In[1]:= f[x_, y_] := Cos[x + y] We need rho = (2 + n over n) terms to describe multinomial in 2 variables of degree <= n In[3]:= n = 1 Out[3]= 1 In[6]:= ρ = Binomial[n + 2, n] Out[6]= 3 In[7]:= pointsA = { {0, 0}, {0, π/4}, {π/4, 0} }; In[33]:= pointsB = { {0, 0}, {π/8, π/8}, {π/4, π/4} }; Set up Vandermonde matrix In[8]:= VanderMondeLine[point_] := Block[{x = point[[1]], y = point[[2]]}, Return[{1, x, y}] ] In[35]:= VA = VanderMondeLine /@ pointsA VB = VanderMondeLine /@ pointsB Out[35]= {{1,0,0},{1,0,π/4},{1,π/4,0}} Out[36]= {{1,0,0},{1,π/8,π/8},{1,π/4,π/4}} In[14]:= a = {a0, ax, ay}; In[37]:= ffA = f @@@ pointsA ffB = f @@@ pointsB Out[37]= {1,1/Sqrt[2],1/Sqrt[2]} Out[38]= {1,1/Sqrt[2],0} In[39]:= Solve[VA.a == ffA, a] intA = VanderMondeLine[{x, y}].a //. %[[1]] Out[39]= {{a0->1,ax->(2 (-2+Sqrt[2]))/π,ay->(2 (-2+Sqrt[2]))/π}} Out[40]= 1+(2 (-2+Sqrt[2]) x)/π+(2 (-2+Sqrt[2]) y)/π In[44]:= VB.a Out[44]= {a0,a0+(ax π)/8+(ay π)/8,a0+(ax π)/4+(ay π)/4} In[43]:= Solve[VB.a == ffB, a] Out[43]= {} In[25]:= ContourPlot[ f[x, y], {x, 0, π/4}, {y, 0, π /4} ] Out[25]= In[32]:= ContourPlot[ intA, {x, 0, π/4}, {y, 0, π /4} ] Out[32]=