Newer
Older
Lecture_repo / Lectures_my / NumMet / Lecture3 / examples / runge.nb
@Danny van Dyk Danny van Dyk on 19 Sep 2016 44 KB add preliminary lecture 3
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 10.3' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[     45184,        891]
NotebookOptionsPosition[     44396,        858]
NotebookOutlinePosition[     44731,        873]
CellTagsIndexPosition[     44688,        870]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{
  RowBox[{"runge", "[", "x_", "]"}], " ", ":=", " ", 
  RowBox[{"1", " ", "/", " ", 
   RowBox[{"(", 
    RowBox[{"1", " ", "+", " ", 
     RowBox[{"25", " ", 
      RowBox[{"x", "^", "2"}]}]}], ")"}]}]}]], "Input",
 CellChangeTimes->{{3.683209056277864*^9, 3.683209058277611*^9}, {
  3.683209102855551*^9, 3.683209121606978*^9}}],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"data5", " ", "=", " ", 
  RowBox[{"Table", "[", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"x", ",", " ", 
      RowBox[{"runge", "[", "x", "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
    RowBox[{"{", 
     RowBox[{"x", ",", " ", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"-", "1"}], ",", " ", 
        RowBox[{
         RowBox[{"-", "1"}], "/", "2"}], ",", " ", "0", ",", " ", 
        RowBox[{"1", "/", "2"}], ",", " ", "1"}], "}"}]}], "}"}]}], 
   "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.68320917871485*^9, 3.683209208826675*^9}, {
  3.683209942892378*^9, 3.683209958015396*^9}}],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", "1"}], ",", 
     FractionBox["1", "26"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", 
      FractionBox["1", "2"]}], ",", 
     FractionBox["4", "29"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"0", ",", "1"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     FractionBox["1", "2"], ",", 
     FractionBox["4", "29"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"1", ",", 
     FractionBox["1", "26"]}], "}"}]}], "}"}]], "Output",
 CellChangeTimes->{
  3.683209209935733*^9, 3.6832098347290697`*^9, {3.683209950336926*^9, 
   3.683209958328669*^9}}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"int5", " ", "=", " ", 
  RowBox[{
   RowBox[{"InterpolatingPolynomial", "[", 
    RowBox[{"data5", ",", " ", "x"}], "]"}], " ", "//", " ", 
   "Expand"}]}]], "Input",
 CellChangeTimes->{{3.683209135011203*^9, 3.683209142673655*^9}, {
  3.6832092117410192`*^9, 3.683209231577496*^9}, {3.6832099242433777`*^9, 
  3.683209926096374*^9}}],

Cell[BoxData[
 RowBox[{"1", "-", 
  FractionBox[
   RowBox[{"3225", " ", 
    SuperscriptBox["x", "2"]}], "754"], "+", 
  FractionBox[
   RowBox[{"1250", " ", 
    SuperscriptBox["x", "4"]}], "377"]}]], "Output",
 CellChangeTimes->{{3.683209215650296*^9, 3.683209231792885*^9}, 
   3.683209835663327*^9, 3.683209927792663*^9, 3.6832099595065928`*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"data7", "=", " ", 
  RowBox[{"Table", "[", "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"x", ",", " ", 
      RowBox[{"runge", "[", "x", "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
    RowBox[{"{", 
     RowBox[{"x", ",", " ", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"-", "1"}], ",", " ", 
        RowBox[{
         RowBox[{"-", "2"}], "/", "3"}], ",", " ", 
        RowBox[{
         RowBox[{"-", "1"}], "/", "3"}], ",", " ", "0", ",", " ", 
        RowBox[{"1", "/", "3"}], ",", " ", 
        RowBox[{"2", "/", "3"}], ",", " ", "1"}], "}"}]}], "}"}]}], 
   "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.683210063345929*^9, 3.683210106138051*^9}}],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", "1"}], ",", 
     FractionBox["1", "26"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", 
      FractionBox["2", "3"]}], ",", 
     FractionBox["9", "109"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", 
      FractionBox["1", "3"]}], ",", 
     FractionBox["9", "34"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"0", ",", "1"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     FractionBox["1", "3"], ",", 
     FractionBox["9", "34"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     FractionBox["2", "3"], ",", 
     FractionBox["9", "109"]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"1", ",", 
     FractionBox["1", "26"]}], "}"}]}], "}"}]], "Output",
 CellChangeTimes->{3.6832101069765997`*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"int7", " ", "=", " ", 
  RowBox[{
   RowBox[{"InterpolatingPolynomial", "[", 
    RowBox[{"data7", ",", " ", "x"}], "]"}], " ", "//", " ", 
   "Expand"}]}]], "Input",
 CellChangeTimes->{{3.683210113027869*^9, 3.683210116244294*^9}}],

Cell[BoxData[
 RowBox[{"1", "-", 
  FractionBox[
   RowBox[{"211600", " ", 
    SuperscriptBox["x", "2"]}], "24089"], "+", 
  FractionBox[
   RowBox[{"2019375", " ", 
    SuperscriptBox["x", "4"]}], "96356"], "-", 
  FractionBox[
   RowBox[{"1265625", " ", 
    SuperscriptBox["x", "6"]}], "96356"]}]], "Output",
 CellChangeTimes->{3.683210116592023*^9}]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"runge", "[", "x", "]"}], ",", " ", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"-", "1"}], ",", " ", 
       RowBox[{"+", "1"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", 
    RowBox[{"data5", ",", " ", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{"int5", ",", " ", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"-", "1"}], ",", " ", 
       RowBox[{"+", "1"}]}], "}"}], ",", " ", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"ListPlot", "[", 
    RowBox[{"data7", ",", " ", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"Plot", "[", 
    RowBox[{"int7", ",", " ", 
     RowBox[{"{", 
      RowBox[{"x", ",", " ", 
       RowBox[{"-", "1"}], ",", " ", 
       RowBox[{"+", "1"}]}], "}"}], ",", " ", 
     RowBox[{"PlotStyle", " ", "\[Rule]", " ", "Red"}]}], "]"}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.683209836552342*^9, 3.68320985956606*^9}, {
  3.683209893694619*^9, 3.683209975214408*^9}, {3.68321018224732*^9, 
  3.683210187876793*^9}}],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
     1.], LineBox[CompressedData["
1:eJw1mHk01F/YwJEkZUklW4WsKdrs8fySrCmJEipkrUQqImuWKFtIdmmGSEmy
h2snS4xhjG3M2LLO114k3nnPed+/7vmc+5xz733OXT7PFbVxMbZjYWJismRm
YvrfVg74pre2MMSxmX5c7SsOTO5Kha6tY2jRo7pfrgQHXm+UJZdWMOQ31XVS
ohIHTTPmNhMzGNqa2Dcm8AMHVgnp/W29GCrGQfARGg5eL0i3Jn7BUJNe+OGy
PXhYxql9On0bQ+5KNcJrj/FQzm79wKGKjl6b8YTKamWCXztppsZ6Domf3HNd
9uQHmMoUOKAkPIs+cqTfuqeWA0eHdXdyD02jd0yKV+l+uYDfi1vuez6F8NE3
pyqM8qDOoiUCwSSSCNp1npibD8LpwiIJtAnEd/ar84nYAjA4b+FJDBtHrbm2
XcwNhXD4r72/jN4YUnSXUXt3rARmexzw5efHkKtA8U26UgmU5js2G2iMob2S
tgFa50vAyP4uz4PTYyju5uUpdvMS8Cc4vys4OIa4OAx3Lr0ogZEPj6vVFkdR
5/LPvVfHSyDL5DnTpeRRJH7Dy+xpVikcz0v1d5sbQRf6SVPiWuWgW2nKbTU5
glKO111qNSoHmzbONMPRERR45KOf181ySJj2+S7dN4L+YV9sl9zLgVXq1iql
fgR18NjwG30sh/70Q/cNUkZQ2X/i0hW83yHkdfp1cYMRJMRMqkiY/g7Uxxly
pGwaUjK6fceotBJ8FZ7oDuFoqPXSUrFIUyUIr+rajKXRkCtnJ+5vTyWYecy/
WYyjoZ/Wwy6EpUogeMI/rgAaSsFWqP/kq6DWd6hV5wYN1ZqpN9p8rAJ8qIBT
2U4aOt8FLbgPCJxSXuNS7lIRl6bGtxOj1bDMrh+mZEdF1YJPT/bOVoP/ExaX
rttU1Az5r4JXqyH+0iNVdlMqGjyvu7y2swZqmUwJj4CKkjwcPDVP1oCgHf+W
/j4q+jdUGHEjoAbeWGgULT4bRvUPf1cOSNWCme+NI5/EKKitzUXgVHQd7KpW
rk/ipyD+0IJ7esl1UMXMbxfGRUHvI7ZSnLLqQCKYlGW/PoRa3EZQfUUdLL66
elS0awgpegpsTUzVQXii4cn4gCGkZRCqPXqhHqoLz4E/dRCdZ8fJbbA2gPSM
jIVJ2gAqC+nEDWY0QlFQV+zd2AGUaO3+PCW/ETQPPWvzDx1AbHciGp1QI1he
aVP/7DaAptTPlR8baoTokgcibDoDyJzIvmgq0ARrgd/GS7B+FCKI5jXjmqBF
WN1V6Fw/Sv4e4LAS1wzXi8ezTyr2IyWb23/9Mpth7HIkTUe2Hyno4xcEipth
8/mw8eP9/SjgEJ++d28znJoKUGif6kOts7NRG4I/IKmocd03pg9914kZWsf/
gHuXjIJHRsnozdZ5rQcNLbCpf6Jbto+Mmi8Klef3tkCMDs+RJz/JSFoiRY11
ugXK/+us3lFGRtF9VZ8oXK3Aftpo41gkGVGiJczv3GiFrANGjzyUyWj/DdOK
ioVWGKFett4d0YucTX79Uj3RDuaPLqsrKpJQdpaZH/tUB7wip1orHyOh/B1v
3NI3O6BCfTZYVYyE7CgCi+IcnXCIPeynBhcJ4Tqx5tnDnUBLqb2tM9GDrraP
iy0ZdIJjo8Jzs/gedLHjrdVoZie4Cwg3ea12I+knsolJ1gT44Ht3xnu2G0Vn
jRG/OhOAPFrK7TfSjbbztAp1exJANc/ULPBnNxr8K7mlEkOAf5pRU6+yutFF
Xxn98DoCBN1n2Z16rRs1/4FKE+kuiEWTRqiYiBR3kkUb1rsgzZuJcyqXiKg8
qTJeO4mQrcL/gzeDiC7Z6Y2q8xOh6pvOOftXRMRpF56zoECEyQ9ZJzmtiEiU
Rf3EbjciaETb8lrsJKI0n8OlgnNEmLKiElctutBqiPv8Lqwblg/+iRK50oXc
n6j6FG11w2Y/90V97S50rkimyIWnB/aZQn3qiS40Om7twHeqBzT00gq1tnch
LqWtZDn3Hog7afkmJo+AhBzfhyQwkwBYyNfkmAloZ7taUb1EL0xI3Zrk+d2J
vP7zJFgp9UKk4Zjn0mwnGj+eocyp1wuUhPmUUnInkr2hL/z2fi/4yu8c1czv
RNmJEtmuhb1QYanqcv12J9p1tkZJW4cMjx+ocDM/60BFj62quj374C651jVz
qQ3Jfi7KF9k/CM5E67qyoTZ0+MjZgJ3HB8H1JxPfz6Y2ZLnHdID9wiB41Gt8
X01uQwdMmc0MngxCUH75dl2tNrTgcC6JShqEtNCCpOm4VnTAdq3OJG0IiMrv
6+UVW9DvsoDKJI1hOJsYwF/+tAkdvKwln2VDA0PzqLdn7jShwI2gs2oPaXBL
KJXvi2ETcupoMhzwo4Ffauk+vFgTkjUXv3M2lQa1GRhPZFsj6hMcSwgg00Dn
482dNiKNqPFm3ak9V0bA+LvK+s7meqSdLCu3oTcKjkMLAzcO1KI7xgIGPtfH
4TL12Odm8XJUktb+oNN6Ci7aSlnBWhm6dszaV+/RFOhPiu4tbi9DGm8eQGXQ
FGjN83ni3MtQJ3Iqif0wBcpMzBd8m0vRxnxbyPLsFIiJ9Ayevl+CPJjOYefd
p2Hlts/u9G+F6Ne2NDnMfwYWRz3Q/tBClK9xoFv69QzMO7i5hVsWomdC8TJX
M2Zg2sWB7Lm9EBWHvQx+WjMDFL8reJPr31BU/H7TDaZZaE6XOMvx9ytS4RJj
SvKeBUWU3DsdlIeidF+059+ZA8HdrFNpp/OQXf4//Xuuc/DP7P668chnJKss
HcPlMwf1i2cPfofPiDPyuSlX/BxclaTYvFrPRaWxOe+mG+fANUKELuuag+Qq
FjxJR+hg0h+6NXwoBzku7ND9K0cHJakFnrj2bAQ5ODNWVTpsVtec3jiajaYO
sh2tvUyH8GUbz7bxLKQgI8M07kmHHItMVmcLPLrvvvdleDOjP5uTT5QDj2zm
lHJ7CHRwXXki1VOKQzsqv01s9tNBOUpbX50Phzav4IvmZ+nQWPsripOQgVy4
L/AZcGPwkdsoo8YvA/Fq/HCMPIBBhGVpwRO5DPTSuP3Pl8MYmKyG9gy9eod2
qevMh8tj0HjVRNEyIg0tV9v8l23IiJ8Tv1E/nYo+Dqn49Jow4l+sPDumm4qi
HMr1Ri0wGC2Pr9lgSUFRdUYtUU4YMIn1XUx9mogIUb2SSoEYNH3PcdlOSkCi
BdIJF8IwiDT1inE+nYAo/Tai8lEYCIcJkdXp8Wg58xghJgkDlfmbdyh34lDG
RMzphC8Y3C/HT3nUxyLKv1tlNoUYpAXNuOyRiEUPB2QS2Msw2Cbg6a018Rod
cpWijNdgoDiKWCjar1HduifbwUYMHD+zhXl8iEZ3znFzyLdgkBgoLWtKiESS
q1wnRgkYbB4oVgqNiUB8b32FgnswsPl0Xuv71XBkLwmPmfswONZz66YoKQxh
R6gcYcMYvHaadTJ5G4o4fv0SiBvBYPWfp/sLsxcoMjhG2XMcg2rJN1Fz/UGo
9vorY8I0BhLfxVJEUgIRr9x1Ka05DF5ezs++evM52kauq4rGMMBG1YtCDgUg
C1VF9pIFDD7Mxwc+Qn6oJEN8uXgJA1eBgpS+cz4oqf/A4+gVDFQ124ug3gs9
Ufzkdf43Bqz3Jn9maj9FIT4xfzv+YPAzdtvkrh9P0O326BmFdQwSKg4xuxk8
QvttA/978pexvnEVQXK7K+q9fnMhYgOD68If7b3f3UdMajKrfv8wmHamJuhm
OiCLTzt1DTYx8EV8rfs+2qDvRBUaxmAxsaT1mpsWqLCFs9J5CwO9Brbb5g5X
kNXCYm89g6sz2jlb69SRpbyr/AqDdXFb1Vmy4pApIlm7yeCg9/a/Sn/rQrhc
RxSNwUJ52txabtfgSxwkpjLYa7tzj+kZKxi8Ykc9xeCJb4q4MHk72L1d1zGD
Mf5VG6aHlUfvwrVidoUpxnyreVo0FiRc4NcrmgEHg+OH9UJieNzg+D2Jb6yM
9bUVyzkfi3wM20LAjczIB0vkXpPGXR4g1V3wOngNA2W7P6pWYZ4w/VRAaDcj
fy5nh0TX2bxBc7+4wP1VDLL21rLHBfmCClvi28xlDB48If7mC/CHP1FXcaWL
GOAvllLyN59DrbdT8j06BlB6tMtHPQjeWg1k7ZrFoP9IaoO+dzC45lX6BE9h
wPM34NPY2gvgiCrsZRvDINd+Of2rchggCcvnXDQMtLvsY309XsIPx7c680MY
+OQYePGvhEMut6O3Zi8G/PurnMdPR0JiNlXoGxGDQv8T1gVuUbDEkq+w2YHB
Si6HuOSfaPh22OC8eDMGsoEYR/WTWJgRl54pKMbAUm0v+2exOFjrfHYu5isG
4UuK25M64mCnnWm49icM6Hd8tx7JxMODmaZ8uQwMCrQ4l6WGEoD0ZtyEhXF+
RzdOLOx7mQh90ab2kc8x2FdkQmdWSoJ/OzOw+WcYPJFImRyITga5/CZN1QeM
/LLJDkVppYFTvLrQmBEGTlWX+r0X0iDn1W/eo3oYJLm79TqlpcOwh7yx7jnG
flsanBT1fgcyD/JxXCcxGL4jPvq3JwMcpXkLf3Bh8F7rW++XMDxkymwrVqij
Q7nIhWuSVDyEUuNqDpfRgbhB6k5RzITwiduPJ/LowFq0TggbzYTS7G7WXUl0
sJPQbLuj/gHyuOLvlz2ggzQbofrAQg5Irb7VXNxDhy9N9Bw/sy+wOhsVI6E5
B5RbnD7yOV8gJkt765TCHHCtyhoNr32B3jdyw0el50Ax5syzdMN8eO9zX3iA
cw7iqh+KbtHz4ZVNV9gF8ixcOTjrXHWyAMQz5AWeO81CC4nKpl5SCIr0Qsc3
fjNQqdeirFpbBhV8vh3XwqZg5uN7p0tmtbDEMSL4WnwcVvsdWRqca4F0Scav
de84MO2ST1YLrIW+wUZWzm3jwHfve5t0Xi2QhTInM2ljoCnbLb+NtQ5+Pg2T
PJU+Bgm521dLvtSBlTjfo1ahMdD65PhcdEcDtJ9sFH0nNAqpn+WSl4uaYOCd
ymF7FRo82M0ftvajCS6+ZKduyNJA4x6zx+ZQE9QV34TUQzSgSHcbs7M1w6Ew
z8n1bTQQwXtyCF9rhrdaM+eOdlABn1TveX61Gfw6I20tHKjw6YW5WYxiC6Qb
7vEQY/hLhXXI/hMlbVBpt3dR9/og9PEMEcfb2sDnY0ncIxiEVXQ6JnmkDZq/
95sXSg3CiUM0rh1c7RCiFCH59M8A4PrV2Cm27ZCjwBG0I3kAXl5dWH/F+xN4
Q9ButbF+MLtgSf3l3AF5JKJxckgfeO1L7LnMS4Crlubf+dh74d62a8MPhQkw
/HbYOG2VBJaLvFOxkgTQK1bfqzjO8MfO8I1eVQLEupv0vaklAWu4/xGrOwTg
f8bKtt+XBJHbHB+6FhLgJoidYfvTA7hFRc7X17rgxhVO+2u/u6Gts1urK4nh
yeuex3+IEKHY0ly5Bk+E2e1J6sp7iZAxOSybn8dgm/m8b9uJ4M40wxtZSwR/
zTMhHdNdIHKCmaY3TYSGET2UWNQFT6KO+9SodENRW9qZB4ZdcOhSSFE+uRsc
0mS8m4IJ8LBVSTKKjwQ6bWtnyXyd8HxrKeCaKAkODVx4L7yrE2JO5w8dPEaC
GZH+XjKj/ihMln7z6RwJtBTOrlh0dsCfewKsLfdJkHyh3czlcQf47v5LY60j
wXYKi39R9U94aViV6uXSC5tpZDFBp3bAd2jtt28mAze/9orjcgvwJ8ckP+4i
g43xSpjsaAu8sqeKBg6SYb556fg/Qgu4/Xsm926eDPwuC3btX1rgnOw3nX7+
PrjSwjx5+H4LUEJEvS459UGcUuua368fwK+xSVHk6Ic0oZnyhslmCP9Ukr3j
4gB4CDO/t+VtAkmRs2/p1wbAmWOexWhbE1THVgf3WA/AgO3qPr3lRljy+mGD
8xiAUx7iPLakRjDXGxAG3ACsctBr1JIbQWZiM9p9fQC+7rDVspNqhMbD2p7j
2YOghnvcra7XAMyx3Xp12ylgrGy5KZZfB5up0zYL3BRo7W3WHMDXwXo2k/dh
QQp0p1LfpSTWwXLVsbxnchTQ8SMEqwbWwcR0EO+Z6xTgLD/xm3atDto0FQbw
2RSoORZY0btVCwmLb+6HGAxDu9PPFTHGOT+Qk9uE16XCs2ovfw+RGuD9J6j3
3pAKZ0xvKdw5UAO7r7xsSTemQsPwtlpTrhpgWXNsT7KkgvLjBt3LG9VA15Uk
RrtSIejollksuRoaJ99RvBOo4MlNZjaPqQZ36fgVk0kqDPGQa4o5qoH0wf/I
9lAabAzm2fcLVjHq6119DyJoEL9+wdKTowoWf7+JJMfQ4JWUxH6J9Urg0s1d
y2XUDRvPPdPe91WC9mRPh/E3Glxz6i44k1gJJdKy3u8oNJBn6ZL9KFgJCTk9
3WoKI5C4pOH3QrICLHKPhriNjEByYp9u+u1yEDy82en3awSGYp95/jUuh/4Y
glDE7AhYLyfaWWmXg7nX068fVkegrS7iitbxcjDTaxwc5BiFphjK+0d/y8Dk
l/VpndOj8CPwbqJTYhlcPJJIFQoahfThb/1+A6VwNnmHWoPEGKjzkhN73Etg
NKpsVTxoHIL1pdf4Ogqh8IjfjOjgBLh6RPvdTy4AKs7jFOvBSVB0OjXeSc6H
LukL/ktPp+AF1/D7Gfs8OJx0QaS5chpCyqtLpypyIf7jjTWVjRlIeK9TYeGW
A0Sk2VdqOgcugpjPjfMf4F7NrV0HE+gQW1AYYeCRCTbpffEVqXTQtI06UuWS
CeY+JmKWODqQAzWyzjhmgq6Kvkoy452qOubgcPxGJoh/VXAQaKDDNvlnkYZq
mTD4bnfd/kU6VBQUHtFmyoSL/uVeXBcxGLLqesYWgYfztxTY8q5gUML6I2sh
GA+qZ/NfG17H4IujoDPVFw/SfzKzw20wKOWSqW12xQOr62sShycGCkPj+vUm
eKi87XhqRxbDQ8sa620P4qFQfbQyKxeDENUzoaF8ePgkdEtPm+EJO9gMa75w
4yGp96pVcAUGG57XX7Gz4MH9MuNKZHiI+Qo/jE7gwPl4uQCOzHj3q4Vdxag4
sN2lkKlJwUDuXw6rXR8OjJuOVgQwPMipwu3ycisO9DIzdUQZHlxUocZ8rgEH
/wWKEKsZnlUolcP5ugoHStbJt6wY3iatFuI2VoKD//uvhf//r/0fJxxYHw==

      "]]}}, {{}, {{}, 
     {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[
      1.6], 
      PointBox[{{-1., 0.038461538461538464`}, {-0.5, 0.13793103448275862`}, {
       0., 1.}, {0.5, 0.13793103448275862`}, {1., 
       0.038461538461538464`}}]}, {}}, {}}, {{}, {}, 
    {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], 
     LineBox[CompressedData["
1:eJw1mnk8Vd/3/6nIWyoVpVKGkKRS5qIlUZpUqDSQoYEoQyqEiESGKMkYIslQ
kilkmck83XuPIVGGO99IksT3fB6P3++fex/Px9r7rNdewz77nMeRsXEyubyA
j4/vMPnzv//tsJo5P8/DiubxZLX3qWB2bXPQnxke8lkH+DprvgTPZ1oKP3/x
0PdFuJgGJkM965zNKIu0m1ysL0qPB6uYpN5mGslOyq38khEQOa7YFPuO5Flv
+foXHjiZuidb9SIP9RbIsKxjMnBd29HD286R/txuzG789gb1ZizoCqdIe85A
/2WlLAw74Su37gjJ0xtvPS3MQYV/NQl8mjyU1i9zQcv3eOa0cVjLMh5aOQTn
L9tfiCVC1jeulnNxcG9xvZk/YsvX08RkMRetjA34M5ZV4GDhUf37H7goKphn
rHu+AgUva61OzOBihKNvyY6fFWhSuby88wkXnSN3r9PeWIUsj/Kle6+S4xe+
4BOyrkFJ1vocMVHS/qW1bziuAXdUrVjzUpj0pzBhqN7XgPqxi/12CHBRT+br
6U3rP6PdwZ9mh2c4mOv3fktP7GcsSG2cvTfMQb4jMR9znzSi8QWPo6xiDvpW
WsZquTbjvRYqq9Kag3oX1Y5PMNpwkPCvyLrAwRNWT0/eWNqO+sMqz56d4aDi
rIN8qXw7Cv59tNf+GAeDntaI959qx1BFiBTV5uDgfIK8bn47xvm/1rgoykHz
52HnQ+07cDbcbMmhJRzMqOkaC7jXgRZx/IO7BDkomp1mdPpZB0q/Px8sOMvG
mFypTv+KDnw9sLw/Z4yNzm9Nl4iId2K+trvfbDkbJQ506A8VduJqQ/nTox/Z
mJFbWO3U2Il3TnQqteezkWiI1CO+dOLuq8rdqZls1JuIvKO5qAsrowYVjkSz
sfj1tz6V413YyjNqjr3OxhOXLb2kBrqQ8WrtGk1JNjand15xGOzGVptvt3ev
YWOZgZHgSl435ktlUXVXslFamnco+l83+sTqRBsIsTHU6ha/1joKrgy7KG4y
ycLJMF3hbycpuNvt1arrzSwUfZ8DX0soKLXzxk3nehZ2lx//z66egou4Gl03
q1iY/O1sQFsXBVuvNjzxLGbhJf6Qjt1sCtqcZ60ISmNhtud0fMB6Kj7S3yma
6sXC3D3D/j9vUtFp/o9T+h0WntgRq+bkQ0Wzsqq2N64s5JNmJzcGUXGjhtnj
XDsWqpyM4EonUjFvy51l5WYsVN6qqHyshoq9op9EepRZ6HbFMTZPhEYW7APH
/s0s1ElYUr5TnIZpj4ybv8qy0L3G+1XkBhreWDQYMipB6hWCuZ/baLhgesGS
yUUsFBs/lGxwjIZKX43+W/6FiWX5h0c2BdJw9uCUWjqNiRLm1usNwmjYmptq
pdvJRPPyuSq9KBq63p8rcqhnYnLzsY9tKTT8KJ9/peE9E/N7uu4fKKXho3Dr
JxezmWgU1/3gaCUNL/xeVj6VzsRpDu/Fjnoa8n22F5dPYGL/TpfLYZ00NHKU
qvELZKKcR6TvmzEarqM08yT8mJige8cljk1Dtq7n+ty7TBTV5pe0H6dhxHKK
64Az6T/lDi9phoY27vdf3HJg4oXHYvuE5mmoNrSjUeQKqbegMNF4IYFE3iOZ
PeeZGMXS/XxrCYGZ67WOdZ5iIl0jr+L0cgK9Akbc7U8wMUjlsNjqVQRKn9Zr
f27IRKsRirTKOgInyjl/t+sxUShac0HIBgJrNsdvrttN8mBMRI00gVf//PKZ
3MFENwchgW4FArVsUjNDlJjYfsF2VeYWAoWbTlBl5cnrHTwjdVGZwLcJWdtO
rmOie8Yt3ys7CfQVOHuWLkbag5v+FasSaHJD8MG95UzU01rxmalO4BRY9+cs
IuMj/iyWrU1gQ8YyIcN5Bk5e/VJXtofAuBVlqv1/GGjXueWJoy6Bjp72F29O
MlCZ/9by2b0E7v2+OkSYx0AD9wITBz0CRY/WFKYwGMh+8sWpZB+B3/JdvmkN
M7DGv8+ToU9g/gapZe0DDMwwi304vZ/AwMBm7as9DOwfnX0zZkCgOc/j8lwX
A9snxn4VGhKoZL458lkrA62EtO5dOUDgbEV3mfJnBiaE152dIrl1y316dTUD
p6vtYq8cJDD5yQ6x8+UMVCvnnSwi2fVvP0wUM/DoNcXndJINLj1yCP5A+g/t
85ohWbxF87n0WwZ2V7Ss5pA8qj5SVZTBQMID3StILn7xhGucykA6//VCN5If
LdZbN5pI+vcM//4fyRecOYbeMQxs6Ket8iX1bO+JcxF7ysCo6elzNFI/n75R
YlYYAwNuJTYvJ7kz81eDfhC5nk5Hry3ketNWpU723CfjeVnYR46MR03u4pAW
b9KebGUsTsZr5JijTKU7Gf+6gUAWGV9BVntR/k0GaoW6aL4GAhWC1I0zbjBQ
4t4CZyMyHwfk44bj7RkYushdr02HrJ+qOc/Hlxjofq6geA+Zz4zZ+te3zzGw
ImPRYK0mme9Y5b3XTjHw0umWt9/JemBoRHZbnGCgGDRdGiPrRcnlHL/hAXI9
d97XJu8g8PAyfK61j4GKoBlxehuBDlmbtivrkPHduc1vQonA7BH2uVW7GHii
3U/8izyBzfdPjgtuI/UXXSK2biKQI1X4cGYzeT3dCj5rsr63n7uXP7SBgUJj
dRU+ZD/ktq5YlvsfA/UgsyB4KYHtDrfTUhcx0Ld2/vxSYQLHhfp2P5+nY5nN
wZE7ggTu2p921ecXHbuztn3lJ/szv0ij8ugQHfuNt8qzuDTsNos/o9dPx2L3
2eevmTT8NT7PUaXRUcvQ6dqRURpqKH9et76FjrOxpxwPfaFhcfJ5N0YxHcWM
NaOlG2lI6FYIf/lAx4xy3eK1tTT80yuX0v6Wjl4uTQUzSMPd4tyWojQ62t1V
9XMroGFZsO/mwAg6Jvs9EDqURMN+hZFPHiF0JDy3Ft6PpeG/6kNm1wPpmG3v
VpL2lIZ751b6mXnRsWL5vkUvH9KwwvVVr6wdHSXkTA7536Bh9fnGMATS/2XL
nxxNGranrfpxYDcdQ+t+Gkuo0HCAc8GkVY2cf9+ET1GRhtP3eKu/bKGjdJ7b
+99raLg9TSx5ZhUdG8qirp6bomIc2zJPnT6GQo76Y7pvqZihniH26dsYqlne
SKxLo2KBz/htgy9jKOoU1qceT8V20YA9pp1jSIg839PwkIoC6m9qnMvG0OqS
f2L5RSo6e/+kZkWM4UrjTqcFS6joU6ejrRoyhlHXw+7PzlMwZHlgfMmDMUw+
t+TIwCQF01MkrD57kuO1thqdHaBgX60uY/TSGN4PEprbnkvBA8uC/spoj6GC
kuVL++MUlEySlI4ZGkXFSJndiV7dmBPrt1S7fxRlt9dt+nmjG/dGjc70UEdx
4m9Hv6p1N14MzqWsbx7FzIJR/tuG3fjypkFIUuEomgg/n54T6UZFI8ep9JBR
3G5r83hXTBeqjZc2F6iPYsP5PqPnSZ14ZP95j67gEUxfNEXw3W5HJdc7He0B
I9j4TvRUy6V2FE55uqX13ggWfj25IMS0HRvmmnoabo2g158uuV6VdjxQorO7
3HoEf5TyT0RS2lBv58a/Gdoj2L7LL45e1IrqUkNePoxhtNO996/4ajNK/b3i
u+XQMLqxP4Xc86jHbW8TfV0535D+Op0DO4pw0C1lOzVjCPU6Qp3lpNzAPiEy
NeHaIF7K67Na+6IEzH3ObsqWHcB003EVG88mUGRtOW/2og+Vk2xvfrTuBgfj
Ew++fSdw0V19Af+bfXDu5nFdDQ0q3n6/pTRj6RA8RfoJLOzCP1NjjrO/vwMs
IE5v5+9AWr840fplFK4RVc6vfjbjzvwrRf4HGHC9y7r645dmfHRqbdf+Ewxw
buVb3VrfjNmThS3/zjLgTs3e0qn4ZjwNKmYXrzMgILdEwMigGY+r8p8mnjLg
RVBeHDOqCa9QvD8kfWVAl9bLmh0ajdjhwrjr7MoEnVg/iRL3elz3IeFlYAAL
jp17/FzNth4TrouY+YeywHJ94up3x+qxp3SRl0cUC+4lFoulydZjXFSZgkka
C6pSeKLhzXUYW/DnTX41Cw5mWvxnI12HIRv7/HX42WBSqj3zX0MNqmkmdhjd
YYOt10GPgLwa3B0ar+bswwY33VPTcwk1CPFOTREP2PAMnad+utRg+khj6Ken
bCCqX098WV+D6ms2Kta+Y4NFszjrvVM16pTbrg4ZZYPdl/G+s2uqUFMgc2TY
mAMfnPoFDiysQps31OPVZhyY46/fsYtXie6pmQnx5zgQpZDgL1xfiffX1xLa
VzhQ4XRga+ntSlwx65ev7M0BiQXxnpLUChw5vbaF+YYDEceCdpVvQQzYFueA
cxxQcLUIjOZHHOCTSqAt5EJZ9K7eGz3leNNNKpAhxAX6134/qeBytBOh+M2s
5IKe684OX/ontF+g8btdgQs/onud9r8uQw/OL5rxMS4cH1TOaZArwQUTkR8C
n3Hh6KXNVvDnI6qaq5upxHHhMF1mVWHLR7zSIe3Q+YILBj9We6Te/oiVspVT
86+5oMXHb+jTUIymTzRs+Eq4ICtN6Vd1LMImC0ePZ/1ckEpre5ypV4RDh3VY
tYNckFRs1JcRL0Lq1PIK7jAX1qhgxrLyQhRaqBO+hcMFEb03bozlhVjh4Zy4
/x8Xfl30Fkn6kI+NnlFRQpI8mPh+B8WD8vGjnuGHcike/Ljq6hp6IR/PFlM3
Xd/EA6bTVcJDIB9XBSZO5SnxYODeyTSzMx+w4dLeg9+0eNCQJK8j/Pc9DmXS
sdWUBxoYT2MGvMULBuE0wp8H60QWMV6ovkUXzX9L7QN58M/cccbkWw4GF+/x
nAjiQc2EzoZSyME992vGf4TxwFRhwCZkJgvl0rOOJjzngXOYNHer8xv8ZWuq
lv2GB2a9QfNfN77BsUAf/7YsHmhuHheNasnAXKc386wcHsxVVKrOKmWg9cGF
3qJ5PAidtPFoHknHvlR9n8UlPHhz/tWi6+fTkH5KUi2ngbRnLF0tI5yGEf1K
620bSX+/bm2mFKei36fFiiubeaD1+MBh3dWpyN8b8/58Gw/qqsYeL+1IQQ01
e48ECg8yl59IqbyXgkd5OwLW03gQdqE479b2FEx+X//+KUHqnQqifAlJxgu2
wm5OfeR8UzONC2EvkF71PKR7kBzPkTtbw0xEuazoVMlv5PiHv+4qGyVi2UB7
n8V3Hnwvia6cXZCAPOGmrKYRHvDJ9hxNdI/FzSdmK82YPKgvfeMkQI3BgDU/
ui6zeBB+yvPJddUYvC8wvtCZzQPJ4PWELjcaxxbKfnLi8kD7h4XtgG0UKky2
h0lO8MCxJI1xp+YpLuntMpkg+UUAy2mF/FN8c6HAvfInDxau9fAyGI3EIOq5
0SO/yPx+xwUDByKR01O7bfEUD+xyBIPvvI5AkycWlFKSY/0Vt57qCMeqbBeD
FdNkPtYUagY9CcOFK1KW5JFsk73foNQ0FAu22+46+ocHyhRLCxlqMGouXf3C
cYYHkfZse7PnQWhWV/ttguSpfx63H5o/xLtbAgNd//KgQuHZY05vAPafqGda
zPJAvlQ2QTrBH28vXJX1meRHx3MzTC3u4xcdgcbt/3jA+65bELjRDzfvfHgw
jOTXP6L9b+I9VH7qv2mEZOe1eQk9+7wxJGrUQmOOB7v1WwqgxhOTRhKnfEle
5EBvfXXAHcMKYjg1JLc+XUhf8vkWqufV6y+Y50FM2UZ+1yM3UU9ow5QWyTYj
2uuIFmcUtw1dbE/yGcnMK17JjjjIFr7zhGTm9cEYo1dX8bHxY4MCkn1wdZNY
pg12vVvh3EGyrGzcTKXFedxQFPJnlORDtYIXz109iWnB04O/SK5IaVnaVK2L
Vk1mCnMkG6XOV6RvlYMlSS8+z5Mc8PLKWPFvI5BNpzTOkLz+7YHlBq6nYZTv
7xYeyZ4C1ymn1KzA3HjFWD/Jox80UoN3XIa92ZILakg2teFz+aR0DTYWyd5N
+58/0ca94/JOsP+RkokPydFfDwU+EXWFYtR5eJLk5sLt15XD3cDY2XbdRpIX
hK8yq1tyB6JVM5cMk/HSujy92yrYA75LbTyfSrKTzheZGUEvONbYInSB5PRV
VUJRAT6QfeCz2DKSb9zq+r3azxcSNsve+0jmJ+1o8UDu3H243qftNEvmF4qV
Or11A8Dk2KZfT0nu3ZRYe9jrAbRbY48cyaJ//bKH/zwEvk23cBdZL1lXJpPe
awXD50u1Fe/IejrQeeWpz51HYHlTXUaBZO83RzwlfoXCnacT83NkfUqIl18f
UQ2HLSr3faxJzvdVsc5zfQx8uYUXPv3mwa8sYTmF6QjoHkrVsibrfas/T7ji
1lNIefDH9SzZLxf2rBLKkY2C0ochDW5kP4X+1BCIa4sCvKZrGjTOA66tz/zN
LdEQ/fufUAyPB3kGSyc3f4kBpozJv7Nk/36fVRkXexQLr1PUFmqS/S1WYMbl
14yDJNmreiIMHtyST6D3RcSDT+Rf66RRMr6CW788NngBGbMrjtgN8cC+3LjX
a/wFdA0+E1tM7i9xt11p9i+SgO68UeLFAFlvP/vpMl7JoL0fW/PJ/eirrdz3
v5QUuHUDBB6Q+9lLgw+0d8FpYHp14VRuPQ9KpA1PKwymwU0x48iuWh50zVK7
EzRewbh11HVuNdkfBTMdwd9fQefqdSyRCh5cltdvttV9DR9uvBHiFPFAUbCj
Ys34G7iRmnRodzoP9L7ZQPjBTGh7nqE+lMqDs+WTnxa9yIS7hwsdfFPI/r0t
UTp+OAt6cq4Vv07gAXv0YkFTWjY0lN4ejX3Cg3f13Df3zN/BDYFv25Z6k/cj
y6XeO968g8eb5l/be/Jg2dTWE1//vIN/n9+54R1yv3qidjfpWC4s9zgodMaV
B1EVLjLz3FwQpAgraVzlwckN7OvlO/Ngwe1+Zv5xHjRSBwV1i/Lh04PfRz6u
J/tZ1vlH1Nd8+OmvcG2fBA/+XJ/vYS8ugNt1teNVYuT6BDbmJJgXgAczVi9v
KQ8eqp43nf1TABLWnT/3zZP39whKUqlOEYiMuTspDHHh06FGrd1VH+HtcJGA
cDIXuOpq1T85H8GK1lx/KZ4LG2VfHMtZWwJdm9fwiqK54DPjYiPtUgJbzt92
PRhGnj+y1oYKSpdCdBG/yxJPLtSI2H/t9C6DHgEfD0UTLjS2LQ500Ebw6bAK
qZjlwEypi6j8ZYTh42mJSr85oJTRFzcQgfDZ74l+2DgHQnzfvTtJR/jV//aw
zigH0mOy2PFHKmCQKuW7r40DdodMV9+fqYDUq1V0RhIHWJkv7Y3Nq0DVvNm+
fA8HpnrtFtRer4ILCQ5uF9Q5wLdkR/we/yr48jfl0c/tHFjtUNqs+LYKlkjU
DIrIckB/a/eOhYuq4UPbwCX2Yg7EZAlMFb2rhszYFeetOtlgkG13X2ZxLbDF
tQYUbdiQmLM9frKgHqoLOe1vrrPghohE8J/P9cD7/LZC7goL9jrw35n7Ug9X
6l+viLNkwYBit4mQYAN0rgwYuHmcBdJpHsKSpxugVXvpmWEVFqTF1Xjsn2qA
FrEE65IJJmQ/PGf+RKMRpld6bTQiz89l1oHiKkXNMEdJNjxrzQBPsVjK8ZUd
8J/ybbpL8yg0t3cbdMZ1QY7ge5nja4bBpUlT4fFqKtTEXlBrVx2CtDYD8SsN
BEyZ1w/d/NgHodlFGYuP9kHyknKtJ9oU4H/afahaYACUQx3696xqhjVvsurT
jAah7qe251rrT0B97btJIGgIBk9tiPj4OBzOZykFun77BkEmKUdUbAtRJ37x
nlr5YfBN7xb/cqoOl9lOfdy7dRiifi11MvCvwyGlEa1ilWEo1n6ZGJFbh4El
VRpZe4ZBsWfrDFW4Hjt6vHdFnhyGoLMiShLl9XhFYnKLhTc5f+71yhNSnzHi
2aDEr25y/HbLzPdNTWhj0fb8Ru8wSAvN5rv9akJ1+fLV9K/DIObZ7SMh1Yy9
+fFifcxh+HFXsYnftRnlu0+LVvKNgGju+pQzq1uwZGXL4jDlEWhY6f93wrwV
vz/+OCUXMAIGd5zUfWzacVd6KDMgeASK2cZPf7q14/2yiwPD4SOQMB5DnHnY
jtIMgbq02BHQyLcj2FntaKlv8kzu3Qj02k8PH5hsR2KSqSrXOwIHVKKHs/06
sPmspMsmlVGYnmbubQnvxPXOvEv+6iR7JeH8i068Flhl/n33KJj1D6+ReteJ
/32w00s1HIUM2zUicm2deECkYPmm86OgI85RNlzWhRXlx97KBo6CnnZcJCWo
C/M33WPJ9JO8U1GymHx+LhCId5MfGoVh41BTz7vdWDhW+E9xdBSe3KgTVArq
xqIs7nKVH6OQ7J2TcTKlG0tULdX2LhqDc14qJys6uxH363qfUx6DG0MG35bt
omCF/FlBy51jYCQ8uvelLsmLbz221hiDKZMyddlDFKxqyk6x0xuD8hdqH8cu
UrDGVLLuttkY7C0bCHoYSsFG27/LnnqNwbW68y1Lv1GwyXBNTLTfGNR9U9h4
iU3B5s2qMnGBYxB6300ufYqCLaxrqikRYzCpNb+GI0zF9pu9Z96ljUHgmjnB
B7uoSPH/mNzUPAazcuzz7d5UpF6mbGnrGINFd/P29gWSfHA8r5NK2v9p8Nof
U5FYsqW2Z3AMyoQ23vNKoWLv0xjG2OQYKFapVHZWU3Ew9c6uRRvocEK6dObG
IhpO9rzl3ZSlQ0P0ge4aERoKiY5mf99MByMMz+YTp+EOL7PN1bvooMcZX6ok
T0Mfs52S943oYBZz0X+fAQ2fPLLrGT9Gh3zlw/q1R2iYXpEUbW1KXj+vzG67
KQ1blJet2GdJB5Fnxsm51jSUFGAJ8LnR4ahO0ytXbxqq7JGtdvKgg1VkcahU
AA0NXM76fvWhw4UIhv77RzR0+FI/Ux5MB/Pm1Pb7z2lYUpDG804i9drZne1/
R8NWVl82J40OOux7L3MKaPhNZtU1i0w6hB55KGNbSkPhcL9hnQJS3zoHN886
Gp69Ytnzt5EOzu140ryPho4Jz6Id2umQVpK9/dAgDX07m037KHSY3qrwesMI
DTP27mktGST9WehscOHScHq1RLXHFB2G77rP4TwNRY4d92X8pcNkm31M00IC
pf0Ddc/yM6C5zW1XyWICD/Imi7REGKDzuUVCbzmB0fUd2b9lGNDw+UwIW5LA
zH9C165uZkDUKb6Fy6QJLFfV20xTZoDyVr2BFZsIHEl6m1KoyYCK0Z/OFYoE
TlNGLBV0GTB7WIzfYSuBIiIbJKP1GeD7Sy799zYC1dxDom8dI/3f2DdYuItA
o7dVpiMmDJhupB1jqBF4YfiP6ClzBugF3fT7p0Gg87qdrTUWDJAzOX71pxaB
/ifsQtRsGTD5LIXVuJvUG5hklGbHAPr9hBl/HVJvGVVA7AapT/iG78a9pN6J
pdX+N0l9A2AfBwR2Khr6/nRnQMItzZTfegQ+V6rtFPRhgNGp8O8y+qR/ZUP5
df4MsFI8a7BzP4Gy22vvbAtiACFz5YO8AYFjOwwb9cIYULzHV3qe5OydtZJm
T0i7htPdT4YEuqoaOl19zgC++N8frA4QqKleW+mZwICawt6P9P+9X9cwFAtP
ITmJ6nXqIIGVWrVXUtIZ4LYrnZ1OcuBuw4/5WQyQXMn/p5/kIzq1SxpyGSDy
Jj7yN8miew0t+woY4Ki4OX2KZArU5nJLGKASdFKhl+S4fYYLF1Qw4MLDWv6X
JFvtrz0lXkv6y1JSNCZZ3tAwQ7GRjKe+fPAAqYd5oHZmTxsDpC1Pi5mSnGtk
eOx4NwPUes9/zCLXc+twbZJNDxnfM+1X6eR6dx81nLg1wAB3OLL8P5Lnj9Ua
BH9ngGKFVdLS/71fP274PIHOALH2lMVT+wgMPlnLeMdhwFHlBM0qMt7GpoY6
1RMMyDfv3ehK5mPVqdpw6m/Sf/L3bAEyX8RpwyHGLJkPMZ0OLzKfL8xrVf/x
M6Eh7NJdGplv23OGgaKLmaCY3Rsnrk2g4oVaYpMIE9opElKamgRyLQy3aq5g
gohW9O896gS6Wxu2W6xnwqK96215KgTq2tbKukgzYXAjPyVxO4ELLhveCpBn
QlDeN/MdygSG2Rmuy9rBBLvpnWZ/FQg0uVbrWK7GhOGNlzLV5QiUcDTEDm1S
z+C6dhMZAl86GV6a3s8Eg6y7B9XXE3jVpbZwySEmXLjYfmdmDYHKNw3/kzIm
9QnMq70UI7DotuFbQ3MmJIhIropdSmCzt+H0E0cmaBX/C5ado2HkvdrD6S5M
kDYcOjrzh4an/QwTP95mgvOnt6vzf9FwKMBQf9CXCcSOzrstbBpOhRiGbnvG
BMm+FQXPemhYGlY7oBfHBLOVu4i73eR+8dhwp1kSExzHvO/ubyP3m6eGVM83
TMhYPDt3u4aGUnGG0g2fmECnR0tdz6GhFfPNWGUVE3Tmfmt6vabhy93L3pXW
k3rag32up9BQoY+q+66DCT+stp6eiqLhdkm789EjTDjhv/NGkicNnR2bZSOY
TGhOntYov0nDvDIVZjCPCRH3PXPKHWmobvHH3fsPGU/BPbaXLGmo8+JR9KWl
LOB7+HXbPj1y/+ZyLSxXsuDCyqpkBy0aVuw1lTdfw4KGb0p6d1TI/ffr+vwj
Mixw9y+r3ilNwyPSOR271FkQY3Vrza45Kp572SbCb8ECoxr5/JP5VEyYUO2e
sWaBkG/4iYeZVBzQj4mfJM+FPziEWGIyFW2+WynRnVnQHuzXZRdKRXu5iYNt
ASyg5/hZ3LOhonu6mH9iNgskrd1144SoWDLlfvj5exY4H2982ThLwdkDX1ZE
FrLAbt9Fxd4fFPQde5UcUMGCRaYLTKIJCj5U1Cx36Cbn258x9kunYHTm2T/a
syyoiWk8t0qHgizjnskkfjbQ/dK05pQpqPfT/IfAYjbwtVUqVm6gIHOP+VjH
Cja0S8gwW+e6cW/LaYr9ZjZMCgjELsZuHOGZvo81YUOQzg1qr2Y37o7qyp4/
Q14v9XGdjkI3hmuZZly2YEMyv6/zLbFu1PIzSdppx4Yf8tLx1350YejKk2Gf
vdlwoqyYZZ3ehWrqxvZ/MkgOf+7kItyFwT0tly6+ZYN57+cmtalOHPA+ZlX7
gQ0NRRoPWoY6Maju6JnIcjb4vhUu9inuxP4zRwy3dLOhwqC88IttJwZ4Gsmc
nWeDyt/BLs+8DuxC/Z7iUxyQCOBERG9vx94dS65VneNAUBsFo1a342BS10zT
RfI5YZbRTJ1tQ/a9S5Jf7TkgbdGZuj++DQX1Ai8K+HCgvfW7gU13K2pXfB45
mc6BQXGxo081WzCp4sQEc4oDFZXJo1UVnzFdZa3/5F8O+PanikUHfsbs5KFV
c3xcEJXZ81z86Gcs9nVVX7GEC77DmwXWUhuwUy/KXVOKtGtnOG0brUeBStqc
/0Eued7e1uAwVYsOlZZLNsRwQSVJLVCTWok2ST3RZYlcyJ3t5d8fXInnvM1k
L6SS83c5mg/uqUQj7cPa8W/J+YbZVW1JFSj3Xv3q2lou8Cls9P1dU479ySLV
4hNcsEqrrP7w6iMe9S3xXHaUB75PLt/77p6D+y3VBd+eJDl/8o+1SDbu1smN
PHaGB3wRNTJLX2Si4vSrjFAbkrduXzNa+hoXOUdShT1IvvL126OhFPx00W7X
YvK5mq++ZcfD4w8xX/f7p/QsksU36Ihv9sPs9ZaHDrwnuZtvB3BvYRzN1OpB
Gcl6HqoHpw7C7eMQvrCL5MTSOzvqH8H1bSVrUwlSz1Cnw/LoCLi0RP2V/gBp
7+/PPN38FEzqlcr8GCQf2190ziAODr16dVCGR47/zvq1LjAR9PyluyomSXun
dBdxORk0reMtrWZIdqbqRQi/hP/3PRL8/++R/g8xIhIT
      "]]}}, {{}, {{}, 
     {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[
      1.6], PointBox[{{-1., 0.038461538461538464`}, {-0.6666666666666666, 
       0.08256880733944955}, {-0.3333333333333333, 0.2647058823529412}, {0., 
       1.}, {0.3333333333333333, 0.2647058823529412}, {0.6666666666666666, 
       0.08256880733944955}, {1., 
       0.038461538461538464`}}]}, {}}, {}}, {{}, {}, 
    {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], 
     LineBox[CompressedData["
1:eJw1m3c41f///9FCkraiQpLSUDIqPE6yV4qkZVWirDRI0jEqKit7E8kKyTgO
b89jFAmhzMThnGOcKSEkvs/Pdf1+f7lu1/2xH8/Xui5H2t7t7HUBPj6+fcv4
+P739yBsZi4t8RDfY5FTxu8zwOLmnqC5eczm5LYDKW/BO1pN7vc05kLq5iMB
edDAumg/wsKcF/l7KOE92Mal9jV3Y259FD+3owIifsl/iS/kIUJ2rZwTqQ5I
ksedInN5iBLjt1Ymuh4G9IxWhbzBrHn6wHL3j7AvxeUUMRHznqR/RlINUGtY
XOnwDMfzCLOTvtUEUxkn8pVssF4ecLblXBts+2pseOAiD0lZFz0bL20DwvyV
Mblz2D5Ic37vpnYIMSPKbjPiIapz7E2J9naQ+1efxKfKQ7aS6RI/NL/BeUvT
kBZRHO9Ufl/aZCeQBe1cb1RzEVH1zZ/qmj5oGbTsmSJxkS1tkbtJ9AdQy4y1
/D9wkRSfwumQCz9g5XW1zcnZXMTHvtAwxPkBZ2vWVne84iJKgk83QeQnsB5U
r9G8wUUTppndrVKDsGhW4vnFDuvTx66+txmE9fK5Q1aXuUgsdt3Ex+RBUOuK
Lr1zhous3jHy6ldTIfCIy5WcEzj+iqTkL0QqSLIk3m0U46KiyRtfr1gNwaHa
dVteC+P6doXlpNweAq34VX6HVmD/ugAW8fkQOOr9tjCc56AJF9EPCpVDUJrR
tPCYzkHETBQuLz4Mjd4UhzWDHEQVkmD7HxyG/jNlbQm9HDR2tfY/f+1hEOB7
nVnaykEk/5m6u27DYHr5gTGLxEFWHs26ijXDYKfkVub1gYMa9wtp1X8fhrvC
16VWFnAQZVNtDv/YMCSQzKakMnC8loRi7zU0GNkon2QZwkFpA4mEOxY0eNzS
xaqx4yBClu6X8Q4aUHsCKHmXOcjr6OGsy1QaaNEVo6PP43yt7dnPOTRY+fe5
ppMJroe8OWfrKjq8lIcIsWO4n/8uSYuq0oGrxL4+r4R18eiGa1p0MIP44/SD
HNR2bGvMAxM6bLD8TSuX5SA1o/V7Bu3pkBDwVsVGDPtf5ThkPqfDQqjFaoPV
uN7s0NSZSDpcSeCnHlmJ868M5Akl00Hq/aXglQtsZHb7k969Ajr4VwlaT8yw
UdyZKMHWMjrQG0qP9P1iI/k9pDPj1XR4O7C2/90oGykuX8NybKWDILOqKHYY
24/H/mrppMPNaacnfj/ZqKd8P2emnw4HReoPnvuGWV3lQAyTDiXHvPwWqtlI
nKmQtWEZAzbr7LYcqWAjyrD+/teCDPA069jXVsJGQXlCd/+sYcDxG/u/Z+Ri
f6vKnD9bGJDk0Zsd8gbXsyJLL0OSAYuPnj7yTGOjbH35VVukGVATRZUzisH9
dC7Tt9rLAJm0kL9HI9hIsF7DU+4AAwLzjrfteMlGts1tu6oVGTBSNpop+AzX
o7Uyc+dRBujXRj2Y9GMjsQG6iZEqA3JbTpr2+7BReK+i58njDFjdy5X55IlZ
yPmegAYDnOmJfwo9cL75zuRQYEArT7853gX7CzvrjJxkgOLf6bQAR8xPxilC
2gx4tTLjnstVXC+l4dqcDgOm1pkZnrfG/iqaT0r1GHBu+78dJy+w0WyK1n1N
AwaUyef+3mfBRkTR4BdRhgwQP3q+ceNpNmoTDRQnGTHAG5YnLxqw0QT5mnuO
MQP6Dd/fHtNmI/2+bSOOJgzQtLTW7QC8n78WzTOYU+1WS1Qdx/MOJ94zN2UA
nwuJ90YZ9y/UpPQYs73X9fowRWzPlrzgjbk+YH38AwUc/88uVR3McmHI5aoc
3r+KwU4qjheU4KxlIs1GjZJl9kaYx99s3aIqyUZqWeZnn+F6Wu2H7x/fgveX
nnM/HtdbsjOvS2M9GxEy5Mp9cT/x/XdUTq7B9UZa2Kjifn3j1WO0BXG/Cv7k
OjyPq5YrZvSWsdHY2roNsrp4PxtazxktspDiCK/UCs/zQFtMqekcC/W4ZrHs
tBiwPsRm09kpFtJPNlgCAgP+GMjfO8djocZC/hO/8b76V/76bsVkoTj9qrGH
JxiQRfSPsqGyEJ/4F4qoCgNeaBhN2f9gIYp116OtSgxwn99g4dCF4/mc7Zg/
hM/j3TcbXJpZSP7Qi2ta+HztPOx6x70BxyMfUMrZzYDlXJVvd2pxPcfWVI7i
89h6o/GVN4mFCH87NnG2MuCDbMTkow8sFLSz3bNkEwPihi6c9StgIbP96u8t
1uH5X2KtC8pkoTGa2CcpfD3oiZfcfpHKQo62DQdN8PWyv9OnPTQB9xMXGGy+
SIcZU9GI6HAWatt17ADvNx2eax0Wy/BhIeIquSann3RwW5pzy/JkIXEfDTuX
bjpYVNV+zfFgIas/9I0m7XTYoWIRVuSI+x35M5xeT4fivZ6i1RYsNNtz90l2
Dh1iR8C15jQLSe0dcIl6TQefDMHWekNcr6JZmHUiHXS3J4R8IeB57HJ8FvqS
Dn1i/4n07mchNXv+Z9dc6IBanjj378Hzu/31jsF1OmQ+N20elMH2TI1s0St0
cF1OfTEijufhqsQ6bkwHgVmB1VPLsf38err0XjrsG9QXWvuTicTcRLTtftJg
QW/maFY3E5llN/wJxffX1qIMW40OJlKrfbUiqYEGHv6L5bcamEjcq8vx3Hsa
VOwucWh8z0REb7c2kwAa6DvvrPd7ykRpaTzdOGka3Jib9p06xERjiufEUwyG
Qc0+I/fFPiZy3PjqucGJYRD+YtYls5uJCN+Wxf/cPwwFSXkHzmxjorbdhDTK
2mGYAbv+d8uZaFZVbOjB9yF4+rT52I3ecUS4vBAxdWEIMjdkTPX6jyOSodNE
tyUV6otWvWh5NI7GHjxfUtGjAsPEWbrGaxxlD+1oClKlglyQsmm26zgyK5S1
WiFOheyFhrf3L46jNunhu1+LBiGfwb644cg4EgsVl5h9NwAl5So1xkNjKI0o
d/ZCfD/UXWoKQTCGJjKtHSl6PSCZKikVNzSC0hwuC6rltcC7eL81x/oxC5Ve
Ur7aAppRI/O9XSNIqoW+zkyiBWyCizolmkcQcZT1bvBFM7y+o/0itWwEKVpq
599z/QLy+s4zWS+w/Sl4zjz2GY7+qmwuVR5BhFsUA+DUw0eWFNlSEftPStt1
5dSD5ciTt3/2Yf03Ky/eoR48f5z2PyY1gqiVwU+yqHVA/khT/U8Yc93dT/Su
WiAkrM6oH2Qg4tnrsibNFDA6denBt2AG4nulc5RDroB9Hp7tbYEMJFWTgQb0
K0A4PXJv62Osx19ce6SbBI2LX3ob7zFQ2gebXXzT5aBLVj9ebYe5euCvvnIZ
EA7v+Jt9DPs3LFPk/1wMyjuHfHzH6YivJ2KKS8yGjab/vj+k0/H72n5R5fK3
MOWz9cCDQToinrkQcIWbBcV9Z37e6aQjwueen1Y2b0AxplbDqQb7Ezb6iBm/
hn1rMhfN47F991Vfl9dxsPOvA3GvAdbpwtV9c7bA7ryRST6FOTyfYWKqA6Qi
x0YjTcxt2l0W/AbIzOGmmKsSZtI7wR5FF0Rsd0kr3o5ZTHFZx0t/NPz2LuXE
JA0RS10+uGyOQgX+9+jNbMyucx7116OR95X7gtajNMQXK7+aVByDNmzwMiP2
Y85UD3HXiUfavg+p9Z8w753SXmaagrIs/PlME7H/DoF4s+kM5HEoQHYwGuvp
Fn/igjORpnCgvns47X/vjyZZkm9QN3oS/uoJDVHkV7WtgSwkqBAs1e2GeVuY
tMC9bHSTP5xgq439Lz29u/lNPlLpD7/2SxP7ux/1vbv7HRIojwjyP0ZDhK7D
e8Iz36FE58i2zIPYv/9442JKAWrujrEdF6ch6pDQjfNaRehAQTLRgzOMpMJa
Tj8VKkb6/51bazs2jMR4lhv+nihG9s1rUkxow4iYck14yKUYxTEfVcr3DiOq
FmEXX1sxWr7HemagfhjZhn3YGhTyAfWl7nA2ShpGfCxXzVxOCZou6JpXix1G
7lzJRLktpUisOjRY7tUwCj9fUL2eUIp0+hez+IOGkaJJ55bj4aWoSHxwqPzO
MEozWuNQt7cMPY1IPS9rNIwoa0SNSk+Wo/S08yPrdLF/yrrCPfblqKpw7b0l
As6X9Hu7kH85+tXy+FWfCs4nlL58K6UcXRa2bQmXwf2lnbzrrExCnlvFL/tu
x/2ka+RYniGhV/JtzFvimFdGNxU6k1CjLkFQTxT3Z2f6tSCdhJQCpE79mxtC
FA8t3uDyCmT6qqedOTWE0hi/w09KViDH9HDbHt4Qsn1rv3e9UgVKQXy+HxhD
iEqKOM1nU4EqWkki6VSsa98a3X63An3/6Z4Y+mMIEZ8qPc8NqkDCC1SSUzuO
5/Zs9bqiCrR7dbze+WbM3ZvmmLUViLDtTJd2wxBqc4pde7SzAt1Tq/m98z/M
Unv6N8xWIOrd9INd2TjfcrHNq1XJyFf5nv7PDMwX92aK65CR5Iy+PT1lCCke
+muReJaMrDwnoiejcD3hBHM+ZzKaUa0vnAvD9gJGVcOeZBQ1G/uZ78UQKmo5
/vh4ABm1P4B/on5Y76edNowjI/fjG7Zs9hlCZuzHjwRek5Ho3xHF7Z54PnMf
tRXzyCi/kmwo6zGE+Oz+ln37QEaGPqHXFFxwvtdsBruSjMbU7X2POOL6mWza
wzoyevpPOe7YVawnd9YRm8hItlqomGA9hCZ6V8T/bSOjWt+fX/QuDCEpQXtP
dhcZ2cJ7hqkF1q3N75j3k9HiUuDSudM4n2tDuuIQGSVRrLZeMcT1Zh0SD2SQ
0XG//UrXdHA/I0S2yTgZ9ZzkM7lFwPkXjyiHssnovsB3B48TuB8gCOnwyGhj
3VviAxVsvyRL9PhFRh8CHiYQD+N4ewffb/5NRme1T5c824+5llN2eIqMJpbv
ag3dg/3vm2XXYQ79ODMaLYP72fkstRnz/qdN/Mnb8fwtIsqMMTfppkhkiuP9
8jirtHE8x1UeynkbhpB7UkJBMc63slHndLEo1m02fIrD9WQGbXWqEMLz3XX2
5gyuV8uA409ZPoTCT7WWf8H9UIVqkhqWqChtk88X8RG8/6aostZ5KlL0bK79
iech+cKxrXOaiqjn8yu3/SQjspE6s3+Cimx1Ar9/7cbnQURsOZ2F/WdU9/9r
J6PokHLVySEqCo+T21xTT0ZHTV+cmeunIr4PL8fO/0dGHaI2t/h6qIi4sMv7
Rinef/jKVNFWKiL43rb9lYH3b9ZH2vQZ26/fNncrAe9/XUGHZD22f9PdYxOO
9/3q3EoFMubK2PkP3njf5nuljpTieu11Aje64X1v+HfsWBHmW1foXHsyWorK
dNHLoiLKDcWqdQZklHLO65lpOq6PR3h88QQZqW82Tj+XhPXtDoXbD5CRV+zv
71dfUVHRzcjJDWvJaLNVA/dmCO5fN8RCb6kClYgnCnoEYXsb35ppbgWaiNdS
J/pieyExm/rmCuSUFJGRdBPbR+9WPuBfgaYEDYNVr+N+sp6/fOJcgYj3BNw6
bKioTfcqT8uyAsWY3jkueA7b6wdWcPZUoFq+c+13ADNSLhSqJyETlzXlosdx
vefL3oXnkFBP78eknKPYP1/qhW8oCXGLVRwH9+J50B50h1mS0Lbr4kuGG7F+
P+dZ2GA5etPeRmeIUpHZmS5DC3w/U9QMbiIKUdFECjD80srRy4NTCi7/BvF5
S8gStylH9FflF7Q7BvH7+4rcE51lKPqSZunkw0GUpn5kIvJNKco/WkiUv431
MYeNKx+Voto1UsbWDoOI+pnmxDAvRVzET/tsNojCF4va2UslSFf2o1j67kFU
FCvaJnemBM2wjZxPfx1AaSbjQi96ipHIpyrVJ/UDqOh7sMRUVjGSST2wrLJi
ABHvPFH/ercYmZ5ZmyCXOYBsi/ZO94sWo7elHQ3/vLAe03HeRv09svK9sCtf
ButyySei5gvQaopafYI45vHf11pCClA1v/j1YNEBRJW7mCMuVYB2P+nKcpj/
icSK9RtHT75Dky/M90l3/ESUk4oOXt556GW8yeEYP6w/X3jEQG8RpeQkEKn9
SKoo+rMOIRXdmZGiunb1ozSdiYrgAylITo3P70oz5txTUeJbk1FIZXXtcVI/
IvT+t1+SlYAu1p7QnQ7rR3xOF44Oesegqa/KJjehHxED13+binqO5Fl7L1mk
/MD3u64liyMPoDSwI/Jm5A9E7Jj/FVbpC1o7HjYTg34gisivdgE5f7h8plnj
nccPRLgWcFyr5hmEl7tKrdTD9qWfNU5GRMBcwAdGOa8P8SVmFN/UTYYmSQ13
iZN9aKJv/UzeXC7cMjV7MkzrQeKydTFT82RYNFT8rtDbgybunFr35mYlvNIT
23WvtQctGGdrvO2rBDKhjbKqogfJkwqrUiqrQFDJbGF/aA8q2vm62tivGrK2
mN3xVOtB12Jff0tcUwPD1NN2IiHdqPHUrs3s2nq4eOe0hopKF/IV7q1SCGmG
SDRmhsq+IV39b2u3Lu8CEOixPMjfjuTb7h+I/jAAN3tq3d/8bsbfS0IKgWdo
oB7vJ072akDwqzLF1nAUTC6GxR692oD+xj7dwHdhFKwlkjcXmjQgoRiXrpgb
o/A4mbQxU6YBEdISNuYGjkJtOk8stPkT2pSZvdmhehT0cq8I2Ut9QuvsP7rv
VRyDs5XH5oUa65GC80/LYJFxuOqj9yCwuB4FItNVf7eOw12Nc7OLSfXIxzL+
mf2ecYhG7jO/b9ejAz+cmtZrjUNP3dvJnxL16InK6PY/98fhSvMm1nu3OkQe
FtX+ODAOjj9//biwpRY9ilPrVshiwge3/hW6y2qR5Zdlq+68Z8Iif8OhI7wa
FLE99GBRFROi5JIChBtqkOuj/doi35hAcdNVqLxfgwL9r2UZLjFBXCDRW7KL
glx/5+v1nmNBuEnQkeq9CP2adS9Y9ZcFch5XnsbwI+R35ULs4nI2VMUc6XPt
rUb2et/9mKJsGBvs99sZXI0uqDE002XYQPA43E4c+w8pmSyPDDZgw0RMn9up
t1WoWeHZC4hmw2nq/neNsmRkNjlFWSfLAeNre2xhDr93qDnJmx/ggOGY9Iay
lgrUnz6b/VSFA9oTmx9k3K9AO6j3uur0OaDGx6/j20hC93p5IjHOHJCR6uxX
ci5H9jNgG/meAzszv4blEsqRxSNCx2QFByTlm7SkN5WjH5PbR0/VcmCLIsoW
rS5DL7aH/yR3cECEkHN3fG0ZsqrnqP+d5MC0zSOR1A8lKHct/mhW5MIkzRNt
CipBNQfHbFXUuDBxw8Pj5eUSxMu5sTYFuMB0u9HzYEUJ2rv/0yLBlAsDj89k
Wpz/gDb5pPp8v8mFxtTd6sJ/36N9ta5f9qdzQQUldjMDC5B3XLiwjwAPtoks
H09RKkA+mrluRat48M/Kef7s8Ds0eGXt5W4RHtRPqm+vhHdoSq2tcmEzD8zl
BuxfzOeho2/pim/28cA9RIqr4J6Dfm99P+h0mgcWfUFLgztykDjTWfSjOQ9U
9/wSi2rJRpR7OiHrrXiwSKlRWtiXjY4v/XQNtOXByyn7B82MLMQ50uVc586D
nEtvlrtcykQPOza15oViPXvNZmnhTDSTdjVl3yucb/renk5SBhr6nhKRGM0D
tTBdQ43NGehw/q8u8yQefKodDVvTno5sBZrjt+fwIHetWXrN43Q0e55f80A+
D0Iuk4rvHUxH0RLmkwcLcb0zQZ0/X6ShtsAMf8FS7G9uoXI5JAVxtkWt2kjB
9hzZC/VMfB80FZj8UIvtn00/3K+fjBqenurX+cgDGjmmZkEgCVn968uGJh7w
yfQaJ3vFI5pf38TzbzxoqMxxW9EVh9QtNmeTO3kQes77lYtSHLoN18/0d/NA
MliiR4Mbgzjx2+9O/+DBsYkrVweuRqGDyy61+9J44EzOHPesj0SX6k8ZKTN4
kBLIclu3OxJRdzmrDYzwYNnWBz7aIxEo1nj8xiomD1RoSGBANwKtvSmS/YzF
A8d3K4M934aj219Xn59n8yA+QF7hXHsoel6f8a+Mh/expUw16FUIMl1r+Zvv
Fw/s809pV5q/RFxxcQuNSR7s77S+It0VjG4lOZiHTPEgwontZBEbhH7rWE2k
TfNg5t+D+8+snqHrorLTWTM8oMhFh3H6AlHgXh+l57M82F0pkySVFIAO7K+4
dWOOB89PF2WbX/FHZwsOC6nO84BH0yh9usMP+b8+t3oO89uJmIA76DFqdU65
/e4v3vfW4qTek4+QAC30hMUCD45rtZRCvTeiG39w5GBefmus9Y2uF7p+LX3W
6x8PWiOXja3+fA91nJtlzmCOq9rB72F0B/FRbOHGIu6PcWxbT4s78ip5Of0Z
83nJXAefNGcUWa66ZucSD5gu1Dj9NzdQCkXuqQNmX7T5y8ZcezRzTN42DbOM
TMJ8zZVLSIJ/Y2IzZoOPK20u3jiDah2+qLAwU9Jb1nyp00BjB48pLWDWz1ii
ZCnIQk/4mfAlzIGvHUZJf/RBUXW96TRmiQLdtdoelkADf+efmL1XuHSeO2oL
yurFrHLMIx9UMoIPXQeSYtWXQMzm9ny3/9t3E1Si60S0/5dPrEnz1243eGcx
XTCN+4kZNHj6SswDDrc8K47H3Fx20GV/6F3o+0reoohZIHSDxafVnpCW1j1A
wvNRuz573Db4AZycURQ8itlN/af0/Eof2DIvE5WO55u1oVYwKtAXWHobAvgx
u9779mezHxHaOe6d5ng/mcakgaJFfzhaYpP1Fe8XSPs6HmkEgvG+xd1zeP99
u5I/Gvo8AcUM2dWbMIv99cunzz3Dz4WXgrL4vOQ5TKW+VwuGh2vlZLbg86Tb
4RDp6/kcLMvnMhZ+8+BRjpG3+PRLILXfoKXg8ym+qdqFoRQKselZry9N8KCE
qGhX7BEGV5k3WoTxeZ7OE5aVmw0Hd3sZJwI+7woBPGHKvUj4cepipyC+Xi6f
2CD4TiYKduy2/qxEx/eX3yorEr5GgYdd+xfTYR5wr/ou3dkbA2LsUwLnBnhQ
rL1mas/PODAwZVx9ja9f2oLir43P4+ESOWrOBF/fG0stuPyqCWB5zj9vvI0H
93Ynjf0ITwQN1sytX1/wfFcq/AzTToFrb5TjtWp44FRt2ufzKwWa7t8ydKvm
QcJ9j26nlFTYuJ0n/7ISn7ff/WPSPmlw5bG1Zwy+Hw1elaX97UyHzcy9qZxs
HrzW/tBdGJwJ4Tst3LJf8oAspWMpR82Eov9ED/QG8eDbQtf3JJU3oHSed2o+
EF8fpfPtwbQ38Cq0P3jNIx5c363VfFXjLczYmnZ4OfNAfmU7ZcuvHMgL+G19
XZ8HhGF7CNXLBdNBL73kUzy4UD313/KUXHjvOlDzURNfv/fFK38Z5kFJr5rP
2FEesEdsSr9k5oNJ1sMH96R4UNjAzXlsVQiu+T5n30/h55H1mkeHcgrhZMM0
25LHBdEZBbPBuUKIki4y543j59Grow9TTYrg7MWb0bMDXIii3JZe4haBrEOc
lUsjF85sZ7tUHy6Go5c1PWhxXGjqoq7UKC+Buvflz6Tw89Fexn0iarAEMslN
1D17uTDnstTLXlUK7VUno2RkuCC/Yse7JKtSEIiI3jG5gQvPlC6ZL8yVgv+3
22bzM/j5Ht6ZWqleDtNuevUfyBz4z6BJ7XhtBZRY38v5pcYBrvLRut+cCmg+
rp9afogDO2RSTN5tJcPwetMQNzkO+M7ftpe6TYY7Vs9vl27gACFv68uVUpVw
ry75eAKHDfUiToMdj6rgPZyaaU1hQ9PXVU9vHUPQRxD+IvWHBazc106mVrXQ
l8BuuOnHhJk+R4GPLrVQI2c3fvAeE/hWH0o8EVALmzMFPo06MmHzrcpm+YJa
GDjY2KtqxgQthe+Hli2vg7Rv3i/P7mBCXN6KmfLCOjgc/Vr/IWkctPMd/aVX
fQSV72IPGPQxSH53MHGqtAFU4vrsYqVGocru6SbF8mYQjd2z5vljGnhvjO88
vb4dQoOigyk+A9Dc9l27I+EbPG17+/DP5S64/UVVLmxzF0ypV1v9MGyBzK/a
mxwae4DyzE5y17YqEE98lXi3owccv7yKai+qhBcOVOmA/h4gdJ6sb9CrBI9/
Dw+mTfTAgpsL7eV9MpxU+KDXJ94LQSuWGz3pJsHAU2lvUyfM9+pSnr0tBXHN
xQEV4T4gbgnM27WiEF4KGV/X2dgHYtVODdM6BbD0PZ5lvqMP0hbuXHZ/9g5G
binPuh/B7L5j0U4kH0rjndflXewD6g9jO+MdOXB2uu/Uzrw+mNjs8mTEPgNe
5pdnrzL+AdRb/7V/GgsHOSn1WK7lDyBEnRcymgkFSiTlSafdD+AjlNDCdryE
396f7TM8sf6g+GH1g6dw0eCHJGRg3bOkQL7sPuwdWQy/P/8/fr/rgcNd9Gmn
7gNGdj9IDXGbczXikW1k043mD/1AMbFucHRLQPMrT1t+qO4HPqfp2wqpiegg
97yS3/d+SKtIOUWaTUbRVU4cSb6fILVMb92QQTq6diHEzuL8T0iTo0puKXmD
+CO/G9StGACiWbtoFXqHFpOZ9r/WDkB4t0LGg0MFaD6bz2fntgEQ+7HqkXZK
AZqq3l/w8OAApGneyV3yKkQjzMD1R88PAJ9NTe+jiCLUrKX8IzN7ACbWqj/T
kS1Gn02MpjqKB4AyVyzjbFGMPlnZreH/bwDcfRP7NwYWI+QaAlfaB0Bc/GEs
a6gYFScwMjbND4DtRElRVuwHFDcZ7fzUaBDcnV5yxFklKPpf3pOSc4NAiU/o
O7mhFL0SrE0ZthmEtnN5NWPHS9GLHdw2zbuD2D/YvzCoFPka6ir/ScL2Qfyr
tu0oQ97nLpvufjsIab+3zilolSFPW48b5u8xa+rMVVwvQ+73U+ILPw4Cwb1K
2SCvDF19PfPvBncQiMZ7jx5ULEe270S2xMxiez2m/DazcnTw8jpxe34qhNvH
XCS6lSOFG3sOh6+mAtFLO4qcX45kH5lfZe+kAl+DvyVVioRe+w+4LdtNBcJu
md1x6iQkHeTks20fFdqoJx82niehHZGPo/WPUkGqvJoV8ZKEtuTkNWTqU0Fx
u7xqLY+E1v/bZvDahAppzjoK9SsrkMiZ502pZ6lgG3baTmt7BRKYc2xJuIz1
A3V9xfoViKsv9y3cHftHPRGzia9A40nRFqH3qDCRe3OHZn4Fok8s73rhjet1
KhOMq65AfXG0nqeBmKU3NlYOVaBPY2kDPnG4Hj+qXbU0GdWoi9l6J+N+DH4i
N0Uyqgp/POT5mgrUEOH3CZpkVKxmTffIx/3tnS66fIGM3r1sue7+ngruT7o9
fl8no2yq+qhLGa73rPLBZR5klBIkwXSkUKHoft3CyyAyiu9/fsvhIxUoB1s/
rYwkoyjFefbVJiqICQjPziaRUVigk6vdV9yfh5jL1Swyet7Tw7P+juuZ+S2g
W0hGT/br377ci/PfJMSmlZMRkVg+eWEA53vxd9UdREb35WOmLcbwvPvU5nxb
yOi2zwrPsxzc35yCGukbGTm33Z09PYn1MPc2x14yuiFLf2DyB9cTffd1+AAZ
2XuZ/zVcwPYZMmGHaGR0pbnWR59/CCYchj11RsnISurIos7KISDsiNfsYJKR
+d30x6dWDwFROPdjJ4eMTBvF+E+KDQHf2Azv9AQZGUgS/TU3DYH7dWoaYZKM
tN15y9S3DeHzrVv19jcZQb31k2M7hyDNJ1juyRQZHRdvXakqOwS2l4PrezAr
O2sEHd2L7S3fPnyNWZGSL3TkINa/fjw8jP0VNkq+OKSE/Uf1W2JxfDnHFyIH
1IZA8c9m5TqcX7pqPmSfBq53WbzZNS4ZSYrdXCuvhetRqVz1kEVGW671hu/W
w/4XOFqrxshoPUl//S7jIQg33sUSpJPRGhFSpNSZIaD6dI4/HiQjQds9m3ZY
4vy2/Hud+8hoWUlMjMQl3C9nb2TLdzJaXLVSfKstrned1YbMVjKau3QvfvP1
IZBSlIjmNZDRVCF928abQ2AWFby8iEJGvGUWSevcsP8EwZRBIiPm+brta+8O
gViHg01YERkx8o6kijzA/jI5uwvekhF1KV1K2Bf7x2mGnUwho663xF0rgnB9
X9irPgWTEf306l7XEFwfy7eW8oiMJv9Eh/a8wvPYsKi85TYZiernzeUlD0HR
zv6/XefwPCaUCzdlYHuKwj6CHhnti6Nce5yN53PG6PNyNTLSHev8evYDzl+u
uS1tCxlZhNs+qSLh/q5JFdxfic+LGuu4XDXe/x7e/eypCuQbxJc114j7uTl5
Z/vXClQur+CTNoDn75c5aOSDr7e20sPCdOzfl9A7f70CffcijN4Zx/GrpcqW
n65AE43nzupNYX+zigX5nRVI3okozxUaBqmLqiofyklIZd3qgfNrh4Hv0pFS
tSQS0q6IjqzZOAzU4ft/xIkkZCuUtxi1E+sryj6O65BQXE7n9xPKWP92uqz5
cznKOmP7/M3xYUhr2Okpn1OOSuaYsJYwDJR7AWKDz8pRmwFf3rDhMCgqxo1e
PlWOhJj7/IJtsX9VlFhSMb6/7iMe6H6B6+liOx/xKEVBHcI0QgTmE6EJBL1S
FOMdHZcbMwxirQuuuRKlqLgpd5lv+jAQLQOtI2pLEPNmZ69sOY5/3bypQLAE
Xcrb99RjGOupYTaa94vRtp2LbY9HcTwVA+sM7WLU96pdIoQ9DLbJG995ry9G
F7293r+dwfX/lH1HzH+PrAw+9fcL04AQeeAxp7cIWYzaKekpYX43tan1aAHa
eEnZ10KNBnz8234s4efft1bBz3YaWNeo9d5m+A6dLSu09tHDXPrxxepL+cjs
yb/g95doQPTlbBlxy0XGu+KpEoE0oGxt5DRdz0Iisc4Ke4Mx61zR/DD4Bn0R
JtxXCcX+DGeZ51ZvkOHkyOozcViv0zBYoZeJ9GuOqj7Nx7p55Kj6ltdI26Yt
ZOI7jn/1VNw+4USknrjqxMfddOAr3m433eqDRK/OVGgqYJasfU3a5YmG9jHU
SIqY88UmV7vdRk/JtSp5JzBTU4x4b86j9t5HRyLO/M9f4OWXiNvgID6198oj
OhCZiuafwsMhPJoqPv0d6+dufSIZvQFaWMWMbCADKEKToinHKuBI1ktmYDAD
CColEtwPFeBfZTNAD8V6Em9DwUEySI2v+JQZzwBbzvd1D3dXgrXW2WjZQgak
FfCvUhH/D3qmmEqyfdj+Oae1MYgCzRckb+9SHAFqSlyS+dt6KNn1mCXdPwIE
UYOHS3YtQM3wPLJ8+xi0Tck7SFt2w1RvAe+OzBiEW0z3LT7sBkGxkXzanjGg
5L+K7UnvhkM+FnvqjozBxIKmx2NON/haHJb018f6ePmF8MAekFzBWsF3dwz3
u6395vteuOBg3fu3CbOrI1V/WT84J0XH3GobA7GJH1d/7ekHYkez+Y/OMSji
c0sMNu6HbM0TrWTqGEiJP7n7LLofZjeL1z2YwfUE83fky/2EmIb2/D/S4zCh
PExS1xmADnkd4m+vceiR1fHZrUaF2H0fO1b6jsMsNT5hTI8Kl/fr7N4WMA7h
oVUmKeepMHpIp4kQMg6CFo/eUu9TYUFFZ2No+jjwqRpHVJZQYbeOTrZ80zgQ
Cv17kw4MgZedTtsVCSY4+n7xjV0/DBpXP8rclmKCfvIbKT2pYRC4rnMvcDcT
zA44JA8fGIYQR51teYeYoPg1Sqtffxheu+lcmz3FhFlFEvvbo2FofqQz+8qZ
CVb7R2PSacOwM0FHqvE/rF+LqF6XTANbZs5oTS0TvNJTJaLe0uD1cdHCygYm
BNm59vx9TwO5H10ahe1MIPD7P/b+RIODko6XYhhMmIhx/XGASwP1lOcx19aw
IAik+1XU6ODL5V6xXs8CM68/tycJdKBomu+22sKC8ACboDADOmgPSpQYSbPA
0a5J1eUiHYyk3rUfUWYB33afxEJvOlx8/VWE/woLsr+6x24ppUPSpNL3eTsW
zG7ppTZX0mFAKy5xyoEFaYvV0Ta1dLCn2e4bc2eBe4S6suRXOjjJTup9DWSB
2JADgzlCh9y7lms/B+N4wm/lAtl0YNeTu2pDWWDVcqhk9hcdP5cDrpfFsaAn
6mKaxwIdvLI2BiTns2Cs0E/u9VoGkGe8DGPfs4C4/+9R0Y0MWND9uS6ijAUE
CX97c3EGEEffpAVSWGCbPrJ0Q4oBtarCjr4fWUCZaR5SkWXA8iDXQ15NOJ9w
x6efexjwTF61+tZ3FhQROh8WH2RAo1fik+u9uJ8766sGDzNA+POSsc0AzneO
PUg7ygDjrdc2XqCxQD5nMqValQGhTo0/zo6xgBrwsMjtOAPaKvZnGHNYQFLO
+DKjzoD1whE3dSdxP4eN35oDAywuTh8m4O/I2ekd809OMiAm98LcsQU8r8lg
75BTDGCZ9k6l8rPB6mHq+XAdfB/4bTWxYhUbiPPnttjqMSA6tod1S4QNQa5t
Fxf0GcA8YTXavo4NhB/U2muGDABq97DqFsxyghNxRgyICjw/kCzJhvBf9/zj
jBkwLt/du0yGDWpegtuu/u///1osO532sKHIydhyFnPk7a62r/vZIP7Rp+u8
KQPGNlk2Kx9hA1+Z/zE/zBrkzoZEVWzvOr39LuZX1ufq+DVwPcu3yShiHhXo
rL6hxQZ9IxqtBMdTf2tBbtFjA6noF58A5nCj76VKJmyY2BK5eQuuh8Ezfx9/
lg2CpbU1v3H9x6O+5S+dZ0PPmHxqrAGer5p59vUrbDCTkDASwP3S+jsyvtjj
euIS7ZR0GaDmdzb1sCMb5J0u+O7TZkDI7o6EWBec/0iR+iie7/DnMzH/PNgQ
J5Kt6oTnr+raHnHViw2NdtNCRXg/L9efCfn8COf7NGtSeYwBQ2VtQYcC2DDb
XZ38XIUBKpfMAqODcH8b+CK3KzHw/fL0Q7tINlDCFb+9VGCAsv7X+w1xOD+X
edoRn6fnbFOPAyl4X1fLOlfsYsBRZVOnuWw8rwSPy0+2MiC4t+WaTQEb2j4+
e+mAz+/AIxPbjx/wviJmdgni8x30yfh8RDXel8lj2vNlDPh5s/nsnzpcj8V6
tVv/6HBkrbHplc9sSBucMBb+Q4f+80Y6e7/jfv9rFwkYp8PhhSZCWC8bvBST
hy4N0+FpmqH69AAbxiR1m3710UFx3ECpZhzP32T1HvMvdAj01pe+sITnz7Te
R82mQ++ORkm0nANjAm5V0al0OFinJ75bmAPuD07MLY+hQ89qvbW/NnIgrfFv
uag/HfYn6/wL2scBUp3n1jpLOvid/DjLPYT1rwe+HTOiQxdDe8pCmQNiV8NI
DoCfgwe1WVIEzIRjhCE5OnxDWr2kcxywzaTWG0/SoO/Q6pu1FzkgPu6ZZMWg
ATX12/wXGw6+XjZtkO6hAfvxNclBJ8yiXldHqmiwkvDUZoUvB7IXzu5XC6CB
SJHphGgABwSzfOJ33KXBBqktfuJBHCD2d+dWX6OBFF/2a4VXmAcSVPfp0OAY
5TPjTBYHHKtdrTIF8HuB4qv7l/I4wJe6S9/k1zDopl1cdb2IAz33WV/zB4fh
LJEl70XG/lqekqGVw+BMWOOc0orn5eD9pdVtGFIpZpPMGWzvF5Yz8XkIshS3
Bkz95UCb8x3V7/i9NT9taMMiHxfUbL3EHPF7L4noobxuNeZEzspU/N7dQYjy
Ut3JBUWh5Xma+LtlRU33YoAe5gs1ouMnqSByOC0sxJgL2f9OWqTJUWF9uqNU
7BkuxF0AM378HbzDb+5k7iUufl7ufPDozSConZR40ubGBeqddVtVqwbgVo31
6u1xXEj7Yxg639AP9qm9MVXJXJCy5tGe+fbDxUcWMpczsD3/W+7+o/2gf8zw
WGIBthf0hoqkHyD7XvnG1o9Yt4y3Jdn3QX+aSN2mSS4QboUoHK/phm++z0xL
/3CBkuuvVuDYDU2XBfos/nGB+MSJT25tN5DEZyciBXlA6Fr2WuJCF0SF03as
38nD7++pO/5Sv4MxkewtasyDNDnf+zdQO5yyVl5ZcIYHfFyJpIeW7XBcvSjC
5DwPpDTnX/my20B+9k32S3seEFVL44w2tcFy94gu4Qc4fnldLOlDM/xn43hk
VRZm34P1ppc+QokG7b+sPJyPf1fpaod6yJewNtB9j+OL1QR7u9ZBQrc5/qDA
9tXDOfZeNXD/NIQu+4Z1b9FOCSoZXA6Qt2b0YB7KsdzcRoJrq5XfaA3g/Cdt
HPUqy+Bsw74qv3Gsty1ZqAQUg8GbN3rSPKyftS8esykCQoDUN8oU1lOjDO65
5YOqXaK17Tzmh4OfjDdlw//7PQr8/9+j/B+SN/im
      "]]}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None},
  PlotRange->{{-1, 1}, {0., 0.9999994079562567}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.683209848042804*^9, 3.683209859856327*^9}, 
   3.6832099136633797`*^9, {3.68320996111534*^9, 3.683209975450506*^9}, 
   3.6832101883000727`*^9}]
}, Open  ]]
},
WindowSize->{958, 1059},
WindowMargins->{{0, Automatic}, {2, Automatic}},
FrontEndVersion->"10.3 for Linux x86 (64-bit) (October 9, 2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 354, 9, 32, "Input"],
Cell[CellGroupData[{
Cell[937, 33, 666, 17, 99, "Input"],
Cell[1606, 52, 658, 23, 49, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[2301, 80, 358, 8, 32, "Input"],
Cell[2662, 90, 350, 9, 52, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[3049, 104, 726, 19, 99, "Input"],
Cell[3778, 125, 823, 30, 49, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[4638, 160, 256, 6, 32, "Input"],
Cell[4897, 168, 354, 11, 52, "Output"]
}, Open  ]],
Cell[CellGroupData[{
Cell[5288, 184, 1387, 36, 165, "Input"],
Cell[6678, 222, 37702, 633, 238, "Output"]
}, Open  ]]
}
]
*)

(* End of internal cache information *)