diff --git a/Lectures_my/NumMet/Lecture1/mchrzasz.log b/Lectures_my/NumMet/Lecture1/mchrzasz.log index d4fa266..b5a3603 100644 --- a/Lectures_my/NumMet/Lecture1/mchrzasz.log +++ b/Lectures_my/NumMet/Lecture1/mchrzasz.log @@ -1,4 +1,4 @@ -This is XeTeX, Version 3.1415926-2.5-0.9999.3 (TeX Live 2013/Debian) (format=xelatex 2015.4.1) 18 SEP 2016 15:27 +This is XeTeX, Version 3.1415926-2.5-0.9999.3 (TeX Live 2013/Debian) (format=xelatex 2015.4.1) 19 SEP 2016 11:11 entering extended mode restricted \write18 enabled. %&-line parsing enabled. diff --git a/Lectures_my/NumMet/Lecture1/mchrzasz.pdf b/Lectures_my/NumMet/Lecture1/mchrzasz.pdf index 1834b4a..e51b221 100644 --- a/Lectures_my/NumMet/Lecture1/mchrzasz.pdf +++ b/Lectures_my/NumMet/Lecture1/mchrzasz.pdf Binary files differ diff --git a/Lectures_my/NumMet/Lecture1/mchrzasz.synctex.gz b/Lectures_my/NumMet/Lecture1/mchrzasz.synctex.gz index 5f24bbf..eec5a57 100644 --- a/Lectures_my/NumMet/Lecture1/mchrzasz.synctex.gz +++ b/Lectures_my/NumMet/Lecture1/mchrzasz.synctex.gz Binary files differ diff --git a/Lectures_my/NumMet/Lecture1/mchrzasz.tex b/Lectures_my/NumMet/Lecture1/mchrzasz.tex index e180cee..30536ca 100644 --- a/Lectures_my/NumMet/Lecture1/mchrzasz.tex +++ b/Lectures_my/NumMet/Lecture1/mchrzasz.tex @@ -299,7 +299,7 @@ \item Linear equation solving with elimination methods and iteration methods. \item Non-linear system of equation solving. \item Numerical integration. -\item Differential equation eq. solving. +\item Differential equations solving. \item Chaos theorem. \end{enumerate} @@ -371,7 +371,7 @@ \begin{frame}\frametitle{Cut-off Errors} \begin{small} -\ARROW This kind of errors erase where the true mathematical problem have some kind of infinite sum.\\ +\ARROW This kind of errors arise where the true mathematical problem have some kind of infinite sum.\\ \ARROWR Computers are stupid creatures and they don't understand what is $\infty$ so we need to cut of computations at some point. Example: \begin{exampleblock}{Maclaurin series:} We know that an $e^x$ function can be Taylor expanded: @@ -457,7 +457,7 @@ \end{align*} \ARROW Using the definition we can write the mantissa and exponent in the following way: \begin{align*} -M=(m_1N^{-1}+m_2N^{-2}+...+m_t N^t)\\ +M=(m_1N^{-1}+m_2N^{-2}+...+m_t N^{-t})\\ C=\pm(c_1 N^0+ c_2 N^1 + c_3 N^2 + ...+c_d N^{d-1}) \end{align*} \ARROW The most often know base are $2,8,10,16$. diff --git a/Lectures_my/NumMet/Lecture2/mchrzasz.tex b/Lectures_my/NumMet/Lecture2/mchrzasz.tex index 1859b4d..f1e8dae 100644 --- a/Lectures_my/NumMet/Lecture2/mchrzasz.tex +++ b/Lectures_my/NumMet/Lecture2/mchrzasz.tex @@ -477,7 +477,7 @@ where:\\ $\omega_n(x)=(x-x_0)(x-x_1)...(x-x_n)$\\ $f$ function of class $C^{n+1}$ on $\left [a,b\right]$\\ -$\xi$ rzedna wartosci srednie. +$\xi$ average values.h } \end{exampleblock} @@ -602,7 +602,7 @@ \end{align*} where \begin{align*} -x_k(x)=a_{k,0}+a_{k,1}(x-x_k)~~x \in \left[ x_k, x_{k+1} \right) +s_k(x)=a_{k,0}+a_{k,1}(x-x_k)~~x \in \left[ x_k, x_{k+1} \right) \end{align*} \end{small} @@ -624,7 +624,7 @@ \end{align*} \begin{exampleblock}{Advantage:} -\ARROWR The biggest advantage of this method is it's simplify. If you have a large number of interpolating points that are ''dents'' packed you can get very good and fast aproximation with this function. +\ARROWR The biggest advantage of this method is it's simplicity. If you have a large number of interpolating points that are ''densely '' packed you can get very good and fast aproximation with this function. \end{exampleblock} \begin{alertblock}{Disadvantage:} @@ -663,7 +663,7 @@ \begin{frame}\frametitle{Third degree spline function} \begin{small} -\ARROW Now to efficiently solve the system we will define a temporary variables: +\ARROW Now to efficiently solve the system we will define temporary variables: \begin{align*} h_k&=x_{k+1}-x_k\\ d_k&=\frac{y_{k+1}-y_k}{h_k}\\ @@ -745,7 +745,7 @@ \begin{small} \ARROW Interpolation playes essential role in almost all numerical methods!\\ -\ARROW Even an very old algorithms like Lagrange are still used(we used it in splines).\\ +\ARROW Even very old algorithms like Lagrange are still used(we used it in splines).\\ \ARROW There is a lot of algorithms on the market. From simple Lagrange and Newton interpolation algorithms up to modern splines.\\ \ARROW The most common used today are spline. They require a bit of work but they work very effectively.\\