRXp8c wyMbCXXiSrLOb5IRbX34H5Wsx7CxynU/Q+wtCjjhHSPbEA4ON/PsrB8lIqz2 aotXWAjkqi0/aON6gwKGjjwyfx4M7L0G6Wf84hHtVWfKD+IOvFJaH5fQH4cC 5BIdtVVvgdajpO5n9S9RwG7VoZOy1+H3xI4tISgKBTwPDz1b6AEOpsjhZnok omU00XeMOQHHtyOf3F88RrQzl2zu5l8GrX3Zg9X8YYgWsH2DXdwFuMpf65o7 EIxoQQeVex1MIK5paO4VHoBoi8s7Hubvg9f/8XHTd11DNOy70504VeCJ91fD f1tR48OeHDjJDTjTPN1LwghotCM3jRr+6tmJpgcvWLgADZMUEzgiDbU+Upnp C75Ak3oscS9IB3Z5XKtlyQYBjXlso+CtI8CRZnaA63AI0M5Inm/TNwX70dcW gloRQEt9EmPiaQ21oWslJIyeAk0mObNT1AE0Fe42yVs8B9ri3h0vAt0grngm YofbCwgoPe4cmuAFnBYOR/4LigVaUM0Yp40fOMy18RyKeg20TOHnNTa3wf5X ipXS6QTAQl0LrRlBIClmBRkdbyBglxF7f+F9qLsssVHTPglo97Pcr3Q8hMCs hvnCsbeAn/pkeD0lAoaND+RWcL4DS3qXVV/IM4iLXXl6NDwNLHdsPdO3MxqO D+e7NaxPB9pZdYmXHDGQd3fb9k6lT4BxhdgYBMdDzhX3u+pmGRChZjyXIfMG Hq055jm1KROkxF1ExOsSQd+C18Q39TNESDQlnTdPAUmufkzPKQssP2x96aL9 DqbfF6myqWcDrdvdd1zhPbybuyFwrzAHLAuc1eJVP8GaZ6wfT2ryQS2RNtAx ngXDOr/yTj/9Aox48sk38Rwo7UlOFjMtgIziiIDYA7ngrWYZ9Kq7EBjKngte mfnQUVkPaZPfIaPcK/pC2Tc4w2beahlWDKP5+g/2mZVC8N/mkGlWMXDWFl2X EiiDvMyT2g+NS+B+5fpKzaIyELM2epFHL4XZ10trMpQr4F+x9lnBJ2UQ7aFw 4rjgL7AIEm8ofP4D+jj2Lr8dqgU7nuZfovE1UCUoODVf3ATRnSY30mm1UFPr 8/TCxj/wI69mq75VLURcSG455f0H1u28VKopVAfuvaaeo1ubwavPTNa6vg6+ Pvyz1e1BC2jtP9ydf6oeGDwuE10qrfCVe+sF23NN4PnU05efowuEJL083YKb QM36x+c0uS6w3VES6pfVBEMqUy/ZDnTBGvMLBU8E/kB2lt3nv/e64HLm4/Wo 6A8IDvC37eLtBkHz+d/rlVrgCPNubsVCN1xyMxySOdsCAZmt5znEeyA/OJKm EtQCm4TTeRd29YB1poqqQUcLSD5v79vs0gO53Jceuj75C+nRb+FwRw9czKw8 8HP+HziyhDbdzOiF7HIxi0aFVmjZzC2b9rMXVrVdvtZ5qhUyy/1Z0T3UfW5a 0tTHVjjBLVaAC/cBr/lONplLbSAmuSrzgEcfZHDHFd6obAcH0fu/Xij0A5vK bjFR4y4wGBG7Xms/AOxZpuF3bLvg06ilWYMfZa0bnOTNLsheKnyQEEFZ/9to xacuiJXx2/Y6bwA4z+z7eV2oGw50kumqHIPAe/PYjfbGbqCXdHjLPqbM4TZ6 iNUNnuOXjq95Mwh895/Y5nL1gN+JI6frPg/CqidNJo80e+Clx/xoZcMg8Cef 37Y3ugfmpkYCkDAD1tTYtSWd7wWfB6EnOR9SPvnARMizF3RoseUWLxkg1JL2 w/9hL/jWL3BEpjJgbQ8r+8y3XjASeBodUcoAkWmPMN7NfZBZvLDSPs8AsU0B eo49fTBk23FLzmoIpJyj4zWuDEAaf+zcrOgwoHu3NWkBA3BOuSmhUGoYLBIc qqqeU+ea5tvzdkrDENuoO3u5dAAWLz76fPO/YViv030sevMg4OsOVqZZD4Mg r9LKYtMg5NS116i+G4YP0sLPfjIHQZ1D7ndq5jAc0VlUes7BgHJ+x1X0gmEI ca45o0qd88Rnd7MSfw0Dd5P7Rysqz9xRwe7J4WFYSii8UK4/BP+UyvgvKI5A bGHSxJNzQ5Deo7sJVx0B7aawBxddh2C0o/aE8O4R8OG1zJmlzp1hL5wrQvaP wKQzp8C2uSHQX73LodhqBJg6R78++kTFDfAnvaJG4F9Th8Q5SSb81ZVYPzY7 AmnHK79/VmdCe/PBr0HLI3CjMs+a/xATMsQMLAU4mSBeFJGGrjGpPgwXWhZk gmm6vvaWWiYMpo2zW8oxoflO8rmJ2yx4qqnnrXuUCY2qztFhgwQcPyuyYTGK CUlpZrqDS9R/Y/Xp1RdjmeApb9iFiZDAloG3fYlngvAGKcVJjIQMr9MuZ98x wYS7Ps/sJQk4XnthZwET7ImXI0+3jEIWRy3/3X/Uc0uXV1n9HYUiAcnrU+tY cOOWusnt/lEoUe0dLBJnAb+27YuEsVFIVytQvreRBeqfqhV6+MZg6Pt7/0U5 Ftx8EWtwSXsMXnGcXxepwQJRZ+2bl2PG4KbF4QN3j7HAYL3X2JUL4+AjbcLR cocFzb/faYVcGQdbe70j7XdZ4PCw/VbatXEI3FwM7fdZEMG2X3AkbBzmg/jO VoezoHVEeJvj93GwiMp94vKSBe54po3z5gmY7XuwuzyDBfFXWM3u3RNQUsU1 y/WPBXcITtUS5gQ0KcjKH2ljgY2HZLDw7AT0JaVVh3ewQNHfaGe24CQw30h/ 4OtlQWbEu4gpnUkgNCTt/oywoDjv8iGf55Ow8Ko99vciC3q5Ogr8jaaA73p4 1A1JAspDpoRqzkyBk1JimvkmAlLpAlc2WU+Bt4fQko4UAY7iuuuRzxTYb+72 HJclYFL5pQcteQpGf88CbCOA89QZ5UDaNHj+OBFjvoeALW9q4u7nTMNmcYv+ 8pMEaCTJOlQVTYOt/MMF39MEYMk+mmtqpsHjHccdlbMEmKXJ1EYNTIP1aP1E qBkB4Z+9aCnrZ0An23NS0YqAmeJNl8quz0DsUe0I0omAH73Oiux6syBZba9e c5eApv6Syf2HZ+E2UlXXvkdAz6BY0YMz1LvVNGxPuk/A4kjxOSGXWdDLSVBw DyVAbVI0VCp+Fhwt2R9ORxDwghOx9NjnQIHzoXpSDAEO8vQs3/I5eFIjr5P2 iarPmOEj8vcc/Gl4LfsjgwCZ7wFXL7XPwf6tRm/7MgloPTMuazQ5B189r/qL ZxNw5H5TpITMPMBDQ9w9nwCVkRivL/7zYF9h7t+PEzCeoag9s3MB7Dl7Lvyr I8DY30r0KrYAYRyKEbW/CUg79HK8w2gBwnnV4krqCbjUs/p9ufUC7HmWY5za SECjMLnhecQCfEyW3mvTQkCuV87STuYCxFU19qV0EuCrq1/knrgI23zTQ6+w CHD94if34eMiJN6VUN1DEGCjmXdv8MsiMALpwzwk9Xw1ZWPzukW4l9j//s0o AVJyoq37lxYhNmhTUPUElf/q4Umxs0vgmTP2dm6OgLWtjxXRqmUouBunkc1F Ao9pVejcumV4JsitcYWbhMVGblJDehm6WI6uG3lI6K/xzUndvQxZnr7vAnlJ yC++rP/EZhlm3CTVDVeTYJG2x/zy92VwtAoJfL+GhLTr3Y9Wu6+AfnTnEilB wi+Pc/Z7bq7AyPsx0dgNJAw5/cbsQlZA5dwOV0NJEhSti8aK36xAIs/rwZiN JKQcTjh5o2EFnK1CeXWlSKgPywj1lKBhE7vWrJyTJ6HOwvVYry8NS7X4WSSs SkLX+XSd+ds07O7uXR3vKI+aMhSE7tMwXPa6GaiR1PfFkgaRNGw0TcDLfgcJ xwyPZ75Mp2GvnLNOZGmQUKOqJmzSTsPYRy+ZKmuRUEkb/YPrsWHTOdUGmdS+ xd67sdLFgA0TEx9UU95LgnaZEdp0mA3D9selJFNOfZCS4neaDeO+qLr7pT4J wWsv+mg5smFTyn2ErwEJ+nI14hkv2DCRb37/KR0kocAw3fz1JBumsfRrreYx any4fY9/GjvmtN5kQt6chGuqux4nZ7BjVUGQ94iyfh0bVpvLjqWTz9fNUW4T iomTKmHHXkncS/x1gcrvWbVpSSs7FqliuvbKRRK8Y9RreQU4MB72J6lPrUk4 kLpY+NSFAzu4+fLMG3sS+ooinr3byYm9TtvGKPIgYUm7416ONifmhU/tE/Ek QTR7240ijBPbWpZ11pbyweRyi79HODEuwjSV7xoJH0IWFfguc2IcY4dnjniR 4HXSvsD+GSemGWv/pNyHBL5+6FSY5sSeul9tvedPggovqZicx4W9t448ZRJM goutiuzhb1yYdKjS7QjKGaVOG4liLszZ2fpmDeUdt5lCmjVc2Cdvr5FD90jY OT80X9bHhTF4zJ/p3afqz+yr6hfixiQS8eObQ6j86v65yjtyY3rZXq9RGAkX o8vzk6R4sMEF0a9BkSRo5iQ5FW/hwYbU1uJfKfPX35HpUubBLo7eip6knL8a Hm7Yw4Oxu9tWXHpGgtCtvItPTvBgnNnaMthzEkoup3IH3OHBYlKkx0ejSFDQ CDl1vo8Ha9vZJrUzhgSy+uioUCovZtpgY3AogQRm7cYPFR94sfJdZY89KQ// Zl3xz+LFvNOiil5THmgK62V858UKvi79mKLc0V79BzXxYlFPs6/HvyGhinX0 mxMHH+aQH3t9NJHqJwHjkJ8WfJhAx2yibzIJtkeN5W6vW4UNfFyu3feehJHO IK0i39XYGqn0R9FZVH+svzrpQhPAvKwDtpsUkhDz4le61FVBrOagbszdIhKO N2Rv9XQTxKok4cJrytwCr5MrvAUxvMWK/oWye4BHvHOQIHZxSduASfmwnWTk 1zhBbL4iaexEMQnzO519TesEsYRt7rYSJSSY1gkdjthFxwa8dQTjS0kQXLVY 3qtDx271ezDzKJfuG9i3W5+OuZSd/FpLWS2v4L8OYzr2M2X3jhXKPK8u7VC2 p2Ptq2pcL5SRkHs1R+zHSzqGabOdWF9OguPb1882JNCxw3YzxiqUZTofrHVJ oWNxWwxhP+VwEwt+0Ww6ts9u04w75ct7eGg21XRMaPRPaTVlCY8xv7wGOlY0 V3qmj3Jdeuvcqn907EyMVes8ZV2pjInMATqmYlP3VaGChPFzL125WHRs+nie uB7l1KdBLNMJOvbD0uvKKcoW1c4O6XN0TLp9fboDZRGec4MrK3TsBldydwDl /wF7ZZ/N "]]}}, {{}, {{}, {GrayLevel[0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{{-3., 0.9878048780487805}, {-1.8333333333333333`, 0.968}, {-0.6666666666666666, 0.8}, {0.5, 0.6923076923076923}, { 1.6666666666666667`, 0.9615384615384616}, {2.8333333333333335`, 0.9863481228668942}, {4., 0.993103448275862}}]}, {}}, {}}, {{}, {{}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[{{-3., 0.9878048780487805}, {-1.5, 0.9529411764705882}, { 0., 0.}, {0., 0.}, {2., 0.972972972972973}, {4., 0.993103448275862}}]}, {}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.685522731198388*^9, 3.6855228125078278`*^9}, { 3.685522862545142*^9, 3.685522874429077*^9}, {3.685523073648672*^9, 3.685523196670637*^9}, 3.685523697644681*^9, 3.685523881702211*^9, { 3.685523920312171*^9, 3.6855239436288424`*^9}, 3.685684006861432*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"fInt", " ", "=", " ", RowBox[{"Integrate", "[", RowBox[{ RowBox[{"f", "[", RowBox[{"x", ",", " ", RowBox[{"1", "/", "4"}]}], "]"}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "3"}], ",", " ", RowBox[{"+", "4"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"N", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.685523491048286*^9, 3.6855235220325212`*^9}, { 3.685523889437829*^9, 3.68552388953345*^9}}], Cell[BoxData[ RowBox[{"7", "-", FractionBox[ RowBox[{"ArcTan", "[", "6", "]"}], "2"], "-", FractionBox[ RowBox[{"ArcTan", "[", "8", "]"}], "2"]}]], "Output", CellChangeTimes->{{3.685523511725808*^9, 3.685523522484685*^9}, 3.68552389016968*^9, 3.685523946035872*^9, 3.6856840072559958`*^9}], Cell[BoxData["5.573955509185797`"], "Output", CellChangeTimes->{{3.685523511725808*^9, 3.685523522484685*^9}, 3.68552389016968*^9, 3.685523946035872*^9, 3.685684007257372*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Omega]3", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ "1", ",", " ", "4", ",", " ", "2", ",", " ", "4", ",", " ", "2", ",", " ", "4", ",", " ", "1"}], "}"}], " ", "/", " ", "6"}], " ", "/", " ", "3"}]}], ";"}], "\n", RowBox[{"fIntNC3", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{"\[Omega]3", "[", RowBox[{"[", "k", "]"}], "]"}], " ", "*", " ", RowBox[{"fDataGeneric7", "[", RowBox[{"[", RowBox[{"k", ",", " ", "2"}], "]"}], "]"}]}], ",", " ", RowBox[{"{", RowBox[{"k", ",", " ", "1", ",", " ", "7"}], "}"}]}], "]"}], " ", "*", " ", RowBox[{"(", RowBox[{"4", " ", "-", " ", RowBox[{"(", RowBox[{"-", "3"}], ")"}]}], ")"}]}], " ", "//", " ", "N"}]}]}], "Input", CellChangeTimes->{{3.685523370174515*^9, 3.685523405937571*^9}, { 3.685523787278356*^9, 3.68552381490996*^9}, 3.6855238975432453`*^9}], Cell[BoxData["6.2574588650388545`"], "Output", CellChangeTimes->{{3.685523481304573*^9, 3.685523485045783*^9}, 3.685523531318762*^9, {3.685523804103651*^9, 3.685523819289815*^9}, 3.6855238991612787`*^9, 3.685523947746043*^9, 3.685684007377079*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"fIntNC3", " ", "-", " ", "fInt"}], ")"}], " ", "/", " ", "fInt"}]], "Input", CellChangeTimes->{{3.685523996844348*^9, 3.685523998276311*^9}}], Cell[BoxData["0.12262447282305239`"], "Output", CellChangeTimes->{3.685523998952448*^9, 3.68568400774715*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Omega]AB", " ", "=", " ", RowBox[{ RowBox[{"{", RowBox[{"1", ",", " ", "4", ",", " ", "1"}], "}"}], " ", "/", " ", "6"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"fIntA", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{"\[Omega]AB", "[", RowBox[{"[", "k", "]"}], "]"}], " ", RowBox[{"fDataSpecificA", "[", RowBox[{"[", RowBox[{"k", ",", " ", "2"}], "]"}], "]"}]}], ",", " ", RowBox[{"{", RowBox[{"k", ",", " ", "1", ",", " ", "3"}], "}"}]}], "]"}], " ", "*", " ", "3"}], " ", "//", " ", "N"}]}], "\[IndentingNewLine]", RowBox[{"fIntB", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{"\[Omega]AB", "[", RowBox[{"[", "k", "]"}], "]"}], " ", RowBox[{"fDataSpecificB", "[", RowBox[{"[", RowBox[{"k", ",", " ", "2"}], "]"}], "]"}]}], ",", " ", RowBox[{"{", RowBox[{"k", ",", " ", "1", ",", " ", "3"}], "}"}]}], "]"}], " ", "*", " ", "4"}], " ", "//", " ", "N"}]}], "\[IndentingNewLine]", RowBox[{"fIntAB", " ", "=", " ", RowBox[{"fIntA", " ", "+", " ", "fIntB"}]}]}], "Input", CellChangeTimes->{{3.685523706930175*^9, 3.685523783583617*^9}, { 3.685523822798047*^9, 3.685523856469739*^9}}], Cell[BoxData["2.399784791965567`"], "Output", CellChangeTimes->{ 3.685523772217701*^9, {3.685523833015215*^9, 3.6855238572254143`*^9}, 3.685523902925892*^9, 3.6855239501498938`*^9, 3.685684007800902*^9}], Cell[BoxData["3.256663560111836`"], "Output", CellChangeTimes->{ 3.685523772217701*^9, {3.685523833015215*^9, 3.6855238572254143`*^9}, 3.685523902925892*^9, 3.6855239501498938`*^9, 3.685684007804133*^9}], Cell[BoxData["5.656448352077403`"], "Output", CellChangeTimes->{ 3.685523772217701*^9, {3.685523833015215*^9, 3.6855238572254143`*^9}, 3.685523902925892*^9, 3.6855239501498938`*^9, 3.685684007804735*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"fIntAB", " ", "-", " ", "fInt"}], ")"}], " ", "/", " ", "fInt"}]], "Input", CellChangeTimes->{{3.68552397854193*^9, 3.685523989548272*^9}}], Cell[BoxData["0.014799695253336416`"], "Output", CellChangeTimes->{3.685523989813211*^9, 3.6856840079160843`*^9}] }, Open ]] }, WindowSize->{1054, 1179}, WindowMargins->{{0, Automatic}, {Automatic, 19}}, FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 565, 13, 32, "Input"], Cell[1126, 35, 750, 19, 99, "Input"], Cell[1879, 56, 1181, 32, 187, "Input"], Cell[CellGroupData[{ Cell[3085, 92, 1343, 29, 209, "Input"], Cell[4431, 123, 11885, 205, 241, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16353, 333, 503, 13, 55, "Input"], Cell[16859, 348, 307, 7, 49, "Output"], Cell[17169, 357, 180, 2, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17386, 364, 1041, 30, 55, "Input"], Cell[18430, 396, 256, 3, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18723, 404, 197, 5, 32, "Input"], Cell[18923, 411, 110, 1, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19070, 417, 1387, 38, 99, "Input"], Cell[20460, 457, 210, 3, 32, "Output"], Cell[20673, 462, 210, 3, 32, "Output"], Cell[20886, 467, 210, 3, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21133, 475, 195, 5, 32, "Input"], Cell[21331, 482, 114, 1, 32, "Output"] }, Open ]] } ] *) (* End of internal cache information *)