Newer
Older
Lecture_repo / Lectures_my / NumMet / 2016 / Lecture7 / subdivision.nb
@Danny van Dyk Danny van Dyk on 13 Nov 2016 22 KB Added final lecture 7
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 10.3' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[     22574,        528]
NotebookOptionsPosition[     21461,        486]
NotebookOutlinePosition[     21798,        501]
CellTagsIndexPosition[     21755,        498]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{
  RowBox[{"f", "[", 
   RowBox[{"x_", ",", " ", "\[Epsilon]_"}], "]"}], " ", ":=", " ", 
  RowBox[{"1", " ", "-", " ", 
   RowBox[{"\[Epsilon]", "/", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"x", "^", "2"}], " ", "+", " ", "\[Epsilon]"}], 
     ")"}]}]}]}]], "Input",
 CellChangeTimes->{{3.685522664678437*^9, 3.68552268302462*^9}, {
  3.685522742927903*^9, 3.6855227663596888`*^9}, {3.685522810599539*^9, 
  3.6855228111512327`*^9}, {3.6855228661831017`*^9, 3.6855228728946533`*^9}, {
  3.685523930821341*^9, 3.6855239310050707`*^9}}],

Cell[BoxData[
 RowBox[{
  RowBox[{"fDataGeneric7", " ", "=", " ", 
   RowBox[{"Table", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"f", "[", 
        RowBox[{"x", ",", " ", 
         RowBox[{"1", "/", "9"}]}], "]"}]}], "}"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"-", "3"}], ",", " ", 
       RowBox[{"+", "4"}], ",", " ", 
       RowBox[{"7", "/", "6"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.685522896958269*^9, 3.68552304398955*^9}, {
  3.685523098901132*^9, 3.685523192412067*^9}, {3.685523871750024*^9, 
  3.68552387185387*^9}, {3.685523911277623*^9, 3.685523911461322*^9}}],

Cell[BoxData[{
 RowBox[{
  RowBox[{"fDataSpecificA", " ", "=", " ", 
   RowBox[{"Table", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"f", "[", 
        RowBox[{"x", ",", " ", 
         RowBox[{"1", "/", "9"}]}], "]"}]}], "}"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"-", "3"}], ",", " ", "0", ",", " ", 
       RowBox[{"3", "/", "2"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"fDataSpecificB", " ", "=", " ", 
   RowBox[{"Table", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"f", "[", 
        RowBox[{"x", ",", " ", 
         RowBox[{"1", "/", "9"}]}], "]"}]}], "}"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", "0", ",", " ", 
       RowBox[{"+", "4"}], ",", " ", "2"}], "}"}]}], "\[IndentingNewLine]", 
    "]"}]}], ";"}]}], "Input",
 CellChangeTimes->{{3.685523648623685*^9, 3.685523662839806*^9}, {
  3.685523875534165*^9, 3.685523877101618*^9}, {3.685523914581822*^9, 
  3.685523916509296*^9}}],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"Plot", "[", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"f", "[", 
      RowBox[{"x", ",", " ", 
       RowBox[{"1", "/", "9"}]}], "]"}], ",", "\[IndentingNewLine]", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"-", "5"}], ",", " ", 
       RowBox[{"+", "4"}]}], "}"}], ",", "\[IndentingNewLine]", 
     RowBox[{"PlotRange", " ", "\[Rule]", " ", "All"}]}], 
    "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", 
    RowBox[{"fDataGeneric7", ",", " ", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Black"}]}], "]"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", 
    RowBox[{
     RowBox[{"Join", "[", 
      RowBox[{"fDataSpecificA", ",", " ", "fDataSpecificB"}], "]"}], ",", " ", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.6855226872609577`*^9, 3.685522730751862*^9}, {
   3.685522771991954*^9, 3.685522799287492*^9}, {3.685522861703998*^9, 
   3.685522862270746*^9}, {3.685523049709237*^9, 3.685523089260763*^9}, 
   3.685523196308086*^9, {3.685523674303648*^9, 3.6855236969673*^9}, {
   3.685523880558132*^9, 3.685523880637704*^9}, {3.685523919717774*^9, 
   3.6855239198052998`*^9}}],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
     1.], LineBox[CompressedData["
1:eJwV13k4Fd8bAPBrp3ATCamskYQoCV/vJKVSKm2ShIRkJxRKkYpIpSgUEZKK
rFGdsVfWLFH2/eLeGfu+/Ob31zyfZ57zzrzvOe+ZM9LWLiaX2Wk02gAbjfb/
a0hg+sTKijCeg/2OwFtJqNv23Fx5SRjXqHI4n0t5XeOtMtN5YVzMNEc6nXK8
3MmozElhnPn9ZEIU5dyyOe1LQ8K4aIibozPlHh7DO+X1wniUD5/aBsp7Hnav
CXsrjOddFDrv9o8ERqSoioSRMJ4YkfmB/peEqIZUkaXgtfj+ax3xv5pIMHFa
XuyoFcLvizcZmtWTELykdc1UUgg/YmyWEV5DwqrCmBcvz63B9VPlPbp/krA7
JfBWniEdbzxw+XJfKQkL6lJyld8E8Bsm30bTvpOQ8T6YIaDDj5/1PWwUlkfC
rX8eGcb1q/C9u2ea6j6RQF7KrJMy4sP5rMRrx96S4JN4bXK0nQfn9TaLXH5J
glJb4JhpCw9uZbWM11JuE3lC4PU8+J/s7dXxlLHgj4yICh68qzs3UJ8y75XB
NrVMHvxfo7xt0AsqP5VzZa5BPPgcZ1Q/WzRVry+6z0eVeHBvwQujPZEkTNRy
aI16c+Mu0XnFu8JJWHPY40aHGzfOG/Fs9VwYCcqlPV+rrnLj33fzyX2lbJNf
tPfdRW68XL2veC/lP/G3jKwNufE59a+fDz8kocBtwaJRlBv39n6vfDKEhADh
ibv5OVx4hpIn73/BJAie7WkImODEFeqmztj5k8DBvCjYzOLEy8cii6Qpzwa0
H9zO4MTDfjVNtvqR0J3W8u1vGyf+wsEk+xjl7OWaFPVyTlx+/nvETl8SzicX
+vZFc+KSBq9DJnxISJ2KlD2ox4m/SvCvNPAkYV+koQf9AQdeNTaULO9AwhuH
LRMjdzjwYpdenp9XSGDfy+Xxw48DV2M4CjtSxlnF7rddOXBlzjDFTHsS9Az1
3CfOcuBid67CbjsStOZ3ujVv4cC1KhpxdRsSVCxlXF6XsuNtW+tmey+QEK7J
Rvp+Z8cPDD5q9KXM4u9yNs1nx+tkAo8IU07/EucslM6Oi8rw0veak7BVWNw5
8Ck7vjvYry7KjAS5crqTnTU7zh898nvHWRLElZccVGnsuN2SC5/IcWo+lM6n
KM6z4fu1csLij1Hzr/ilV3qSDa+Tn4pXpmwrd81chMGGj0+Ku+8zJuGzJOvo
XC0bHmqT8/HqERIOC7Srlbxmw92sOPmTD5LgR3ydPgNseGev8tw3jIRHTAmN
43vY8NXtE9t1KL8Z9nE5pMGGey5fa88DEn4M7GToKLDhXqat7z7pUf3Zmf5X
is6Gj1nu6ovWJeFjbezX4Q4arlVzW+eEFgldGX53bt6k4af9TomcUiWh6icj
t9OHhj/SHNvzU4WEvJ5TI5gHDe/OWWn6j3K4yPZTHPY0vP/La2f57STo+rTL
3z9Bw//CiAChREI06P18LEfD/ZUrLW22UPtB7Mrmw89W0H/+vjOdkiR41zTf
5w9ZQWbbIrz0KRvTMsZqbq6g7ZsUTyZtIGHxkmXJSfsVtH7+irStBAmm24ps
L+isoEiJ2Lnu9dT6L7jzwbV7GeW0ztZ8WUut32Yunajty0hdYrtjLw9V/4fx
KrbSy2hO+uQzKcotmI7MrnXLyO8sd6s5Nwlqaa58DYtLyKbleW49J5W/X2uz
YNUS2nnG4l4WGzVfMpmewQ5LKIoZYXxwgQCak/nHaymLqNhVuSmLRUC69EyC
Qcwi4rS++Pk3kwDTP4+fCT9aRA8Ofb1BjBCQARV+mV6LaI5zskxumADLtepG
rP2LSNHyuUjQAAF4Hg/Dpm8BvZWOmV3dScBt9izpU9ILCH26t1ejloAO5hWu
iXULKOVl2G3dGgK0m6WGHq9aQB8dLrwwqCZg8n14Ru3EPEpz4zp0opIA+9MO
YFQ+jy6Ym3qaVxBgnCp9Qf/qPIpTZxzVQgRsMI6IVsuZQ+mtwU0zHwjw0TL0
q303h4rktfe0pBPQKLN80fnVHLol8kQ97z0B4TNXFdLvzSEB3Z9tru8IYE8w
zFUwm0MzT7yr6pMIYEwsN2xamUUnaU/HjGMIyHnhRBc4NIsaN6pziN4jYIB7
0D9fdxZpztu0pdwlQMzTknlJbRb1TuSk7A4iwM/45M+C9bOo444S14nbBBhw
7Am0H5hBO969d3TwJaDekXOmJHAGmai+O7fThYBRiOm48X0avaocnOU6TYDM
B5GjWz5PI+vra1qOniTglER44e+306hOYEL86QkC8icDohXDppHoda7MdcYE
3Hpna/Ln/DT65usYNX+AAEFh9fIdc1Mo02LSTU+LgG0DPz4wNKaQf0ByY5AY
AaVvsGfVClMoLgR98BYlwOJivt/nDVPo9oVnB+xECIhoSTHy45hCJ7bcjNVd
Q8D0r+AhesMkyubIFEM8BBR/MpDf7T6JvqV5C2+cZoHpdTz2bsYEShBgbuWp
Y8H4Lq0gh6QJVKKuGRpYzYLQ8U9Xj0VPIA/hzk8Lv1jw/eprbfGACSTBom/q
LGOBrMXNlvRjE8g0+0egWyELCH1dkUZiHAW/5a8pfMuCIP78UJnt4yhktZZd
jBcLapaNLjVLj6PdH8xmMj1YIDbWqf1QdBwNaVxNLnFlwYcmnuGplTE0pz6i
2eLAgj+vzh78WT+G5O+eHy+1YIHCjhlOV58x9KVg58Kb/Sz4dVrz5reSURRy
RE5Jks4CkYO/Trvnj6ImL6zu1moWWGhbbFf4MIr4pzDudh4WTGwKbot4Poo6
/30fCKSxQJLRpG1zZRRdj7Gtvz3GBKcb12ZW0UdRDe1EuFo9EzbrXenOyCbQ
tLXGbHcYEywURZM1YglkdNjk0tR9JsSuLXHIDSTQppfHUpYDmSA2KDlZaEIg
RdXfxuPXmbA2oo67YpSFZMIXN5y/zATunt3K7cosNL1ryyNxbSYYVPWNXhRh
IY3GEkP/nUwIzH2c07PARP1KpZxNKkyghY7oMX4x0fDxCj5LWSbMabw+MWHP
RBMiSy+6VjOBeZfbm+/tCPIsLNFz+jcCSq5ZOg8fjiATiYqNbI0jcMXMkkb3
HEE+v/Dy4OoRGFApeCCybwQdO1/fbIuPQFezU+zm7mEUIPztzrW3I9Cwtalo
18Zh5H664E2K4wgUVCfyWz9joH39nZtFiWEwk32QGXSTgVY5BT3cODAM8z7O
Z1LsGCjSsfmEcMcwaMvtiWfuYSDda+vlf1YPQ8GNGg3vjkH0TXNfoGk6ZYU5
s4cKg0g/Vr6q5TIVz79j5eOaQXQ6O+jfB3MqXn1J0u+5AXSkUnjK6SQV72Y4
IVo1gLYWTth8xKjxjbJ3ElwH0GrbucStEpRvG7/L/dKPHGoY3fU/hsCsWcP4
75t+lMou/lvn+xDMK4tPLIT2o+HJ5rrQrCHQbunV3WvRjzRJDUZn3BAUqFyv
q2TvR1ND1U+Pu1FuTZzpMupDyXfeca4Vprxrbv/qjh4Uck6e0QwM2KrU2hZf
0YO2Kmocrd/BgOhN3zw0M3uQsF5DSposA7x4bidYBfUg2Zb5sgluBmj85V3K
U+pB+Y7rlNsrByHdTyzbxrsbBTW/rc8xHoQNbvOH5y270Q1tg0QrvUEIudzW
/ehwNxJ781Wqf/sg2BvH0ws3dqOq3gpXN/5BkJNSvCpU2oWUSbfzTysGIK5k
t8z3NV3I59iA5YtdAyDmquGeMtmJStQMA0JlBmDadOZ1fUUnWn5WvdWYPgBZ
SrcWFJ07kX1S6Z59jH5Qrgn/3FTQgaJmWjk6o/ph47qPUqqn2lHXXvY7bqw+
oCUyF7uD/yG/E2x9Mc69oB5VcBrO/ENq11qGb5j0gk3o/Y+x8v/Q86InAms0
e+Gnh5zl2dK/qNF87RWzxR54YmBeUsX2F5XKFptY3u0BuYHKB3l+zchVc2xD
8f1uKtSLHpEjzWi1UmdbmV033K+x03Hf0IyY9tH7fQ50AyuXg6Vc8Ac58in+
GWTvhtx7OsffzDShP4YKA8PeXXBo63vRMPdGtHbCW6ksqQP8Nl53Gd7biLRn
0919TDvgo5DhD0OhRhQ9w1cdvLoD1s73XGfPaEDK6/bT81zaoe2XRLs3qx4l
68cb+Km1gbNjSKK1/W/kVxP5OjvyL8hdbLB0/VqFJss6QnJnG4A+dfxpmlUV
ChqjW/5IaID5kJqyPu4qFKHLxxVzuAHqcn8qnTtRifBVxRuiYurBTxCf3Dvw
E5k2Ha0P1PkNDd/S7wuvqUAMYfV72FgVfD+pVHg0pxxFVtA2iOytgtShFNY9
s3IkFXFURPtxJdxcl2iymFSGIgvlryD1X6Dk9EKyf08pKnVevBfpVwF3JIMz
ci8VoR8zB3SQTjE4feboHeUtQl9Prfqm+6IITA/eXrftI46yBc6r683iYM6Y
ndQbQ8i++f6fA14IsqP676/Z8A3Fp3jWFH4ogJCSLlbQ5a+IMfXhOH73C1iS
rSZznwrRrLXLZhXrfOA3rJfsMShAUjf32c0p5sKl6e8ZWc55KGB4X+SuiUzQ
kilYp/glF2HEYJzDRAYIGufciOXIRaNnHTT/jX+CgrfvDe5GZyOakXWtgGo6
RPxOfjfXk4Wk5u4YDlxMA9ulBEHn7VkIe/pN9ENcKqw9Hd1ypjgTjQoeXGO0
9y0wAp7+V8mfiTLWV07gKYnwPT38DZzNQBGfks2tJd9AI++qv8dbPiBsuWU0
wfoVBFjSEvc4paP4qF+rzifFgHL+tKMM+3tE8/8uksr5AoLsemmT21IRXp8c
wyMbCXXiSrLOb5IRbX34H5Wsx7CxynU/Q+wtCjjhHSPbEA4ON/PsrB8lIqz2
aotXWAjkqi0/aON6gwKGjjwyfx4M7L0G6Wf84hHtVWfKD+IOvFJaH5fQH4cC
5BIdtVVvgdajpO5n9S9RwG7VoZOy1+H3xI4tISgKBTwPDz1b6AEOpsjhZnok
omU00XeMOQHHtyOf3F88RrQzl2zu5l8GrX3Zg9X8YYgWsH2DXdwFuMpf65o7
EIxoQQeVex1MIK5paO4VHoBoi8s7Hubvg9f/8XHTd11DNOy70504VeCJ91fD
f1tR48OeHDjJDTjTPN1LwghotCM3jRr+6tmJpgcvWLgADZMUEzgiDbU+Upnp
C75Ak3oscS9IB3Z5XKtlyQYBjXlso+CtI8CRZnaA63AI0M5Inm/TNwX70dcW
gloRQEt9EmPiaQ21oWslJIyeAk0mObNT1AE0Fe42yVs8B9ri3h0vAt0grngm
YofbCwgoPe4cmuAFnBYOR/4LigVaUM0Yp40fOMy18RyKeg20TOHnNTa3wf5X
ipXS6QTAQl0LrRlBIClmBRkdbyBglxF7f+F9qLsssVHTPglo97Pcr3Q8hMCs
hvnCsbeAn/pkeD0lAoaND+RWcL4DS3qXVV/IM4iLXXl6NDwNLHdsPdO3MxqO
D+e7NaxPB9pZdYmXHDGQd3fb9k6lT4BxhdgYBMdDzhX3u+pmGRChZjyXIfMG
Hq055jm1KROkxF1ExOsSQd+C18Q39TNESDQlnTdPAUmufkzPKQssP2x96aL9
DqbfF6myqWcDrdvdd1zhPbybuyFwrzAHLAuc1eJVP8GaZ6wfT2ryQS2RNtAx
ngXDOr/yTj/9Aox48sk38Rwo7UlOFjMtgIziiIDYA7ngrWYZ9Kq7EBjKngte
mfnQUVkPaZPfIaPcK/pC2Tc4w2beahlWDKP5+g/2mZVC8N/mkGlWMXDWFl2X
EiiDvMyT2g+NS+B+5fpKzaIyELM2epFHL4XZ10trMpQr4F+x9lnBJ2UQ7aFw
4rjgL7AIEm8ofP4D+jj2Lr8dqgU7nuZfovE1UCUoODVf3ATRnSY30mm1UFPr
8/TCxj/wI69mq75VLURcSG455f0H1u28VKopVAfuvaaeo1ubwavPTNa6vg6+
Pvyz1e1BC2jtP9ydf6oeGDwuE10qrfCVe+sF23NN4PnU05efowuEJL083YKb
QM36x+c0uS6w3VES6pfVBEMqUy/ZDnTBGvMLBU8E/kB2lt3nv/e64HLm4/Wo
6A8IDvC37eLtBkHz+d/rlVrgCPNubsVCN1xyMxySOdsCAZmt5znEeyA/OJKm
EtQCm4TTeRd29YB1poqqQUcLSD5v79vs0gO53Jceuj75C+nRb+FwRw9czKw8
8HP+HziyhDbdzOiF7HIxi0aFVmjZzC2b9rMXVrVdvtZ5qhUyy/1Z0T3UfW5a
0tTHVjjBLVaAC/cBr/lONplLbSAmuSrzgEcfZHDHFd6obAcH0fu/Xij0A5vK
bjFR4y4wGBG7Xms/AOxZpuF3bLvg06ilWYMfZa0bnOTNLsheKnyQEEFZ/9to
xacuiJXx2/Y6bwA4z+z7eV2oGw50kumqHIPAe/PYjfbGbqCXdHjLPqbM4TZ6
iNUNnuOXjq95Mwh895/Y5nL1gN+JI6frPg/CqidNJo80e+Clx/xoZcMg8Cef
37Y3ugfmpkYCkDAD1tTYtSWd7wWfB6EnOR9SPvnARMizF3RoseUWLxkg1JL2
w/9hL/jWL3BEpjJgbQ8r+8y3XjASeBodUcoAkWmPMN7NfZBZvLDSPs8AsU0B
eo49fTBk23FLzmoIpJyj4zWuDEAaf+zcrOgwoHu3NWkBA3BOuSmhUGoYLBIc
qqqeU+ea5tvzdkrDENuoO3u5dAAWLz76fPO/YViv030sevMg4OsOVqZZD4Mg
r9LKYtMg5NS116i+G4YP0sLPfjIHQZ1D7ndq5jAc0VlUes7BgHJ+x1X0gmEI
ca45o0qd88Rnd7MSfw0Dd5P7Rysqz9xRwe7J4WFYSii8UK4/BP+UyvgvKI5A
bGHSxJNzQ5Deo7sJVx0B7aawBxddh2C0o/aE8O4R8OG1zJmlzp1hL5wrQvaP
wKQzp8C2uSHQX73LodhqBJg6R78++kTFDfAnvaJG4F9Th8Q5SSb81ZVYPzY7
AmnHK79/VmdCe/PBr0HLI3CjMs+a/xATMsQMLAU4mSBeFJGGrjGpPgwXWhZk
gmm6vvaWWiYMpo2zW8oxoflO8rmJ2yx4qqnnrXuUCY2qztFhgwQcPyuyYTGK
CUlpZrqDS9R/Y/Xp1RdjmeApb9iFiZDAloG3fYlngvAGKcVJjIQMr9MuZ98x
wYS7Ps/sJQk4XnthZwET7ImXI0+3jEIWRy3/3X/Uc0uXV1n9HYUiAcnrU+tY
cOOWusnt/lEoUe0dLBJnAb+27YuEsVFIVytQvreRBeqfqhV6+MZg6Pt7/0U5
Ftx8EWtwSXsMXnGcXxepwQJRZ+2bl2PG4KbF4QN3j7HAYL3X2JUL4+AjbcLR
cocFzb/faYVcGQdbe70j7XdZ4PCw/VbatXEI3FwM7fdZEMG2X3AkbBzmg/jO
VoezoHVEeJvj93GwiMp94vKSBe54po3z5gmY7XuwuzyDBfFXWM3u3RNQUsU1
y/WPBXcITtUS5gQ0KcjKH2ljgY2HZLDw7AT0JaVVh3ewQNHfaGe24CQw30h/
4OtlQWbEu4gpnUkgNCTt/oywoDjv8iGf55Ow8Ko99vciC3q5Ogr8jaaA73p4
1A1JAspDpoRqzkyBk1JimvkmAlLpAlc2WU+Bt4fQko4UAY7iuuuRzxTYb+72
HJclYFL5pQcteQpGf88CbCOA89QZ5UDaNHj+OBFjvoeALW9q4u7nTMNmcYv+
8pMEaCTJOlQVTYOt/MMF39MEYMk+mmtqpsHjHccdlbMEmKXJ1EYNTIP1aP1E
qBkB4Z+9aCnrZ0An23NS0YqAmeJNl8quz0DsUe0I0omAH73Oiux6syBZba9e
c5eApv6Syf2HZ+E2UlXXvkdAz6BY0YMz1LvVNGxPuk/A4kjxOSGXWdDLSVBw
DyVAbVI0VCp+Fhwt2R9ORxDwghOx9NjnQIHzoXpSDAEO8vQs3/I5eFIjr5P2
iarPmOEj8vcc/Gl4LfsjgwCZ7wFXL7XPwf6tRm/7MgloPTMuazQ5B189r/qL
ZxNw5H5TpITMPMBDQ9w9nwCVkRivL/7zYF9h7t+PEzCeoag9s3MB7Dl7Lvyr
I8DY30r0KrYAYRyKEbW/CUg79HK8w2gBwnnV4krqCbjUs/p9ufUC7HmWY5za
SECjMLnhecQCfEyW3mvTQkCuV87STuYCxFU19qV0EuCrq1/knrgI23zTQ6+w
CHD94if34eMiJN6VUN1DEGCjmXdv8MsiMALpwzwk9Xw1ZWPzukW4l9j//s0o
AVJyoq37lxYhNmhTUPUElf/q4Umxs0vgmTP2dm6OgLWtjxXRqmUouBunkc1F
Ao9pVejcumV4JsitcYWbhMVGblJDehm6WI6uG3lI6K/xzUndvQxZnr7vAnlJ
yC++rP/EZhlm3CTVDVeTYJG2x/zy92VwtAoJfL+GhLTr3Y9Wu6+AfnTnEilB
wi+Pc/Z7bq7AyPsx0dgNJAw5/cbsQlZA5dwOV0NJEhSti8aK36xAIs/rwZiN
JKQcTjh5o2EFnK1CeXWlSKgPywj1lKBhE7vWrJyTJ6HOwvVYry8NS7X4WSSs
SkLX+XSd+ds07O7uXR3vKI+aMhSE7tMwXPa6GaiR1PfFkgaRNGw0TcDLfgcJ
xwyPZ75Mp2GvnLNOZGmQUKOqJmzSTsPYRy+ZKmuRUEkb/YPrsWHTOdUGmdS+
xd67sdLFgA0TEx9UU95LgnaZEdp0mA3D9selJFNOfZCS4neaDeO+qLr7pT4J
wWsv+mg5smFTyn2ErwEJ+nI14hkv2DCRb37/KR0kocAw3fz1JBumsfRrreYx
any4fY9/GjvmtN5kQt6chGuqux4nZ7BjVUGQ94iyfh0bVpvLjqWTz9fNUW4T
iomTKmHHXkncS/x1gcrvWbVpSSs7FqliuvbKRRK8Y9RreQU4MB72J6lPrUk4
kLpY+NSFAzu4+fLMG3sS+ooinr3byYm9TtvGKPIgYUm7416ONifmhU/tE/Ek
QTR7240ijBPbWpZ11pbyweRyi79HODEuwjSV7xoJH0IWFfguc2IcY4dnjniR
4HXSvsD+GSemGWv/pNyHBL5+6FSY5sSeul9tvedPggovqZicx4W9t448ZRJM
goutiuzhb1yYdKjS7QjKGaVOG4liLszZ2fpmDeUdt5lCmjVc2Cdvr5FD90jY
OT80X9bHhTF4zJ/p3afqz+yr6hfixiQS8eObQ6j86v65yjtyY3rZXq9RGAkX
o8vzk6R4sMEF0a9BkSRo5iQ5FW/hwYbU1uJfKfPX35HpUubBLo7eip6knL8a
Hm7Yw4Oxu9tWXHpGgtCtvItPTvBgnNnaMthzEkoup3IH3OHBYlKkx0ejSFDQ
CDl1vo8Ha9vZJrUzhgSy+uioUCovZtpgY3AogQRm7cYPFR94sfJdZY89KQ//
Zl3xz+LFvNOiil5THmgK62V858UKvi79mKLc0V79BzXxYlFPs6/HvyGhinX0
mxMHH+aQH3t9NJHqJwHjkJ8WfJhAx2yibzIJtkeN5W6vW4UNfFyu3feehJHO
IK0i39XYGqn0R9FZVH+svzrpQhPAvKwDtpsUkhDz4le61FVBrOagbszdIhKO
N2Rv9XQTxKok4cJrytwCr5MrvAUxvMWK/oWye4BHvHOQIHZxSduASfmwnWTk
1zhBbL4iaexEMQnzO519TesEsYRt7rYSJSSY1gkdjthFxwa8dQTjS0kQXLVY
3qtDx271ezDzKJfuG9i3W5+OuZSd/FpLWS2v4L8OYzr2M2X3jhXKPK8u7VC2
p2Ptq2pcL5SRkHs1R+zHSzqGabOdWF9OguPb1882JNCxw3YzxiqUZTofrHVJ
oWNxWwxhP+VwEwt+0Ww6ts9u04w75ct7eGg21XRMaPRPaTVlCY8xv7wGOlY0
V3qmj3Jdeuvcqn907EyMVes8ZV2pjInMATqmYlP3VaGChPFzL125WHRs+nie
uB7l1KdBLNMJOvbD0uvKKcoW1c4O6XN0TLp9fboDZRGec4MrK3TsBldydwDl
/wF7ZZ/N
      "]]}}, {{}, {{}, 
     {GrayLevel[0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], 
      PointBox[{{-3., 0.9878048780487805}, {-1.8333333333333333`, 
       0.968}, {-0.6666666666666666, 0.8}, {0.5, 0.6923076923076923}, {
       1.6666666666666667`, 0.9615384615384616}, {2.8333333333333335`, 
       0.9863481228668942}, {4., 0.993103448275862}}]}, {}}, {}}, {{}, {{}, 
     {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[
      1.6], PointBox[{{-3., 0.9878048780487805}, {-1.5, 0.9529411764705882}, {
       0., 0.}, {0., 0.}, {2., 0.972972972972973}, {4., 
       0.993103448275862}}]}, {}}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.685522731198388*^9, 3.6855228125078278`*^9}, {
   3.685522862545142*^9, 3.685522874429077*^9}, {3.685523073648672*^9, 
   3.685523196670637*^9}, 3.685523697644681*^9, 3.685523881702211*^9, {
   3.685523920312171*^9, 3.6855239436288424`*^9}, 3.685684006861432*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{"fInt", " ", "=", " ", 
  RowBox[{"Integrate", "[", 
   RowBox[{
    RowBox[{"f", "[", 
     RowBox[{"x", ",", " ", 
      RowBox[{"1", "/", "4"}]}], "]"}], ",", " ", 
    RowBox[{"{", 
     RowBox[{"x", ",", " ", 
      RowBox[{"-", "3"}], ",", " ", 
      RowBox[{"+", "4"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", 
 RowBox[{"N", "[", "%", "]"}]}], "Input",
 CellChangeTimes->{{3.685523491048286*^9, 3.6855235220325212`*^9}, {
  3.685523889437829*^9, 3.68552388953345*^9}}],

Cell[BoxData[
 RowBox[{"7", "-", 
  FractionBox[
   RowBox[{"ArcTan", "[", "6", "]"}], "2"], "-", 
  FractionBox[
   RowBox[{"ArcTan", "[", "8", "]"}], "2"]}]], "Output",
 CellChangeTimes->{{3.685523511725808*^9, 3.685523522484685*^9}, 
   3.68552389016968*^9, 3.685523946035872*^9, 3.6856840072559958`*^9}],

Cell[BoxData["5.573955509185797`"], "Output",
 CellChangeTimes->{{3.685523511725808*^9, 3.685523522484685*^9}, 
   3.68552389016968*^9, 3.685523946035872*^9, 3.685684007257372*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"\[Omega]3", " ", "=", " ", 
   RowBox[{
    RowBox[{
     RowBox[{"{", 
      RowBox[{
      "1", ",", " ", "4", ",", " ", "2", ",", " ", "4", ",", " ", "2", ",", 
       " ", "4", ",", " ", "1"}], "}"}], " ", "/", " ", "6"}], " ", "/", " ", 
    "3"}]}], ";"}], "\n", 
 RowBox[{"fIntNC3", " ", "=", " ", 
  RowBox[{
   RowBox[{
    RowBox[{"Sum", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"\[Omega]3", "[", 
        RowBox[{"[", "k", "]"}], "]"}], " ", "*", " ", 
       RowBox[{"fDataGeneric7", "[", 
        RowBox[{"[", 
         RowBox[{"k", ",", " ", "2"}], "]"}], "]"}]}], ",", " ", 
      RowBox[{"{", 
       RowBox[{"k", ",", " ", "1", ",", " ", "7"}], "}"}]}], "]"}], "   ", 
    "*", " ", 
    RowBox[{"(", 
     RowBox[{"4", " ", "-", " ", 
      RowBox[{"(", 
       RowBox[{"-", "3"}], ")"}]}], ")"}]}], " ", "//", " ", 
   "N"}]}]}], "Input",
 CellChangeTimes->{{3.685523370174515*^9, 3.685523405937571*^9}, {
   3.685523787278356*^9, 3.68552381490996*^9}, 3.6855238975432453`*^9}],

Cell[BoxData["6.2574588650388545`"], "Output",
 CellChangeTimes->{{3.685523481304573*^9, 3.685523485045783*^9}, 
   3.685523531318762*^9, {3.685523804103651*^9, 3.685523819289815*^9}, 
   3.6855238991612787`*^9, 3.685523947746043*^9, 3.685684007377079*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(", 
   RowBox[{"fIntNC3", " ", "-", " ", "fInt"}], ")"}], " ", "/", " ", 
  "fInt"}]], "Input",
 CellChangeTimes->{{3.685523996844348*^9, 3.685523998276311*^9}}],

Cell[BoxData["0.12262447282305239`"], "Output",
 CellChangeTimes->{3.685523998952448*^9, 3.68568400774715*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{
  RowBox[{"\[Omega]AB", " ", "=", " ", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"1", ",", " ", "4", ",", " ", "1"}], "}"}], " ", "/", " ", 
    "6"}]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{"fIntA", " ", "=", " ", 
  RowBox[{
   RowBox[{
    RowBox[{"Sum", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"\[Omega]AB", "[", 
        RowBox[{"[", "k", "]"}], "]"}], " ", 
       RowBox[{"fDataSpecificA", "[", 
        RowBox[{"[", 
         RowBox[{"k", ",", " ", "2"}], "]"}], "]"}]}], ",", " ", 
      RowBox[{"{", 
       RowBox[{"k", ",", " ", "1", ",", " ", "3"}], "}"}]}], "]"}], "  ", "*",
     " ", "3"}], " ", "//", " ", "N"}]}], "\[IndentingNewLine]", 
 RowBox[{"fIntB", " ", "=", " ", 
  RowBox[{
   RowBox[{
    RowBox[{"Sum", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"\[Omega]AB", "[", 
        RowBox[{"[", "k", "]"}], "]"}], " ", 
       RowBox[{"fDataSpecificB", "[", 
        RowBox[{"[", 
         RowBox[{"k", ",", " ", "2"}], "]"}], "]"}]}], ",", " ", 
      RowBox[{"{", 
       RowBox[{"k", ",", " ", "1", ",", " ", "3"}], "}"}]}], "]"}], "  ", "*",
     " ", "4"}], " ", "//", " ", "N"}]}], "\[IndentingNewLine]", 
 RowBox[{"fIntAB", " ", "=", " ", 
  RowBox[{"fIntA", " ", "+", " ", "fIntB"}]}]}], "Input",
 CellChangeTimes->{{3.685523706930175*^9, 3.685523783583617*^9}, {
  3.685523822798047*^9, 3.685523856469739*^9}}],

Cell[BoxData["2.399784791965567`"], "Output",
 CellChangeTimes->{
  3.685523772217701*^9, {3.685523833015215*^9, 3.6855238572254143`*^9}, 
   3.685523902925892*^9, 3.6855239501498938`*^9, 3.685684007800902*^9}],

Cell[BoxData["3.256663560111836`"], "Output",
 CellChangeTimes->{
  3.685523772217701*^9, {3.685523833015215*^9, 3.6855238572254143`*^9}, 
   3.685523902925892*^9, 3.6855239501498938`*^9, 3.685684007804133*^9}],

Cell[BoxData["5.656448352077403`"], "Output",
 CellChangeTimes->{
  3.685523772217701*^9, {3.685523833015215*^9, 3.6855238572254143`*^9}, 
   3.685523902925892*^9, 3.6855239501498938`*^9, 3.685684007804735*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(", 
   RowBox[{"fIntAB", " ", "-", " ", "fInt"}], ")"}], " ", "/", " ", 
  "fInt"}]], "Input",
 CellChangeTimes->{{3.68552397854193*^9, 3.685523989548272*^9}}],

Cell[BoxData["0.014799695253336416`"], "Output",
 CellChangeTimes->{3.685523989813211*^9, 3.6856840079160843`*^9}]
}, Open  ]]
},
WindowSize->{1054, 1179},
WindowMargins->{{0, Automatic}, {Automatic, 19}},
FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 565, 13, 32, "Input"],
Cell[1126, 35, 750, 19, 99, "Input"],
Cell[1879, 56, 1181, 32, 187, "Input"],
Cell[CellGroupData[{
Cell[3085, 92, 1343, 29, 209, "Input"],
Cell[4431, 123, 11885, 205, 241, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[16353, 333, 503, 13, 55, "Input"],
Cell[16859, 348, 307, 7, 49, "Output"],
Cell[17169, 357, 180, 2, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[17386, 364, 1041, 30, 55, "Input"],
Cell[18430, 396, 256, 3, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[18723, 404, 197, 5, 32, "Input"],
Cell[18923, 411, 110, 1, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[19070, 417, 1387, 38, 99, "Input"],
Cell[20460, 457, 210, 3, 32, "Output"],
Cell[20673, 462, 210, 3, 32, "Output"],
Cell[20886, 467, 210, 3, 32, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[21133, 475, 195, 5, 32, "Input"],
Cell[21331, 482, 114, 1, 32, "Output"]
}, Open  ]]
}
]
*)

(* End of internal cache information *)