diff --git a/Lectures_my/NumMet/Lecture5/mchrzasz.log b/Lectures_my/NumMet/Lecture5/mchrzasz.log index 22433e8..fa311e6 100644 --- a/Lectures_my/NumMet/Lecture5/mchrzasz.log +++ b/Lectures_my/NumMet/Lecture5/mchrzasz.log @@ -1,4 +1,4 @@ -This is XeTeX, Version 3.1415926-2.5-0.9999.3 (TeX Live 2013/Debian) (format=xelatex 2015.4.1) 18 SEP 2016 14:46 +This is XeTeX, Version 3.1415926-2.5-0.9999.3 (TeX Live 2013/Debian) (format=xelatex 2015.4.1) 1 OCT 2016 23:24 entering extended mode restricted \write18 enabled. %&-line parsing enabled. diff --git a/Lectures_my/NumMet/Lecture5/mchrzasz.tex b/Lectures_my/NumMet/Lecture5/mchrzasz.tex index ffb0471..dc897d4 100644 --- a/Lectures_my/NumMet/Lecture5/mchrzasz.tex +++ b/Lectures_my/NumMet/Lecture5/mchrzasz.tex @@ -273,7 +273,7 @@ \end{align*} \ARROW Now there are many definitions of different norms... The most popular one (so-called ''column norm''): \begin{align*} -\Vert A \vert_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n \vert a_{i,j} \vert, +\Vert A \Vert_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n \vert a_{i,j} \vert, \end{align*} where $n$ -is the dimension of $A$, $i,j$ are columns and rows numbers. @@ -290,7 +290,7 @@ \Vert A \Vert_2 &= \sqrt{\rho(A^T A)}\\ \rho(M) &= \max \lbrace \vert\lambda_i \vert: \det{M- \lambda I} =0,~i=1,...n \rbrace \end{align*} -where $\rho(M)$ - spectral radios of $M$ matrix, $I$ unit matrix, $\lambda_i$ eigenvalues of $M$.\\ +where $\rho(M)$ - spectral radius of $M$ matrix, $I$ unit matrix, $\lambda_i$ eigenvalues of $M$.\\ \ARROW Row norm: \begin{align*} @@ -343,7 +343,7 @@ \end{align*} \ARROW So calculate the solutions one needs to calculate $n+1$ determinants. To calculate each determinate one needs $(n-1)n!$ multiplications. \\ \ARROW Putting it all together one needs $(n+1)(n-1)n! = n^{n+2}$ \\ -\ARROW Brutal force but works ;) +\ARROW Brute force but works ;) \end{small}