Integral equations, eigenvalue, function interpolation

Marcin Chrząszcz mchrzasz@cern.ch

¹*/*18

Monte Carlo methods, 26 May, 2016

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interpolation* 1/18

Integral equations, introduction

 \Rightarrow Fredholm integral equation of the second order:

$$
\phi(x) = f(x) + \int_a^b K(x, y)\phi(y)dy
$$

 \Rightarrow The *f* and *K* are known functions. *K* is called kernel.

 \Rightarrow The CHALLENGE: find the ϕ that obeys the above equations.

 \Rightarrow There are NO numerical that can solve this type of equations!

 \Rightarrow Different methods have to be used depending on the f and K functions.

 \Rightarrow The MC algorithm: construct a probabilistic algorithm which has an expected value the solution of the above equations. There are many ways to build this!

²*/*18

 \Rightarrow We assume that the Neumann series converges!

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function integral equations, eigenvalue, function*

Integral equations, approximations

 \Rightarrow The following steps approximate the Fredholm equation:

$$
\phi_0(x) = 0,
$$
\n $\phi_1(x) = f(x) + \int_a^b K(x, y)\phi_0(y)dy = f(x)$

$$
\phi_2(x) = f(x) + \int_a^b K(x, y)\phi_1(y)dy = f(x)\int_a^b K(x, y)f(y)dy
$$

$$
\phi_3(x) = f(x) \int_a^b K(x, y) dy = f(x) + \int_a^b K(x, y) f(y) dy + \int_a^b \int_a^b K(x, y) K(y, z) f(z) dy dz
$$

 \Rightarrow Now we put the following notations:

$$
K^{(1)} = K(x, y) \qquad K^{(2)}(x, y) = \int_{a}^{b} K(x, t)K(t, y)dt
$$

⇛ One gets:

Marcin Chrząszcz (L

$$
\phi_3(x) = f(x) + \int_a^b K^{(1)}(x, y) f(y) dy + \int_a^b K^{(2)}(x, y) f(y) dy
$$

Integral equations, approximations

 \Rightarrow Continuing this process:

$$
K^{(n)}(x,y) = \int_{a}^{b} K(x,t)K^{(n-1)}(t,y)dt
$$

and the n-th approximation:

$$
\phi_n(x) = f(x) + \int_a^b K^{(1)}(x, y) f(y) dy + \int_a^b K^{(2)}(x, y) f(y) dy + \dots + \int_a^b K^{(n)}(x, y) f(y) dy
$$

⇛ Now going with the Neumann series: *n → ∞*:

$$
\phi(x) = \lim_{n \to \infty} \phi_n(x) = f(x) + \sum_{i=1}^n \int_a^b K^{(n)}(x, y) f(y) dy
$$

 \Rightarrow The above series converges only inside the square: $a \leqslant x, y \leqslant b$ for:

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interpolation*

$$
\int_{a}^{b} \int_{a}^{b} |K(x,y)|^{2} dx dy < 1
$$

⁴*/*18

- \Rightarrow The random walk of particle happens on the interval (a, b) :
- In the $t = 0$ the particle is in the position $x_0 = x$.
- If the particle at time $t = n 1$ is in the x_{n-1} position then in time $t = n$ the position is: $x_n = x_{n-1} + \xi_n$. The numbers ξ_1, ξ_2, \dots are independent random numbers generated from *ρ* p.d.f..
- *•* The particle stops the walk once it reaches the position *a* or *b*.
- The particle life time is *n* when $x_n \leq a$ and $x_n \geq b$.
- *•* The expected life time is given by the equation:

$$
\tau(x) = \rho_1(x) + \int_a^b [1 + \tau(y)] \rho(y - x) dy
$$

where:

Marcin Chrząszcz (Universität Zür

$$
\rho_q(x) = \int_{-\infty}^{a-x} \rho(y) dy + \int_{b-x}^{\infty} \rho(y) dy
$$

⁵*/*18

is the probability of particle annihilation in the time $t = 1$.

 \Rightarrow The above can be transformed:

$$
\tau(x) = 1 + \int_{a}^{b} \tau(y)\rho(x - y)dy
$$
 (1)

 \Rightarrow Now if $p(x)$ is the probability that the particle in time $t = 0$ was in position x gets annihilated because it crosses the border *a*.

 \Rightarrow The probability obeys the analogous equation:

$$
p(x) = \rho(x) + \int_{a}^{b} p(y)\rho(y-x)dy
$$
 (2)

⁶*/*18

where

Marcin Chrząszcz (Universität Zürich) *Interpolation*

$$
\rho(x) = \int_{-\infty}^{a-x} \rho(y) dy
$$

is the probability of annihilating the particle in the first walk.

 \Rightarrow For the functions τ and ρ we got the integral Fredholm equation.

 \Rightarrow So the above random walk can be be used to solve the Equations 1 and 2.

 \Rightarrow The $\rho(x)$ is the p.d.f. of random variables ξ_n .

 \Rightarrow We observe the random walk of the particle. The trajectory: $\gamma = (x_0, x_1, x_2, ..., x_n)$. This means for $t = 0, 1, 2, ..., n - 1$ and $x_n \leq a$ or $x_n \geq b$. Additionally we mark: $\gamma_r = (x_0, x_1, ..., x_r), r \leq n.$

 \Rightarrow We defined a random variable:

$$
S(x) = \sum_{r=1}^{n} V(\gamma_r) f(x_{r-1})
$$

where

$$
V(\gamma_0) = 1,
$$

\n
$$
V(\gamma_r) = \frac{K(x_{r-1}, x_r)}{\rho(x_r - x_{r-1})} V(\gamma_{r-1})
$$

 \Rightarrow One can prove that $E[S(x)]$ treated as a function of x variable is the solution to the integral equation.

⁷*/*18

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interpolation* 7/18

 \Rightarrow We define a new random variable:

$$
c_r(x) = \begin{cases} \frac{V(\gamma_{n-r}f(x_{n-r})}{\rho(x_{n-r})}, & r \leq n, \\ 0, & r > n \end{cases}
$$

where $\rho_r(x)$ is defined as:

$$
\rho_1(x) = \int_{-\infty}^{a-x} \rho(y) dy + \int_{b-x}^{+\infty} \rho(y) dy,
$$

$$
\rho_r(x) = \int_a^b \dots \int_a^b \rho(x_1 - x) \rho(x_2 - x) \dots \rho(x_{r-1} - x_{r-2}) \rho_1(x_{r-1}) dx_1 \dots dx_{r-1}
$$

is the probability that the particle that is at given time in the *x* coordinate will survive *r* moments.

 \Rightarrow One can prove that $E\left[c_r(x)\right]$ treated as a function of x variable is the solution to the integral equation.

⁸*/*18

Marcin Chrząszcz (Universität Zürich) **Integral equations, eigenvalue, function interpolation**

Integral equations, general remark

. There is a general trick:

. Any integral equation can be transformed to linear equation using quadratic form. If . done so one can use the algorithms form lecture 8 to solve it. Bullet prove solution!

 $^{9}/_{18}$

Marcin Chrząszcz (Universität Zürich) **Integral equations, eigenvalue, function interproduction**

Eigenvalue problem

 \Rightarrow The Eigenvalue problem is to find λ that obeys the equation:

H \overrightarrow{x} = $\lambda \overrightarrow{x}$

 \Rightarrow For simplicity we assume there the biggest Eigenvalue is singular and it's real. \Rightarrow The numerical method is basically an iterative procedure to find the biggest Eigen-

value:

- We choose randomly a vector \vec{x}_0 .
- *•* The *m* vector we choose accordingly to formula:

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interpolation* 10/18

$$
\overrightarrow{x}_m = H \overrightarrow{x}_{m-1}/\lambda_m
$$

where λ_m is choose such that

$$
\sum_{j=1}^{n} |(\overrightarrow{x}_m)_j| = 1
$$

¹⁰*/*18

 $\mathsf{a} \in (\overrightarrow{x})_j$ is the *j* coordinate of the \overrightarrow{x} vector, $j = 1, 2, 3, ..., n$

 \Rightarrow The set λ_m is converging to the largest Eigenvalue of the H matrix.

Eigenvalue problem

 \Rightarrow From the above we get:

$$
\lambda_1 \lambda_2 \dots \lambda_m(\overrightarrow{x}_j) = (H^m \overrightarrow{x}_0)_j; \quad \lambda_1 \lambda_2 \dots \lambda_m = \sum_{j=1}^n (H^m \overrightarrow{x}_0)_j
$$

 \Rightarrow For big *k* and $m > k$ one gets:

$$
\frac{\sum_{j=1}^{n}(H^m \overrightarrow{x}_0)_j}{\sum_{j=1}^{n}(H^k \overrightarrow{x}_0)_j} = \lambda_{k+1}\lambda_{k+2}...\lambda_m \approx \lambda^{m-k}
$$

from which:

$$
\lambda \approx \left[\frac{\sum_{j=1}^{n} (H^m \overrightarrow{x}_0)_j}{\sum_{j=1}^{n} (H^k \overrightarrow{x}_0)_j} \right]^{\frac{1}{m-k}}
$$

⇛ This is the Eigenvalue estimation corresponding to *^H^m−→^x* ⁰ for sufficient large *^m*.

¹¹*/*18

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interpolation*

Eigenvalue problem, probabilistic model

 $\tilde{\Rightarrow}$ Let $Q=(q_{ij}),\, i,j=1,2,...,n$ is the probability matrix:

$$
q_{ij} \geqslant 0, \quad \sum_{j=1}^n = 1
$$

 \Rightarrow We construct a random walk on the set: $\{1,2,....n\}$ accordingly to the above rules:

- \bullet In the $t = 0$ the particle is in a randomly chosen state i_0 accordingly to binned p.d.f.: *p^j* .
- If in the moment $t = n 1$ the particle is in i_{n-1} state then in the next moment it goes to the state i_n with the probability $q_{i_{n-1}j}$.
- For $\gamma = (i_0, i_1, \ldots)$ trajectory we define a random variable:

$$
W_r(\gamma) = \frac{(\overrightarrow{x})_{i_0}}{p_{i_0}} \frac{h_{i_1 i_0} h_{i_2 i_1} h_{i_3 i_2} ... h_{i_r i_{r-1}}}{q_{i_1 i_0} q_{i_2 i_1} q_{i_3 i_2} ... q_{i_r i_{r-1}}}
$$

⇛ Now we do:

$$
\frac{E\left[W_m(\gamma)\right]}{E\left[W_k(\gamma)\right]} \approx \lambda^{m-k}
$$

, eigen

¹²*/*18

 \Rightarrow So to estimate the largest Eigenvalue: Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interpolation* 12/18

Function interpolation

 \Rightarrow Lets put $f(x_1) = f_1$, $f(x_2) = f_2$, which we know the functions.

 \Rightarrow The problem: calculate the $f(p)$ for $x_1 < p < x_2.$

 \Rightarrow From the interpolation method we get:

$$
f(p) = \frac{p - x_1}{x_2 - x_1} f_2 + \frac{x_2 - p}{x_2 - x_1} f_1
$$

 \Rightarrow I am jet-lagged writing this so let me put: $x_1 = 0$ and $x_2 = 1$:

$$
f(p) = (1 - p)f_1 + pf_2
$$

 \Rightarrow For 2-dim:

$$
f(p_1, p_2) = \sum_{\delta} r_1 r_2 f(\delta_1, \delta_2)
$$

where:

$$
r_i = \begin{cases} 1 - p_1, & \delta_i = 0 \\ p_i, & \delta_i = 1 \end{cases}
$$

¹³*/*18

 \Rightarrow the sum is over all pairs (in this case 4).

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interprodum interprodum integral*

Function interpolation

 \Rightarrow For n-dim we get a monstrous:

$$
f(p_1, p_2, ..., p_n) = \sum_{\delta} r_1 r_2 ... r_n f(\delta_1, ..., \delta_n)
$$

the sum is over all combinations $(\delta_1, ..., \delta_n)$, where $\delta_i = 0, 1$.

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function interpolation*

 \Rightarrow The above sum is over 2^n terms and each of it has $(n+1)$ temrs. It's easy to imagine that for large n this is hard... Example $n = 50$ then we have 10^{14} ingredients. \Rightarrow There has to be a better way to do this!

 \Rightarrow From construction:

$$
0 \leqslant r_1 r_2 ... r_n \leqslant 1, \qquad \qquad \sum_{\delta} r_1 r_2 ... r_n = 1
$$

 \Rightarrow We can treat the r_i as probabilities! We define a random varaible: $\xi = (\xi_1, ..., \xi_n)$ such that:

$$
\mathcal{P}(\xi_i = 0) = 1 - p_i, \quad \mathcal{P}(\xi_i = 1) = p_i
$$

The extrapolation value is then equal:

$$
f(p_1, p_2, ..., p_n) = E[f(\xi_1, ..., \xi_n)]
$$

¹⁴*/*18

Traveling Salesman Problem

• From dimension analysis:

$$
a - b = \frac{1}{2}.
$$

- *•* To get *l* we need square root of area.
- *•* From this it's obvious:

$$
l \sim P^{a}(\frac{n}{P})^{b} = P^{0.5} n^{a-0.5}.
$$

• Now we can multiply the area by alpha factor that keeps the density constant then:

$$
l \sim \alpha^0.5\alpha 6a - 0.5 = \alpha^a
$$

• In this case the distance between the clients will not change, but the number of clients will increase by *α* so:

l ∼ α

¹⁵*/*18

• In the end we get: $a = 1$ Marcin Chrząszcz (Univers

Traveling Salesman Problem

• In total:

$$
l \sim k(nP)^{0.5}
$$

- *•* Of course the k depends on the shape of the area and locations of client. However for large *n* the k starts loosing the dependency. It's an asymptotically free estimator.
- *•* To use the above formula we need to somehow calculate k.

Marcin Chrząszcz (Universität Zürich) **Integral equations, eigenvalue, function**

• How to estimate this? Well make a TOY MC: take a square put uniformly *n* points. Then we can calculate *l*. Then it's trivial:

$$
k = l(nP)^{-0.5}
$$

¹⁶*/*18

Traveling Salesman Problem

- *•* This kind of MC experiment might require large CPU power and time. The adventage is that once we solve the problem we can use the obtained k for other cases (it's universal constant!).
- *•* It turns out that:

 $k \sim \frac{3}{4}$ 4

- *•* Ok, but in this case we can calculate *l* but not the actual shortest way! Why the hell we did this exercise?!
- *•* Turns out that for most of the problems we are looking for the solution that is close to smallest *l* not the exact minimum.

¹⁷*/*18

Marcin Chrząszcz (Universität Zürich) *Integral equations, eigenvalue, function*

War Games

- *•* S. Andersoon 1966 simulated for Swedish government how would a tank battle look like.
- *•* Each of the sides has 15 tanks. that they allocate on the battle field.
- *•* The battle is done in time steps.
- *•* Each tank has 5 states:
	- *◦* OK
	- *◦* Tank can only shoot
	- *◦* Tank can only move
	- *◦* Tank is destroyed
	- *◦* Temporary states
- *•* This models made possible to check different fighting strategies.

¹⁸*/*18

Marcin Chrząszcz (Universität Zürich) **Integral equations, eigenvalue, function interpolation**

Backup

