Newer
Older
Lecture_repo / Lectures_my / EMPP / 2018 / Lecture4 / mchrzasz.tex~
@Marcin Chrzaszcz Marcin Chrzaszcz on 29 Oct 2018 18 KB lectures done
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel} 
\usepackage{polski}         
\usepackage[skins,theorems]{tcolorbox}
\tcbset{highlight math style={enhanced,
  colframe=red,colback=white,arc=0pt,boxrule=1pt}}

\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
                            

\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}	
\usepackage{listings}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{hyperref}
%\usepackage{hepparticles}    
\usepackage[italic]{hepparticles}     

\usepackage{hepnicenames} 

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams, 
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle, 
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
%\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
%\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
%\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}
\def\fixme{{\color{red} FIXME!}}
\def\mc{{\color{Magenta}{MC}}}
\def\pdf{{\rm p.d.f.}}
\def\cdf{{\rm c.d.f.}}
\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}  
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}  

\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Specific \pdf~generation]{Specific \pdf~generation}
\date{\fixme}
\newcommand*{\QEDA}{\hfill\ensuremath{\blacksquare}}%
\newcommand*{\QEDB}{\hfill\ensuremath{\square}}%

\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (CERN)}
\institute{UZH}
\title[Application of MC methods]{Application of MC methods}
\date{\fixme}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.9\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \Huge {Application of MC methods}
		\end{column}
		\begin{column}{0.2\textwidth}
		  %\includegraphics[width=\textwidth]{SHiP-2}
		\end{column}
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\hspace{0.3\textwidth}\includegraphics[height=1.3cm]{cern}   
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}
	\textcolor{normal text.fg!50!Comment}{Experimental Methods in Particle Physics, \\ 12 October, 2017}
	
\end{center}
\end{frame}
}





\begin{frame}\frametitle{Classical methods of variance reduction}                                                    
\begin{footnotesize}                                                                                                 
                                                                                                                     
\ARROW In Monte Carlo methods the statistical uncertainty is defined as:                                     
\begin{align*}                                                                                                       
\sigma = \dfrac{1}{\sqrt{N}}\sqrt{V(f)}                                                                              
\end{align*}                                                                                                         
\ARROW Obvious conclusion:                                                                                   
\begin{itemize}                                                                                                      
\item To reduce the uncertainty one needs to increase $N$.\\                                                         
$\rightrightarrows$ Slow convergence. In order to reduce the error by factor of 10 one needs to simulate factor of 100 more points!                                                                                                      
\end{itemize}                                                                                                        
\ARROW How ever the other handle ($V(f)$) can be changed! $\longrightarrow$ Lot's of theoretical effort goes\
 into reducing this factor.\\                                                                                        
\ARROW We will discuss {\color{Mahogany}{four}} classical methods of variance reduction:                     
\begin{enumerate}                                                                                                    
\item Stratified sampling.                                                                                           
\item Importance sampling.                                                                                           
\item Control variates.                                                                                              
\item Antithetic variates.                                                                                           
\end{enumerate}                                                                                                      
                                                                                                                     
                                                                                                                     
\end{footnotesize}                                                                                                   
\end{frame}     




\begin{frame}\frametitle{Disadvantages of classical variance reduction methods}
\begin{footnotesize}                                                                                                 
                                                                                                                     
                                                                                                                     \ARROW All aforementioned methods(beside the Stratified sampling) require knowledge of the integration function!\\
                                                                                                                     \ARROW If you use the method in the incorrect way, you can easily get the opposite effect than intendant. \\
                                                                                                                     
                                                                                                                   \ARROW Successful application of then require non negligible effort before running the program.\\
                                                                                                                    \ARROW A natural solution would be that our program is ''smart'' enough that on his own, he will learn something about our function while he is trying to calculate the integral.\\
                                                                                                                    \ARROW Similar techniques were already created for numerical integration!\\
\ARROW Truly adaptive methods are nontrivial to code but are widely available in external packages as we will learn.\\
\ARROW Naming conventions:
\begin{itemize}
\item Integration \mc - software that is able to compute JUST! integrals.
\item Generator \mc - software that BESIDES! beeing able to perform the integration is also capable of performing a generation of points accordingly to the integration function.
\end{itemize}
                                                                                                             


\end{footnotesize}                                                                                                   
\end{frame}     


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now the Foam algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{\texttt{FOAM} algorithm }
\begin{footnotesize}
\ARROW S.Jadach (2000), \href{http://arxiv.org/abs/physics/9910004}{arXiv:physics/9910004, Comp. Phys. Commun. 152 (2003) 55}. Adaptive method with recursive  division of the integration domain in cells. \\
\ARROW There are two algorithms in dividing the integration domain:
\begin{itemize}
\item Symplectic: Cells are sympleces(hiper-triangles). This method can be applied to not so large number of dimensions. $(\leq 5)$.
\item Qubic: Cells are hiper-cubes. This might be applied in higher number dimensions. $(\leq20)$.
\end{itemize}
\ARROW The algorithm:
\begin{itemize}
\item Exploration phase:\\
The integration domain (hipper-cube) is divided recursively into cells. In each step only one cell is split. The splitting is not event! The procedure is stop when the number of cells reach a certain number that is set by us. One constructs an approximation function and based on this the integral is calculated.
\item Generation/Calculation Phase:\\
We generate random points accordingly to the distribution of approximation function and the integral is calculated using the Importance sampling based on the approximation function.

\end{itemize}

\end{footnotesize}                                                                                                 
\end{frame} 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{\texttt{FOAM} algorithm }
\begin{footnotesize}
\begin{center}
\includegraphics[width=0.95\textwidth]{FOAM.png}
\end{center}
\end{footnotesize}                                                                                                 
\end{frame} 




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{\texttt{FOAM} algorithm }
\begin{footnotesize}
\begin{center}
\includegraphics[width=0.75\textwidth]{FOAM2.png}\\
\end{center}

\end{footnotesize}                                                                                                 
\end{frame} 





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Neumann-Ulam method}
\begin{itemize}
\item For example lets try to solve this equation system:
\end{itemize}
\begin{equation}
\overrightarrow{x} = 
\left(\begin{array}{c}
 1.5  \\
-1.0\\
0.7  \end{array} \right) 
+
\left(\begin{array}{ccc}
0.2 &  0.3 & 0.1  \\
0.4 &  0.3 & 0.2 \\
0.3 &  0.1 & 0.1  \end{array} \right) \overrightarrow{x}
 \nonumber
\end{equation}
\begin{itemize}
\item The solution is $\overrightarrow{x}_0 = (2.154303, 0.237389, 1.522255)$.
\end{itemize}
\begin{columns}

\column{0.1in}

\column{2.5in}
\begin{itemize}
\item The propability matrix $h_{ij}$ has the shape:
\end{itemize}
\begin{tabular}{|c|cccc|}
\hline
$i/j$ &  1 & 2 & 3 & 0  \\ \hline
1 & 0.2 & 0.3 & 0.1 & 0.4 \\
2 & 0.4 & 0.3 & 0.2 & 0.1 \\
3 & 0.3 & 0.1 & 0.1 & 0.5 \\ \hline
\end{tabular}

\column{2.5in}
\begin{itemize}
\item An example solution:
\end{itemize}
\includegraphics[width=0.95\textwidth]{images/mark.png}

\end{columns}


\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Neumann-Ulam dual method}
\begin{itemize}
\item Let's try to solve the equation system:
\end{itemize}
\begin{equation}
\overrightarrow{x} = 
\left(\begin{array}{c}
 1.5  \\
-1.0\\
0.7  \end{array} \right) 
+
\left(\begin{array}{ccc}
0.2 &  0.3 & 0.1  \\
0.4 &  0.3 & 0.2 \\
0.1 &  0.1 & 0.1  \end{array} \right) \overrightarrow{x}
 \nonumber
\end{equation}
\begin{itemize}
\item The solution is: $\overrightarrow{x}_0 = (2.0, 0.0, 1.0)$.
\item Let's put the initial probability as constant:
\end{itemize}
\begin{equation}
q_1=q_2=q_3=\dfrac{1}{3}  \nonumber
\end{equation}
\begin{columns}

\column{0.1in}

\column{2.5in}
\begin{itemize}
\item The propability matrix $h_{ij}$ has the shape:
\end{itemize}
\begin{tabular}{|c|cccc|}
\hline
$i/j$ &  1 & 2 & 3 & 4  \\ \hline
1 & 0.2 & 0.4 & 0.1 & 0.3 \\
2 & 0.3 & 0.3 & 0.1 & 0.3 \\
3 & 0.1 & 0.2 & 0.1 & 0.6 \\ \hline
\end{tabular}

\column{2.5in}
\begin{itemize}
\item An example solution:
\end{itemize}
\includegraphics[width=0.95\textwidth]{images/mark2.png}

\end{columns}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\begin{center}
\begin{huge}
Q \& A

\end{huge}
\end{center}


\end{frame}






\backupbegin   

\begin{frame}\frametitle{Backup}


\end{frame}

\backupend			

\end{document}