Integral equations, eigenvalue, function interpolation

Marcin Chrząszcz mchrzasz@cern.ch

Monte Carlo methods, 26 May, 2016

Integral equations, introduction

⇒ Fredholm integral equation of the second order:

$$\phi(x) = f(x) + \int_a^b K(x, y)\phi(y)dy$$

- \Rightarrow The f and K are known functions. K is called kernel.
- \Rightarrow The CHALLENGE: find the ϕ that obeys the above equations.
- ⇒ There are NO numerical that can solve this type of equations!
- \Rightarrow Different methods have to be used depending on the f and K functions.
- \Rightarrow The MC algorithm: construct a probabilistic algorithm which has an expected value the solution of the above equations. There are many ways to build this!
- ⇒ We assume that the Neumann series converges!

Integral equations, approximations

⇒ The following steps approximate the Fredholm equation:

$$\phi_0(x) = 0,$$
 $\phi_1(x) = f(x) + \int_a^b K(x, y)\phi_0(y)dy = f(x)$

$$\phi_2(x) = f(x) + \int_a^b K(x, y)\phi_1(y)dy = f(x) \int_a^b K(x, y)f(y)dy$$

$$\phi_3(x) = f(x) \int_a^b K(x, y) dy = f(x) + \int_a^b K(x, y) f(y) dy + \int_a^b \int_a^b K(x, y) K(y, z) f(z)$$

⇒ Now we put the following notations:

$$K^{(1)} = K(x,y)$$
 $K^{(2)}(x,y) = \int_{a}^{b} K(x,t)K(t,y)dt$

⇒ One gets:

$$\phi_3(x) = f(x) + \int_a^b K^{(1)}(x, y) f(y) dy + \int_a^b K^{(2)}(x, y) f(y) dy$$

Integral equations, approximations

⇒ Continuing this process:

$$K^{(n)}(x,y) = \int_{a}^{b} K(x,t)K^{(n-1)}(t,y)dt$$

and the n-th approximation:

$$\phi_n(x) = f(x) + \int_a^b K^{(1)}(x, y) f(y) dy + \int_a^b K^{(2)}(x, y) f(y) dy + \dots + \int_a^b K^{(n)}(x, y) f(y) dy$$

 \Rightarrow Now going with the Neumann series: $n \to \infty$:

$$\phi(x) = \lim_{n \to \infty} \phi_n(x) = f(x) + \sum_{i=1}^n \int_a^b K^{(n)}(x, y) f(y) dy$$

 \Rightarrow The above series converges only inside the square: $a \leqslant x, \ y \leqslant b$ for:

$$\int_a^b \int_a^b |K(x,y)|^2 dx dy < 1$$

- \Rightarrow The random walk of particle happens on the interval (a,b):
- In the t=0 the particle is in the position $x_0=x$.
- If the particle at time t=n-1 is in the x_{n-1} position then in time t=n the position is: $x_n=x_{n-1}+\xi_n$. The numbers $\xi_1,\ \xi_2,...$ are independent random numbers generated from ρ p.d.f..
- The particle stops the walk once it reaches the position a or b.
- The particle life time is n when $x_n \leq a$ and $x_n \geq b$.
- The expected life time is given by the equation:

$$\tau(x) = \rho_1(x) + \int_a^b [1 + \tau(y)] \rho(y - x) dy$$

where:

$$\rho_q(x) = \int_{-\infty}^{a-x} \rho(y)dy + \int_{b-x}^{\infty} \rho(y)dy$$

is the probability of particle annihilation in the time t=1.

⇒ The above can be transformed:

$$\tau(x) = 1 + \int_a^b \tau(y)\rho(x - y)dy \tag{1}$$

- \Rightarrow Now if p(x) is the probability that the particle in time t=0 was in position x gets annihilated because it crosses the border a.
- ⇒ The probability obeys the analogous equation:

$$p(x) = \rho(x) + \int_{a}^{b} p(y)\rho(y-x)dy \tag{2}$$

where

$$\rho(x) = \int_{-\infty}^{a-x} \rho(y) dy$$

is the probability of annihilating the particle in the first walk.

- \Rightarrow For the functions τ and ρ we got the integral Fredholm equation.
- \Rightarrow So the above random walk can be be used to solve the Equations 1 and 2.

- \Rightarrow The $\rho(x)$ is the p.d.f. of random variables ξ_n .
- \Rightarrow We observe the random walk of the particle. The trajectory: $\gamma = (x_0, x_1, x_2, ..., x_n)$.

This means for t=0,1,2...,n-1 and $x_n\leqslant a$ or $x_n\geqslant b$. Additionally we mark: $\gamma_r=(x_0,x_1,...,x_r),\ r\leqslant n$.

⇒ We defined a random variable:

$$S(x) = \sum_{r=1}^{n} V(\gamma_r) f(x_{r-1})$$

where

$$V(\gamma_0) = 1,$$

$$V(\gamma_r) = \frac{K(x_{r-1}, x_r)}{\rho(x_r - x_{r-1})} V(\gamma_{r-1})$$

 \Rightarrow One can prove that $E\left[S(x)\right]$ treated as a function of x variable is the solution to the integral equation.

⇒ We define a new random variable:

$$c_r(x) = \begin{cases} \frac{V(\gamma_{n-r}f(x_{n-r}), & r \leq n, \\ \rho(x_{n-r}), & r > n, \end{cases}$$

where $\rho_r(x)$ is defined as:

$$\rho_1(x) = \int_{-\infty}^{a-x} \rho(y)dy + \int_{b-x}^{+\infty} \rho(y)dy,$$

$$\rho_r(x) = \int_a^b \dots \int_a^b \rho(x_1 - x)\rho(x_2 - x)\dots\rho(x_{r-1} - x_{r-2})\rho_1(x_{r-1})dx_1\dots dx_{r-1}$$

is the probability that the particle that is at given time in the \boldsymbol{x} coordinate will survive \boldsymbol{r} moments.

 \Rightarrow One can prove that $E\left[c_r(x)\right]$ treated as a function of x variable is the solution to the integral equation.

Integral equations, general remark

There is a general trick:

Any integral equation can be transformed to linear equation using quadratic form. If done so one can use the algorithms form lecture 8 to solve it. Bullet prove solution!

Eigenvalue problem

 \Rightarrow The Eigenvalue problem is to find λ that obeys the equation:

$$H\overrightarrow{x} = \lambda \overrightarrow{x}$$

- ⇒ For simplicity we assume there the biggest Eigenvalue is singular and it's real.
- ⇒ The numerical method is basically an iterative procedure to find the biggest Eigenvalue:
- We choose randomly a vector \overrightarrow{x}_0 .
- ullet The m vector we choose accordingly to formula:

$$\overrightarrow{x}_m = H \overrightarrow{x}_{m-1} / \lambda_m$$

where λ_m is choose such that

$$\sum_{j=1}^{n} |(\overrightarrow{x}_m)_j| = 1$$

the $(\overrightarrow{x})_j$ is the j coordinate of the \overrightarrow{x} vector, j=1,2,3,...,n

 \Rightarrow The set λ_m is converging to the largest Eigenvalue of the H matrix.

Eigenvalue problem

⇒ From the above we get:

$$\lambda_1 \lambda_2 ... \lambda_m (\overrightarrow{x}_j) = (H^m \overrightarrow{x}_0)_j; \quad \lambda_1 \lambda_2 ... \lambda_m = \sum_{j=1}^n (H^m \overrightarrow{x}_0)_j$$

 \Rightarrow For big k and m > k one gets:

$$\frac{\sum_{j=1}^{n} (H^m \overrightarrow{x}_0)_j}{\sum_{j=1}^{n} (H^k \overrightarrow{x}_0)_j} = \lambda_{k+1} \lambda_{k+2} ... \lambda_m \approx \lambda^{m-k}$$

from which:

$$\lambda \approx \left[\frac{\sum_{j=1}^{n} (H^m \overrightarrow{x}_0)_j}{\sum_{j=1}^{n} (H^k \overrightarrow{x}_0)_j} \right]^{\frac{1}{m-k}}$$

 \Rightarrow This is the Eigenvalue estimation corresponding to $H^m \overrightarrow{x}_0$ for sufficient large m.

Eigenvalue problem, probabilistic model \Rightarrow Let $Q = (q_{ij}), i, j = 1, 2, ..., n$ is the probability matrix:

$$q_{ij} \geqslant 0, \quad \sum_{j=1}^{n} = 1$$

- \Rightarrow We construct a random walk on the set: $\{1, 2,n\}$ accordingly to the above rules:
- In the t=0 the particle is in a randomly chosen state i_0 accordingly to binned p.d.f.: p_i .
- If in the moment t = n 1 the particle is in i_{n-1} state then in the next moment it goes to the state i_n with the probability $q_{i_{n-1}j}$.
- For $\gamma = (i_0, i_1, ...)$ trajectory we define a random variable:

$$W_r(\gamma) = \frac{(\overrightarrow{x})_{i_0}}{p_{i_0}} \frac{h_{i_1 i_0} h_{i_2 i_1} h_{i_3 i_2} \dots h_{i_r i_{r-1}}}{q_{i_1 i_0} q_{i_2 i_1} q_{i_3 i_2} \dots q_{i_r i_{r-1}}}$$

⇒ Now we do:

$$\frac{E\left[W_m(\gamma)\right]}{E\left[W_k(\gamma)\right]} \approx \lambda^{m-k}$$

⇒ So to estimate the largest Eigenvalue:

Function interpolation

- \Rightarrow Lets put $f(x_1) = f_1$, $f(x_2) = f_2$, which we know the functions.
- \Rightarrow The problem: calculate the f(p) for $x_1 .$
- ⇒ From the interpolation method we get:

$$f(p) = \frac{p - x_1}{x_2 - x_1} f_2 + \frac{x_2 - p}{x_2 - x_1} f_1$$

 \Rightarrow I am jet-lagged writing this so let me put: $x_1 = 0$ and $x_2 = 1$:

$$f(p) = (1 - p)f_1 + pf_2$$

⇒ For 2-dim:

$$f(p_1, p_2) = \sum_{\delta} r_1 r_2 f(\delta_1, \delta_2)$$

where:

$$r_i = \begin{cases} 1 - p_1, & \delta_i = 0 \\ p_i, & \delta_i = 1 \end{cases}$$

 \Rightarrow the sum is over all pairs (in this case 4).

Function interpolation

⇒ For n-dim we get a monstrous:

$$f(p_1, p_2, ..., p_n) = \sum_{\delta} r_1 r_2 ... r_n f(\delta_1, ..., \delta_n)$$

the sum is over all combinations $(\delta_1, ..., \delta_n)$, where $\delta_i = 0, 1$.

- \Rightarrow The above sum is over 2^n terms and each of it has (n+1) terms. It's easy to imagine that for large n this is hard... Example n=50 then we have 10^{14} ingredients.
- ⇒ There has to be a better way to do this!
- ⇒ From construction:

$$0 \leqslant r_1 r_2 \dots r_n \leqslant 1, \qquad \sum_{\delta} r_1 r_2 \dots r_n = 1$$

 \Rightarrow We can treat the r_i as probabilities! We define a random variable: $\xi=(\xi_1,...,\xi_n)$ such that:

$$\mathcal{P}(\xi_i = 0) = 1 - p_i, \quad \mathcal{P}(\xi_i = 1) = p_i$$

The extrapolation value is then equal:

$$f(p_1, p_2, ..., p_n) = E[f(\xi_1, ..., \xi_n)]$$

Traveling Salesman Problem

• From dimension analysis:

$$a - b = \frac{1}{2}.$$

- To get l we need square root of area.
- From this it's obvious:

$$l \sim P^a(\frac{n}{P})^b = P^{0.5}n^{a-0.5}.$$

 Now we can multiply the area by alpha factor that keeps the density constant then:

$$l \sim \alpha^0.5\alpha 6a - 0.5 = \alpha^a$$

• In this case the distance between the clients will not change, but the number of clients will increase by α so:

$$l \sim \alpha$$

• In the end we get: a=1

Traveling Salesman Problem

In total:

$$l \sim k(nP)^{0.5}$$

- Of course the k depends on the shape of the area and locations of client. However for large n the k starts loosing the dependency. It's an asymptotically free estimator.
- To use the above formula we need to somehow calculate k.
- ullet How to estimate this? Well make a TOY MC: take a square put uniformly n points. Then we can calculate l. Then it's trivial:

$$k = l(nP)^{-0.5}$$

Traveling Salesman Problem

- This kind of MC experiment might require large CPU power and time. The adventage is that once we solve the problem we can use the obtained k for other cases (it's universal constant!).
- It turns out that:

$$k \sim \frac{3}{4}$$

- Ok, but in this case we can calculate l but not the actual shortest way! Why the hell we did this exercise?!
- Turns out that for most of the problems we are looking for the solution that is close to smallest *l* not the exact minimum.

War Games

- S. Andersoon 1966 simulated for Swedish government how would a tank battle look like.
- Each of the sides has 15 tanks. that they allocate on the battle field.
- The battle is done in time steps.
- Each tank has 5 states:
 - OK
 - Tank can only shoot
 - Tank can only move
 - Tank is destroyed
 - Temporary states
- This models made possible to check different fighting strategies.

Backup

