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.

Integral equations, introduction

⇛ Fredholm integral equation of the second order:

ϕ(x) = f(x) +
∫ b
a
K(x, y)ϕ(y)dy

⇛ The f and K are known functions. K is called kernel.
⇛ The CHALLENGE: find the ϕ that obeys the above equations.
⇛ There are NO numerical that can solve this type of equations!
⇛ Different methods have to be used depending on the f andK func-
tions.
⇛ The MC algorithm: construct a probabilistic algorithm which has an
expected value the solution of the above equations. There are many
ways to build this!
⇛ We assume that the Neumann series converges!
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Integral equations, approximations
⇛ The following steps approximate the Fredholm equation:

ϕ0(x) = 0, ϕ1(x) = f(x) +

∫ b
a

K(x, y)ϕ0(y)dy = f(x)

ϕ2(x) = f(x) +

∫ b
a

K(x, y)ϕ1(y)dy = f(x)

∫ b
a

K(x, y)f(y)dy

ϕ3(x) = f(x)

∫ b
a

K(x, y)dy = f(x) +

∫ b
a

K(x, y)f(y)dy +

∫ b
a

∫ b
a

K(x, y)K(y, z)f(z)dydz

⇛ Now we put the following notations:

K(1) = K(x, y) K(2)(x, y) =

∫ b
a

K(x, t)K(t, y)dt

⇛ One gets:

ϕ3(x) = f(x) +

∫ b
a

K(1)(x, y)f(y)dy +

∫ b
a

K(2)(x, y)f(y)dy
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Integral equations, approximations
⇛ Continuing this process:

K(n)(x, y) =

∫ b
a

K(x, t)K(n−1)(t, y)dt

and the n-th approximation:

ϕn(x) = f(x) +

∫ b
a

K(1)(x, y)f(y)dy +

∫ b
a

K(2)(x, y)f(y)dy+

...+

∫ b
a

K(n)(x, y)f(y)dy

⇛ Now going with the Neumann series: n→∞:

ϕ(x) = limn→∞ϕn(x) = f(x) +
n∑
i=1

∫ b
a

K(n)(x, y)f(y)dy

⇛ The above series converges only inside the square: a ¬ x, y ¬ b for:∫ b
a

∫ b
a

|K(x, y)|2dxdy < 1
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Integral equations, algorithm
⇛ The random walk of particle happens on the interval (a, b):

• In the t = 0 the particle is in the position x0 = x.

• If the particle at time t = n− 1 is in the xn−1 position then in time t = n the
position is: xn = xn−1 + ξn. The numbers ξ1, ξ2, ... are independent random
numbers generated from ρ p.d.f..

• The particle stops the walk once it reaches the position a or b.

• The particle life time is n when xn ¬ a and xn  b.
• The expected life time is given by the equation:

τ(x) = ρ1(x) +

∫ b
a

[1 + τ(y)] ρ(y − x)dy

where:

ρq(x) =

∫ a−x
−∞

ρ(y)dy +

∫ ∞
b−x
ρ(y)dy

is the probability of particle annihilation in the time t = 1.
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Integral equations, algorithm 2

⇛ The above can be transformed:

τ(x) = 1 +

∫ b
a

τ(y)ρ(x− y)dy (1)

⇛ Now if p(x) is the probability that the particle in time t = 0 was in position x gets
annihilated because it crosses the border a.
⇛ The probability obeys the analogous equation:

p(x) = ρ(x) +

∫ b
a

p(y)ρ(y − x)dy (2)

where

ρ(x) =

∫ a−x
−∞

ρ(y)dy

is the probability of annihilating the particle in the first walk.
⇛ For the functions τ and ρ we got the integral Fredholm equation.
⇛ So the above random walk can be be used to solve the Equations 1 and 2.
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Integral equations, algorithm 3

⇛ The ρ(x) is the p.d.f. of random variables ξn.
⇛We observe the random walk of the particle. The trajectory: γ = (x0, x1, x2, ..., xn).
This means for t = 0, 1, 2..., n − 1 and xn ¬ a or xn  b. Additionally we mark:
γr = (x0, x1, ..., xr), r ¬ n.
⇛ We defined a random variable:

S(x) =
n∑
r=1

V (γr)f(xr−1)

where

V (γ0) = 1,

V (γr) =
K(xr−1, xr)
ρ(xr − xr−1)

V (γr−1)

⇛ One can prove that E [S(x)] treated as a function of x variable is the solution to
the integral equation.
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Integral equations, algorithm 4

⇛ We define a new random variable:

cr(x) =

{
V (γn−rf(xn−r
ρ(xn−r

, r ¬ n,
0, r > n

where ρr(x) is defined as:

ρ1(x) =

∫ a−x
−∞

ρ(y)dy +

∫ +∞
b−x
ρ(y)dy,

ρr(x) =

∫ b
a

...

∫ b
a

ρ(x1 − x)ρ(x2 − x)...ρ(xr−1 − xr−2)ρ1(xr−1)dx1...dxr−1

is the probability that the particle that is at given time in the x coordinate will survive
r moments.
⇛ One can prove that E [cr(x)] treated as a function of x variable is the solution to
the integral equation.
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Integral equations, general remark

.
There is a general trick:
..

.
Any integral equation can be transformed to linear equation using quadratic form. If
done so one can use the algorithms form lecture 8 to solve it. Bullet prove solution!
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Eigenvalue problem
⇛ The Eigenvalue problem is to find λ that obeys the equation:

H−→x = λ−→x

⇛ For simplicity we assume there the biggest Eigenvalue is singular and it’s real.
⇛ The numerical method is basically an iterative procedure to find the biggest Eigen-
value:

• We choose randomly a vector −→x 0.
• The m vector we choose accordingly to formula:

−→x m = H−→x m−1/λm

where λm is choose such that
n∑
j=1

|(−→x m)j | = 1

the (−→x )j is the j coordinate of the −→x vector, j = 1, 2, 3, ..., n

⇛ The set λm is converging to the largest Eigenvalue of the H matrix.
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Eigenvalue problem

⇛ From the above we get:

λ1λ2...λm(−→x j) = (Hm−→x 0)j ; λ1λ2...λm =
n∑
j=1

(Hm−→x 0)j

⇛ For big k and m > k one gets:∑n
j=1(H

m−→x 0)j∑n
j=1(H

k−→x 0)j
= λk+1λk+2...λm ≈ λm−k

from which:

λ ≈
[∑n

j=1(H
m−→x 0)j∑n

j=1(H
k−→x 0)j

] 1
m−k

⇛ This is the Eigenvalue estimation corresponding to Hm−→x 0 for sufficient large m.
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Eigenvalue problem, probabilistic model
⇛ Let Q = (qij), i, j = 1, 2, ..., n is the probability matrix:

qij  0,
n∑
j=1

= 1

⇛ We construct a random walk on the set: {1, 2, ....n} accordingly to the above rules:

• In the t = 0 the particle is in a randomly chosen state i0 accordingly to binned
p.d.f.: pj .

• If in the moment t = n− 1 the particle is in in−1 state then in the next moment
it goes to the state in with the probability qin−1j .

• For γ = (i0, i1, ...) trajectory we define a random variable:

Wr(γ) =
(−→x )i0
pi0

hi1i0hi2i1hi3i2 ...hirir−1
qi1i0qi2i1qi3i2 ...qirir−1

⇛ Now we do:

E [Wm(γ)]
E [Wk(γ)]

≈ λm−k

⇛ So to estimate the largest Eigenvalue:

λ̂ =

[
Wm(γ)
Wk(γ)

] 1
m−k
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Function interpolation
⇛ Lets put f(x1) = f1, f(x2) = f2, which we know the functions.
⇛ The problem: calculate the f(p) for x1 < p < x2.
⇛ From the interpolation method we get:

f(p) =
p− x1
x2 − x1

f2 +
x2 − p
x2 − x1

f1

⇛ I am jet-lagged writing this so let me put: x1 = 0 and x2 = 1:

f(p) = (1− p)f1 + pf2

⇛ For 2-dim:

f(p1, p2) =
∑
δ

r1r2f(δ1, δ2)

where:

ri =

{
1− p1, δi = 0
pi, δi = 1

⇛ the sum is over all pairs (in this case 4).
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Function interpolation
⇛ For n-dim we get a monstrous:

f(p1, p2, ..., pn) =
∑
δ

r1r2...rnf(δ1, ..., δn)

the sum is over all combinations (δ1, ..., δn), where δi = 0, 1.
⇛ The above sum is over 2n terms and each of it has (n + 1) temrs. It’s easy to
imagine that for large n this is hard... Example n = 50 then we have 1014 ingredients.
⇛ There has to be a better way to do this!
⇛ From construction:

0 ¬ r1r2...rn ¬ 1,
∑
δ

r1r2...rn = 1

⇛ We can treat the ri as probabilities! We define a random varaible: ξ = (ξ1, ..., ξn)
such that:

P(ξi = 0) = 1− pi, P(ξi = 1) = pi

The extrapolation value is then equal:

f(p1, p2, ..., pn) = E [f(ξ1, ..., ξn)]
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Traveling Salesman Problem
• From dimension analysis:

a− b = 1
2
.

• To get l we need square root of area.
• From this it’s obvious:

l ∼ P a( n
P
)b = P 0.5na−0.5.

• Now we can multiply the area by alpha factor that keeps the
density constant then:

l ∼ α0.5α6a− 0.5 = αa

• In this case the distance between the clients will not change, but
the number of clients will increase by α so:

l ∼ α

• In the end we get: a = 1
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Traveling Salesman Problem

• In total:

l ∼ k(nP )0.5

• Of course the k depends on the shape of the area and locations of
client. However for large n the k starts loosing the dependency. It’s
an asymptotically free estimator.
• To use the above formula we need to somehow calculate k.
• How to estimate this? Well make a TOY MC: take a square put

uniformly n points. Then we can calculate l. Then it’s trivial:
k = l(nP )−0.5

Marcin Chrząszcz (Universität Zürich) Integral equations, eigenvalue, function interpolation 16/18...

16/18



.

Traveling Salesman Problem

• This kind of MC experiment might require large CPU power and
time. The adventage is that once we solve the problem we can use
the obtained k for other cases (it’s universal constant!).
• It turns out that:

k ∼ 3
4

• Ok, but in this case we can calculate l but not the actual shortest
way! Why the hell we did this exercise?!
• Turns out that for most of the problems we are looking for the

solution that is close to smallest l not the exact minimum.
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War Games

• S. Andersoon 1966 simulated for Swedish government how would a
tank battle look like.
• Each of the sides has 15 tanks. that they allocate on the battle field.
• The battle is done in time steps.
• Each tank has 5 states:
◦ OK
◦ Tank can only shoot
◦ Tank can only move
◦ Tank is destroyed
◦ Temporary states

• This models made possible to check different fighting strategies.
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Backup
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