(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 20735, 514] NotebookOptionsPosition[ 19551, 469] NotebookOutlinePosition[ 19888, 484] CellTagsIndexPosition[ 19845, 481] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"runge", "[", "x_", "]"}], " ", "=", " ", RowBox[{"1", " ", "/", " ", RowBox[{"(", RowBox[{"1", " ", "+", " ", RowBox[{"25", " ", RowBox[{"x", "^", "2"}]}]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.6855202639388638`*^9, 3.6855202996308117`*^9}}], Cell[BoxData[ FractionBox["1", RowBox[{"1", "+", RowBox[{"25", " ", SuperscriptBox["x", "2"]}]}]]], "Output", CellChangeTimes->{{3.6855202971715717`*^9, 3.685520299998887*^9}, 3.685529753291757*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rungeData11", " ", "=", " ", RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"runge", "[", "x", "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "1"}], ",", " ", RowBox[{"+", "1"}], ",", " ", "0.2"}], "}"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.685520443605824*^9, 3.6855204506374273`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.038461538461538464`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.8`"}], ",", "0.05882352941176469`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6`"}], ",", "0.1`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3999999999999999`"}], ",", "0.20000000000000007`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.19999999999999996`"}], ",", "0.5000000000000001`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.20000000000000018`", ",", "0.49999999999999956`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.40000000000000013`", ",", "0.1999999999999999`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.6000000000000001`", ",", "0.09999999999999998`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.8`", ",", "0.05882352941176469`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.038461538461538464`"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.685520443884881*^9, 3.6855204591362753`*^9}, 3.685529753470796*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rungeApprox11", " ", "=", " ", RowBox[{ RowBox[{"InterpolatingPolynomial", "[", RowBox[{"rungeData11", ",", " ", "x"}], "]"}], " ", "//", " ", "Simplify"}]}]], "Input", CellChangeTimes->{{3.6855204739097023`*^9, 3.6855204741090593`*^9}, { 3.685529748047958*^9, 3.685529757823937*^9}}], Cell[BoxData[ RowBox[{"1.`", "\[VeryThinSpace]", "+", RowBox[{"1.3322676295501878`*^-15", " ", "x"}], "-", RowBox[{"16.855203619909503`", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"3.019806626980426`*^-14", " ", SuperscriptBox["x", "3"]}], "+", RowBox[{"123.35972850678728`", " ", SuperscriptBox["x", "4"]}], "+", RowBox[{"1.4210854715202004`*^-13", " ", SuperscriptBox["x", "5"]}], "-", RowBox[{"381.43382352941154`", " ", SuperscriptBox["x", "6"]}], "-", RowBox[{"2.2737367544323206`*^-13", " ", SuperscriptBox["x", "7"]}], "+", RowBox[{"494.9095022624431`", " ", SuperscriptBox["x", "8"]}], "+", RowBox[{"1.1368683772161603`*^-13", " ", SuperscriptBox["x", "9"]}], "-", RowBox[{"220.94174208144779`", " ", SuperscriptBox["x", "10"]}]}]], "Output", CellChangeTimes->{3.685530508856052*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rungePlot", " ", "=", " ", RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"runge", "[", "x", "]"}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "1"}], ",", " ", RowBox[{"+", "1"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{"rungeData11", ",", " ", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{"rungeApprox11", ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "1"}], ",", " ", RowBox[{"+", "1"}]}], "}"}], ",", " ", RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.6855203042714443`*^9, 3.685520320302579*^9}, { 3.685520372318378*^9, 3.68552039602993*^9}, {3.685520460981647*^9, 3.6855204931812057`*^9}}], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"InterpolatingPolynomial", "::", "list"}], "MessageName"], RowBox[{ ":", " "}], "\<\"List expected at position \[NoBreak]\\!\\(\\*RowBox[{\\\"1\ \\\"}]\\)\[NoBreak] in \[NoBreak]\\!\\(\\*RowBox[{\\\"InterpolatingPolynomial\ \\\", \\\"[\\\", RowBox[{\\\"rungeData\\\", \\\",\\\", RowBox[{\\\"-\\\", \ \\\"0.9999591428571428`\\\"}]}], \\\"]\\\"}]\\)\[NoBreak]. \ \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/list\\\", \ ButtonNote -> \\\"InterpolatingPolynomial::list\\\"]\\)\"\>"}]], "Message", \ "MSG", CellChangeTimes->{3.6855297537585983`*^9}], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"InterpolatingPolynomial", "::", "list"}], "MessageName"], RowBox[{ ":", " "}], "\<\"List expected at position \[NoBreak]\\!\\(\\*RowBox[{\\\"1\ \\\"}]\\)\[NoBreak] in \[NoBreak]\\!\\(\\*RowBox[{\\\"InterpolatingPolynomial\ \\\", \\\"[\\\", RowBox[{\\\"rungeData\\\", \\\",\\\", RowBox[{\\\"-\\\", \ \\\"0.9591428163265305`\\\"}]}], \\\"]\\\"}]\\)\[NoBreak]. \ \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/list\\\", \ ButtonNote -> \\\"InterpolatingPolynomial::list\\\"]\\)\"\>"}]], "Message", \ "MSG", CellChangeTimes->{3.685529753818915*^9}], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"InterpolatingPolynomial", "::", "list"}], "MessageName"], RowBox[{ ":", " "}], "\<\"List expected at position \[NoBreak]\\!\\(\\*RowBox[{\\\"1\ \\\"}]\\)\[NoBreak] in \[NoBreak]\\!\\(\\*RowBox[{\\\"InterpolatingPolynomial\ \\\", \\\"[\\\", RowBox[{\\\"rungeData\\\", \\\",\\\", RowBox[{\\\"-\\\", \ \\\"0.9183264897959182`\\\"}]}], \\\"]\\\"}]\\)\[NoBreak]. \ \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/list\\\", \ ButtonNote -> \\\"InterpolatingPolynomial::list\\\"]\\)\"\>"}]], "Message", \ "MSG", CellChangeTimes->{3.685529753874078*^9}], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"General", "::", "stop"}], "MessageName"], RowBox[{ ":", " "}], "\<\"Further output of \ \[NoBreak]\\!\\(\\*StyleBox[RowBox[{\\\"InterpolatingPolynomial\\\", \\\"::\\\ \", \\\"list\\\"}], \\\"MessageName\\\"]\\)\[NoBreak] will be suppressed \ during this calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \ \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", CellChangeTimes->{3.685529753881908*^9}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1mHk01F/YwJEkZUklW4WsKdrs8fySrCmJEipkrUQqImuWKFtIdmmGSEmy h2snS4xhjG3M2LLO114k3nnPed+/7vmc+5xz733OXT7PFbVxMbZjYWJismRm YvrfVg74pre2MMSxmX5c7SsOTO5Kha6tY2jRo7pfrgQHXm+UJZdWMOQ31XVS ohIHTTPmNhMzGNqa2Dcm8AMHVgnp/W29GCrGQfARGg5eL0i3Jn7BUJNe+OGy PXhYxql9On0bQ+5KNcJrj/FQzm79wKGKjl6b8YTKamWCXztppsZ6Domf3HNd 9uQHmMoUOKAkPIs+cqTfuqeWA0eHdXdyD02jd0yKV+l+uYDfi1vuez6F8NE3 pyqM8qDOoiUCwSSSCNp1npibD8LpwiIJtAnEd/ar84nYAjA4b+FJDBtHrbm2 XcwNhXD4r72/jN4YUnSXUXt3rARmexzw5efHkKtA8U26UgmU5js2G2iMob2S tgFa50vAyP4uz4PTYyju5uUpdvMS8Cc4vys4OIa4OAx3Lr0ogZEPj6vVFkdR 5/LPvVfHSyDL5DnTpeRRJH7Dy+xpVikcz0v1d5sbQRf6SVPiWuWgW2nKbTU5 glKO111qNSoHmzbONMPRERR45KOf181ySJj2+S7dN4L+YV9sl9zLgVXq1iql fgR18NjwG30sh/70Q/cNUkZQ2X/i0hW83yHkdfp1cYMRJMRMqkiY/g7Uxxly pGwaUjK6fceotBJ8FZ7oDuFoqPXSUrFIUyUIr+rajKXRkCtnJ+5vTyWYecy/ WYyjoZ/Wwy6EpUogeMI/rgAaSsFWqP/kq6DWd6hV5wYN1ZqpN9p8rAJ8qIBT 2U4aOt8FLbgPCJxSXuNS7lIRl6bGtxOj1bDMrh+mZEdF1YJPT/bOVoP/ExaX rttU1Az5r4JXqyH+0iNVdlMqGjyvu7y2swZqmUwJj4CKkjwcPDVP1oCgHf+W /j4q+jdUGHEjoAbeWGgULT4bRvUPf1cOSNWCme+NI5/EKKitzUXgVHQd7KpW rk/ipyD+0IJ7esl1UMXMbxfGRUHvI7ZSnLLqQCKYlGW/PoRa3EZQfUUdLL66 elS0awgpegpsTUzVQXii4cn4gCGkZRCqPXqhHqoLz4E/dRCdZ8fJbbA2gPSM jIVJ2gAqC+nEDWY0QlFQV+zd2AGUaO3+PCW/ETQPPWvzDx1AbHciGp1QI1he aVP/7DaAptTPlR8baoTokgcibDoDyJzIvmgq0ARrgd/GS7B+FCKI5jXjmqBF WN1V6Fw/Sv4e4LAS1wzXi8ezTyr2IyWb23/9Mpth7HIkTUe2Hyno4xcEipth 8/mw8eP9/SjgEJ++d28znJoKUGif6kOts7NRG4I/IKmocd03pg9914kZWsf/ gHuXjIJHRsnozdZ5rQcNLbCpf6Jbto+Mmi8Klef3tkCMDs+RJz/JSFoiRY11 ugXK/+us3lFGRtF9VZ8oXK3Aftpo41gkGVGiJczv3GiFrANGjzyUyWj/DdOK ioVWGKFett4d0YucTX79Uj3RDuaPLqsrKpJQdpaZH/tUB7wip1orHyOh/B1v 3NI3O6BCfTZYVYyE7CgCi+IcnXCIPeynBhcJ4Tqx5tnDnUBLqb2tM9GDrraP iy0ZdIJjo8Jzs/gedLHjrdVoZie4Cwg3ea12I+knsolJ1gT44Ht3xnu2G0Vn jRG/OhOAPFrK7TfSjbbztAp1exJANc/ULPBnNxr8K7mlEkOAf5pRU6+yutFF Xxn98DoCBN1n2Z16rRs1/4FKE+kuiEWTRqiYiBR3kkUb1rsgzZuJcyqXiKg8 qTJeO4mQrcL/gzeDiC7Z6Y2q8xOh6pvOOftXRMRpF56zoECEyQ9ZJzmtiEiU Rf3EbjciaETb8lrsJKI0n8OlgnNEmLKiElctutBqiPv8Lqwblg/+iRK50oXc n6j6FG11w2Y/90V97S50rkimyIWnB/aZQn3qiS40Om7twHeqBzT00gq1tnch LqWtZDn3Hog7afkmJo+AhBzfhyQwkwBYyNfkmAloZ7taUb1EL0xI3Zrk+d2J vP7zJFgp9UKk4Zjn0mwnGj+eocyp1wuUhPmUUnInkr2hL/z2fi/4yu8c1czv RNmJEtmuhb1QYanqcv12J9p1tkZJW4cMjx+ocDM/60BFj62quj374C651jVz qQ3Jfi7KF9k/CM5E67qyoTZ0+MjZgJ3HB8H1JxPfz6Y2ZLnHdID9wiB41Gt8 X01uQwdMmc0MngxCUH75dl2tNrTgcC6JShqEtNCCpOm4VnTAdq3OJG0IiMrv 6+UVW9DvsoDKJI1hOJsYwF/+tAkdvKwln2VDA0PzqLdn7jShwI2gs2oPaXBL KJXvi2ETcupoMhzwo4Ffauk+vFgTkjUXv3M2lQa1GRhPZFsj6hMcSwgg00Dn 482dNiKNqPFm3ak9V0bA+LvK+s7meqSdLCu3oTcKjkMLAzcO1KI7xgIGPtfH 4TL12Odm8XJUktb+oNN6Ci7aSlnBWhm6dszaV+/RFOhPiu4tbi9DGm8eQGXQ FGjN83ni3MtQJ3Iqif0wBcpMzBd8m0vRxnxbyPLsFIiJ9Ayevl+CPJjOYefd p2Hlts/u9G+F6Ne2NDnMfwYWRz3Q/tBClK9xoFv69QzMO7i5hVsWomdC8TJX M2Zg2sWB7Lm9EBWHvQx+WjMDFL8reJPr31BU/H7TDaZZaE6XOMvx9ytS4RJj SvKeBUWU3DsdlIeidF+059+ZA8HdrFNpp/OQXf4//Xuuc/DP7P668chnJKss HcPlMwf1i2cPfofPiDPyuSlX/BxclaTYvFrPRaWxOe+mG+fANUKELuuag+Qq FjxJR+hg0h+6NXwoBzku7ND9K0cHJakFnrj2bAQ5ODNWVTpsVtec3jiajaYO sh2tvUyH8GUbz7bxLKQgI8M07kmHHItMVmcLPLrvvvdleDOjP5uTT5QDj2zm lHJ7CHRwXXki1VOKQzsqv01s9tNBOUpbX50Phzav4IvmZ+nQWPsripOQgVy4 L/AZcGPwkdsoo8YvA/Fq/HCMPIBBhGVpwRO5DPTSuP3Pl8MYmKyG9gy9eod2 qevMh8tj0HjVRNEyIg0tV9v8l23IiJ8Tv1E/nYo+Dqn49Jow4l+sPDumm4qi HMr1Ri0wGC2Pr9lgSUFRdUYtUU4YMIn1XUx9mogIUb2SSoEYNH3PcdlOSkCi BdIJF8IwiDT1inE+nYAo/Tai8lEYCIcJkdXp8Wg58xghJgkDlfmbdyh34lDG RMzphC8Y3C/HT3nUxyLKv1tlNoUYpAXNuOyRiEUPB2QS2Msw2Cbg6a018Rod cpWijNdgoDiKWCjar1HduifbwUYMHD+zhXl8iEZ3znFzyLdgkBgoLWtKiESS q1wnRgkYbB4oVgqNiUB8b32FgnswsPl0Xuv71XBkLwmPmfswONZz66YoKQxh R6gcYcMYvHaadTJ5G4o4fv0SiBvBYPWfp/sLsxcoMjhG2XMcg2rJN1Fz/UGo 9vorY8I0BhLfxVJEUgIRr9x1Ka05DF5ezs++evM52kauq4rGMMBG1YtCDgUg C1VF9pIFDD7Mxwc+Qn6oJEN8uXgJA1eBgpS+cz4oqf/A4+gVDFQ124ug3gs9 Ufzkdf43Bqz3Jn9maj9FIT4xfzv+YPAzdtvkrh9P0O326BmFdQwSKg4xuxk8 QvttA/978pexvnEVQXK7K+q9fnMhYgOD68If7b3f3UdMajKrfv8wmHamJuhm OiCLTzt1DTYx8EV8rfs+2qDvRBUaxmAxsaT1mpsWqLCFs9J5CwO9Brbb5g5X kNXCYm89g6sz2jlb69SRpbyr/AqDdXFb1Vmy4pApIlm7yeCg9/a/Sn/rQrhc RxSNwUJ52txabtfgSxwkpjLYa7tzj+kZKxi8Ykc9xeCJb4q4MHk72L1d1zGD Mf5VG6aHlUfvwrVidoUpxnyreVo0FiRc4NcrmgEHg+OH9UJieNzg+D2Jb6yM 9bUVyzkfi3wM20LAjczIB0vkXpPGXR4g1V3wOngNA2W7P6pWYZ4w/VRAaDcj fy5nh0TX2bxBc7+4wP1VDLL21rLHBfmCClvi28xlDB48If7mC/CHP1FXcaWL GOAvllLyN59DrbdT8j06BlB6tMtHPQjeWg1k7ZrFoP9IaoO+dzC45lX6BE9h wPM34NPY2gvgiCrsZRvDINd+Of2rchggCcvnXDQMtLvsY309XsIPx7c680MY +OQYePGvhEMut6O3Zi8G/PurnMdPR0JiNlXoGxGDQv8T1gVuUbDEkq+w2YHB Si6HuOSfaPh22OC8eDMGsoEYR/WTWJgRl54pKMbAUm0v+2exOFjrfHYu5isG 4UuK25M64mCnnWm49icM6Hd8tx7JxMODmaZ8uQwMCrQ4l6WGEoD0ZtyEhXF+ RzdOLOx7mQh90ab2kc8x2FdkQmdWSoJ/OzOw+WcYPJFImRyITga5/CZN1QeM /LLJDkVppYFTvLrQmBEGTlWX+r0X0iDn1W/eo3oYJLm79TqlpcOwh7yx7jnG flsanBT1fgcyD/JxXCcxGL4jPvq3JwMcpXkLf3Bh8F7rW++XMDxkymwrVqij Q7nIhWuSVDyEUuNqDpfRgbhB6k5RzITwiduPJ/LowFq0TggbzYTS7G7WXUl0 sJPQbLuj/gHyuOLvlz2ggzQbofrAQg5Irb7VXNxDhy9N9Bw/sy+wOhsVI6E5 B5RbnD7yOV8gJkt765TCHHCtyhoNr32B3jdyw0el50Ax5syzdMN8eO9zX3iA cw7iqh+KbtHz4ZVNV9gF8ixcOTjrXHWyAMQz5AWeO81CC4nKpl5SCIr0Qsc3 fjNQqdeirFpbBhV8vh3XwqZg5uN7p0tmtbDEMSL4WnwcVvsdWRqca4F0Scav de84MO2ST1YLrIW+wUZWzm3jwHfve5t0Xi2QhTInM2ljoCnbLb+NtQ5+Pg2T PJU+Bgm521dLvtSBlTjfo1ahMdD65PhcdEcDtJ9sFH0nNAqpn+WSl4uaYOCd ymF7FRo82M0ftvajCS6+ZKduyNJA4x6zx+ZQE9QV34TUQzSgSHcbs7M1w6Ew z8n1bTQQwXtyCF9rhrdaM+eOdlABn1TveX61Gfw6I20tHKjw6YW5WYxiC6Qb 7vEQY/hLhXXI/hMlbVBpt3dR9/og9PEMEcfb2sDnY0ncIxiEVXQ6JnmkDZq/ 95sXSg3CiUM0rh1c7RCiFCH59M8A4PrV2Cm27ZCjwBG0I3kAXl5dWH/F+xN4 Q9ButbF+MLtgSf3l3AF5JKJxckgfeO1L7LnMS4Crlubf+dh74d62a8MPhQkw /HbYOG2VBJaLvFOxkgTQK1bfqzjO8MfO8I1eVQLEupv0vaklAWu4/xGrOwTg f8bKtt+XBJHbHB+6FhLgJoidYfvTA7hFRc7X17rgxhVO+2u/u6Gts1urK4nh yeuex3+IEKHY0ly5Bk+E2e1J6sp7iZAxOSybn8dgm/m8b9uJ4M40wxtZSwR/ zTMhHdNdIHKCmaY3TYSGET2UWNQFT6KO+9SodENRW9qZB4ZdcOhSSFE+uRsc 0mS8m4IJ8LBVSTKKjwQ6bWtnyXyd8HxrKeCaKAkODVx4L7yrE2JO5w8dPEaC GZH+XjKj/ihMln7z6RwJtBTOrlh0dsCfewKsLfdJkHyh3czlcQf47v5LY60j wXYKi39R9U94aViV6uXSC5tpZDFBp3bAd2jtt28mAze/9orjcgvwJ8ckP+4i g43xSpjsaAu8sqeKBg6SYb556fg/Qgu4/Xsm926eDPwuC3btX1rgnOw3nX7+ PrjSwjx5+H4LUEJEvS459UGcUuua368fwK+xSVHk6Ic0oZnyhslmCP9Ukr3j 4gB4CDO/t+VtAkmRs2/p1wbAmWOexWhbE1THVgf3WA/AgO3qPr3lRljy+mGD 8xiAUx7iPLakRjDXGxAG3ACsctBr1JIbQWZiM9p9fQC+7rDVspNqhMbD2p7j 2YOghnvcra7XAMyx3Xp12ylgrGy5KZZfB5up0zYL3BRo7W3WHMDXwXo2k/dh QQp0p1LfpSTWwXLVsbxnchTQ8SMEqwbWwcR0EO+Z6xTgLD/xm3atDto0FQbw 2RSoORZY0btVCwmLb+6HGAxDu9PPFTHGOT+Qk9uE16XCs2ovfw+RGuD9J6j3 3pAKZ0xvKdw5UAO7r7xsSTemQsPwtlpTrhpgWXNsT7KkgvLjBt3LG9VA15Uk RrtSIejollksuRoaJ99RvBOo4MlNZjaPqQZ36fgVk0kqDPGQa4o5qoH0wf/I 9lAabAzm2fcLVjHq6119DyJoEL9+wdKTowoWf7+JJMfQ4JWUxH6J9Urg0s1d y2XUDRvPPdPe91WC9mRPh/E3Glxz6i44k1gJJdKy3u8oNJBn6ZL9KFgJCTk9 3WoKI5C4pOH3QrICLHKPhriNjEByYp9u+u1yEDy82en3awSGYp95/jUuh/4Y glDE7AhYLyfaWWmXg7nX068fVkegrS7iitbxcjDTaxwc5BiFphjK+0d/y8Dk l/VpndOj8CPwbqJTYhlcPJJIFQoahfThb/1+A6VwNnmHWoPEGKjzkhN73Etg NKpsVTxoHIL1pdf4Ogqh8IjfjOjgBLh6RPvdTy4AKs7jFOvBSVB0OjXeSc6H LukL/ktPp+AF1/D7Gfs8OJx0QaS5chpCyqtLpypyIf7jjTWVjRlIeK9TYeGW A0Sk2VdqOgcugpjPjfMf4F7NrV0HE+gQW1AYYeCRCTbpffEVqXTQtI06UuWS CeY+JmKWODqQAzWyzjhmgq6Kvkoy452qOubgcPxGJoh/VXAQaKDDNvlnkYZq mTD4bnfd/kU6VBQUHtFmyoSL/uVeXBcxGLLqesYWgYfztxTY8q5gUML6I2sh GA+qZ/NfG17H4IujoDPVFw/SfzKzw20wKOWSqW12xQOr62sShycGCkPj+vUm eKi87XhqRxbDQ8sa620P4qFQfbQyKxeDENUzoaF8ePgkdEtPm+EJO9gMa75w 4yGp96pVcAUGG57XX7Gz4MH9MuNKZHiI+Qo/jE7gwPl4uQCOzHj3q4Vdxag4 sN2lkKlJwUDuXw6rXR8OjJuOVgQwPMipwu3ycisO9DIzdUQZHlxUocZ8rgEH /wWKEKsZnlUolcP5ugoHStbJt6wY3iatFuI2VoKD//uvhf//r/0fJxxYHw== "]]}}, {{}, {{}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[{{-1., 0.038461538461538464`}, {-0.8, 0.05882352941176469}, {-0.6, 0.1}, {-0.3999999999999999, 0.20000000000000007`}, {-0.19999999999999996`, 0.5000000000000001}, { 0., 1.}, {0.20000000000000018`, 0.49999999999999956`}, { 0.40000000000000013`, 0.1999999999999999}, {0.6000000000000001, 0.09999999999999998}, {0.8, 0.05882352941176469}, {1., 0.038461538461538464`}}]}, {}}, {}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0., 0.9999994079562567}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.6855203207892113`*^9, {3.685520384995545*^9, 3.685520396339651*^9}, 3.685520461663477*^9, 3.6855205001903887`*^9, 3.6855297538885403`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rungeInt", " ", "=", " ", RowBox[{"Integrate", "[", RowBox[{ RowBox[{"runge", "[", "x", "]"}], ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "1"}], ",", " ", RowBox[{"+", "1"}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.6855204254572487`*^9, 3.685520430517417*^9}, { 3.685520516108758*^9, 3.685520560228278*^9}}], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", RowBox[{"ArcTan", "[", "5", "]"}]}], "5"]], "Output", CellChangeTimes->{{3.685520518937872*^9, 3.6855205284217854`*^9}, 3.685520568516642*^9, 3.685529754132867*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rungeIntApprox11", " ", "=", " ", RowBox[{"Integrate", "[", RowBox[{"rungeApprox11", ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "1"}], ",", " ", RowBox[{"+", "1"}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.685520529848077*^9, 3.685520566340179*^9}}], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"InterpolatingPolynomial", "::", "list"}], "MessageName"], RowBox[{ ":", " "}], "\<\"List expected at position \[NoBreak]\\!\\(\\*RowBox[{\\\"1\ \\\"}]\\)\[NoBreak] in \[NoBreak]\\!\\(\\*RowBox[{\\\"InterpolatingPolynomial\ \\\", \\\"[\\\", RowBox[{\\\"rungeData\\\", \\\",\\\", \\\"x\\\"}], \ \\\"]\\\"}]\\)\[NoBreak]. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:ref/message/General/list\\\", ButtonNote -> \ \\\"InterpolatingPolynomial::list\\\"]\\)\"\>"}]], "Message", "MSG", CellChangeTimes->{3.68552975425229*^9}], Cell[BoxData[ RowBox[{ SubsuperscriptBox["\[Integral]", RowBox[{"-", "1"}], "1"], RowBox[{ RowBox[{"InterpolatingPolynomial", "[", RowBox[{"rungeData", ",", "x"}], "]"}], RowBox[{"\[DifferentialD]", "x"}]}]}]], "Output", CellChangeTimes->{3.685520537852358*^9, 3.685520569087985*^9, 3.685529754312867*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rungeIntApprox11", " ", "-", " ", "rungeInt"}], ")"}], " ", "/", " ", "rungeInt"}]], "Input", CellChangeTimes->{{3.6855205445248613`*^9, 3.68552058114006*^9}}], Cell[BoxData[ FractionBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"ArcTan", "[", "5", "]"}]}], "5"]}], "+", RowBox[{ SubsuperscriptBox["\[Integral]", RowBox[{"-", "1"}], "1"], RowBox[{ RowBox[{"InterpolatingPolynomial", "[", RowBox[{"rungeData", ",", "x"}], "]"}], RowBox[{"\[DifferentialD]", "x"}]}]}]}], ")"}]}], RowBox[{"2", " ", RowBox[{"ArcTan", "[", "5", "]"}]}]]], "Output", CellChangeTimes->{3.6855205817013617`*^9, 3.685529754579514*^9}] }, Open ]] }, WindowSize->{1054, 1179}, WindowMargins->{{0, Automatic}, {Automatic, 19}}, FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 308, 8, 32, "Input"], Cell[891, 32, 216, 6, 51, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[1144, 43, 490, 12, 99, "Input"], Cell[1637, 57, 1203, 35, 55, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2877, 97, 326, 7, 32, "Input"], Cell[3206, 106, 863, 21, 58, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4106, 132, 1021, 25, 121, "Input"], Cell[5130, 159, 689, 13, 23, "Message"], Cell[5822, 174, 687, 13, 23, "Message"], Cell[6512, 189, 687, 13, 23, "Message"], Cell[7202, 204, 578, 12, 23, "Message"], Cell[7783, 218, 8890, 158, 238, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16710, 381, 397, 10, 32, "Input"], Cell[17110, 393, 221, 5, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17368, 403, 332, 8, 32, "Input"], Cell[17703, 413, 645, 12, 23, "Message"], Cell[18351, 427, 331, 9, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18719, 441, 215, 5, 32, "Input"], Cell[18937, 448, 598, 18, 63, "Output"] }, Open ]] } ] *) (* End of internal cache information *)