Monte Carlo integration and variance reduction

Marcin Chrząszcz mchrzasz@cern.ch

¹*/*22

Monte Carlo methods, 3 March, 2016

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 1/22

Monte Carlo and integration

,→ **All MC calculations are equivalent to preforming an integration.**

 \Rightarrow Assumptions: r_i random numbers from $\mathcal{U}(0,1)$. The MC result:

$$
F = F(r_1, r_2, \ldots r_n)
$$

is unbias estimator of an integral:

Marcin Chrząszcz (Univer

$$
I = \int_0^1 \dots \int_0^1 F(x_1, x_2, \dots, x_n) dx_1, dx_2 \dots, dx_n
$$

aka the expected value of the *I* integral is:

$$
E(F) = I.
$$

. . the both world! \Rrightarrow This mathematical identity is the most useful property of the MC methods. It is a link between mathematical analysis and statistic world. Now we can use the best of

If we want to calculate the integral in different range then (0*,* 1) we just scale the the previous result:

$$
\frac{1}{N} \sum_{i=1}^{N} f(x_i) \xrightarrow{N \to \infty} E(f) = \frac{1}{b-a} \int_{a}^{b} f(x) dx
$$

Uncertainty from Monte Carlo methods

 \Rightarrow In practice we do not have $N \rightarrow \infty$ so we will never know the exact result of an integral :(

7−→ Let's use the statistical world and estimate the uncertainty of an integral in this case :)

 \rightarrowtail A variance of a MC integral:

.

$$
V(\hat{I}) = \frac{1}{n} \left\{ E(f^2) - E^2(f) \right\} = \frac{1}{n} \left\{ \frac{1}{b-a} \int_a^b f^2(x) dx - I^2 \right\}
$$

\looparrowright To calculate $V(\hat{I})$ one needs to know the value of $I!$

 \Rightarrow In practice $V(\hat{I})$ is calculated via estimator:

$$
\hat{V}(\hat{I}) = \frac{1}{n}\hat{V}(f), \qquad \hat{V}(f) = \frac{1}{n-1}\sum_{i=1}^{n} \left[f(x_i) - \frac{1}{n}\sum_{i=1}^{n} f(x_i)\right]^2.
$$

³*/*22

 \Rightarrow MC estimator of standard deviation: $\hat{\sigma} = \sqrt{\hat{V}(\hat{I})}$

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 3/22

Buffon needle - *π* number calculus

⇛ Buffon needle (Buffon 1777, Laplace 1886): We are throwing a needle (of length *l*) on to a surface covered with parallel lines width distance *L*. If a thrown needle touches a line we count a hit, else miss. Knowing the number of hits and misses one can calculate the *π* number.

Experiment: Theory:

⇒ x - angle between needle and horizontal line, $x \in \mathcal{U}(0, \pi)$. \Rightarrow the probability density function (p.d.f.) for x:

$$
\rho(x) = \frac{1}{\pi}
$$

 \Rightarrow $p(x)$ probability to hit a line for a given x value:

$$
p(x) = \frac{l}{L} |\cos x|
$$

n - number of hits *N* number of hits and misses, aka number of tries.

 \mathcal{X}

⇒ Total hit probability:

$$
P = E[p(x)] = \int_0^{\pi} p(x)\rho(x)dx = \frac{2l}{\pi L}
$$

$$
\xrightarrow{N \to \infty} P = \frac{2l}{\pi L} \Rightarrow \hat{\pi} = \frac{2Nl}{nL}
$$

 $\Rightarrow \hat{\pi} =$

nL

 $4/22$

Now one can calculate \hat{P} from MC : $\hat{P} = \frac{n}{N}$ *N* $\frac{N\rightarrow\infty}{P}P =$

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 4/22

Buffon needle - Simplest Carlo method

Monte Carlo type "hit or miss"

Let's use the summery of $p(x)$ function and stake $0 < x < \frac{\pi}{2}$. *⇒* Algorithm:

Generate 2 dim. distribution:

Elemente 2 dim. distribution:

\n
$$
(x, y) : \mathcal{U}(0, \frac{\pi}{2}) \times \mathcal{U}(0, 1) \text{ and}
$$
\n
$$
y \begin{cases} \leq p(x) : & \text{hit,} \\ > p(x) : & \text{miss.} \end{cases}
$$
\nLet's define weight function: $w(x, y) = \Theta(p(x) - y)$, where $\Theta(x)$ is the step function.

\n
$$
\Rightarrow \text{p.d.f.}: \varrho(x, y) = \rho(x)g(y) = \frac{2}{\pi} \cdot 1
$$
\n
$$
\Rightarrow \text{ integrated probability:}
$$
\n
$$
P = E(w) = \int w(x, y)\varrho(x, y) \, dx \, dy = \frac{2l}{\pi L} \xleftarrow{N \rightarrow \infty} \hat{P} = \frac{1}{N} \sum_{i=1}^{N} w(x_i, y_i) = \frac{n}{N}
$$
\nStandard deviation for $\hat{P}: \hat{\sigma} = \frac{1}{\sqrt{N-1}} \sqrt{\frac{n}{N} \left(1 - \frac{n}{N}\right)}$

\nManach, Brag_2 is the value of the function of the function.

\nEXECUTE: The result is the sum of the following equations:

\n
$$
P = E(w) = \int w(x, y)\varrho(x, y) \, dx \, dy = \frac{2l}{\pi L} \left(\frac{N \rightarrow \infty}{N} \right) \hat{P} = \frac{1}{N} \sum_{i=1}^{N} w(x_i, y_i) = \frac{n}{N}
$$
\nStandard deviation for $\hat{P}: \hat{\sigma} = \frac{1}{\sqrt{N-1}} \sqrt{\frac{n}{N} \left(1 - \frac{n}{N}\right)}$

\nNotice each integration and variance reduction.

ີດ

 0.8

Heads or tails MC

. . of positive trials compared to the failed ones is called "hit or miss" \Rrightarrow MC estimator of an integral that is based on counting the numbers

 \Rightarrow The probability is described by the Bernoulli distribution:

$$
\mathcal{P}(n) = \binom{N}{n} P^n (1 - P)^{N - n},
$$

where *P* is the probability of success, N is the number of trials and n is the number of successes.

 \Rightarrow The following are true:

$$
E(n) = NP,
$$

$$
V(n) = NP(1 - P),
$$

 \Rightarrow Translating this into probability basis:

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 6/22

$$
E(\hat{P})=P,~~V(\hat{P})=\frac{P(1-P)}{N}
$$

.

⁶*/*22

 \Rightarrow E2.1 prove the above.

Buffon needle

⇛ Lets make this toy experiment and calculate the *π* number.

,→ We can simulate the central position (*y*) of an needle between (*−L, L*) from $U(-L, L)$.

. Symmetry: .

. be *> L* then we can shift the needle by any number of *L*'s. Please note the symmetry of the problem, if the position of the needle would

 \hookrightarrow New we simulate the angle (ϕ) with a flat distribution from $(0, \pi)$. \hookrightarrow The maximum and minimum *y* position of the needle are:

$$
y_{\text{max}} = y + |\cos \phi|l
$$

$$
y_{\text{min}} = y - |\cos \phi|l
$$

 \hookrightarrow Now we check if the needle touches any of the lines: $y = L$, $y = 0$ or

y = −*L*. If yes we count the events.

⁷*/*22

 \Rightarrow E2.2 Write the program that calculates the π number using the Buffon needle.

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 7/22

Crude Monte Carlo method of integration

⇛ Crude Monte Carlo method of integration is based on Law of Large Numbers:

$$
\frac{1}{N} \sum_{i=1}^{N} f(x_i) \xrightarrow{N \to \infty} \frac{1}{b-a} \int_{a}^{b} f(x) dx = E(f)
$$

 \Rightarrow The standard deviation can be calculated:

$$
\sigma = \frac{1}{\sqrt{N}} \sqrt{\left[E(f^2) - E^2(f)\right]}
$$

 \Rightarrow From LNT we have:

$$
P = \int w(x)\rho(x)dx = \int_0^{\pi/2} \left(\frac{l}{L}\cos x\right) \frac{2}{\pi} dx = \frac{2l}{\pi L} \xrightarrow{N \to \infty} \frac{1}{N} \sum_{i=1}^N w(x_i)
$$

∌ Important comparison between "Hit and mishit" and Crude MC methods. One can analytically calculate:

$\hat{\sigma}^{\rm Crude} < \hat{\sigma}^{\rm Hit\ and\ mishit}$

⇛ Crude MC is **always** better then "Hit and mishit" method. We will prove this on an example (can be proven analytically as well). ⁸*/*22

Crude vs "hit or miss"

 \Rightarrow The Crude MC is never worse then the "hit or miss" method.

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 9/22

J

 \Rightarrow Prove: Let's assume we calculate an integral:

$$
I = \int_0^1 f(x)dx
$$
, and $0 \le f(x) \le 1 \forall x \in (0, 1)$

 \Rightarrow The variation for the "hit-or-miss"(HM) method: $V(\hat{I}_{HM})=\frac{1}{N}(I-I^2)\Rrightarrow$ The variation for the crude method: $V(\hat{I}_{Crude}) = \frac{1}{N} [\int_0^1 f^2(x) dx - I^2] \Rrightarrow \mathsf{Now}$ the difference:

$$
V(\hat{I}_{HM}) - V(\hat{I}_{Crude}) = \frac{1}{N}[I - \int_0^1 f^2(x)dx] = \frac{1}{N} \int_0^1 f(x)[1 - f(x)]dx \ge 0
$$
 q.e.d

 \Rightarrow E2.3 Calculate the following integrals with uncertainties using "hit or miss" and crude methods:

$$
\int_0^1 dx \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
$$

$$
\int_{x^2+y^2 \le 1} \frac{1}{4} \sqrt{1 - (x^2 + y^2)} dx dy
$$

⁹*/*22

Generalization to multi-dimension case, Crude method

 \Rightarrow Let $x = (x_1, x_2, ..., x_n)$ - vector in the n-dim vector space \mathcal{R}^n .

 $\Omega \subset \mathcal{R}^n$ - some subspace in the n-dim space.

 $V \equiv (\Omega)$ - volume of the Ω subspaces.

$$
I = \int_{\Omega} f(x)dx = V \int_{\Omega} f(x)dx/V = V \int_{\Omega} f(x)dp(x) \equiv VJ = VE(f),
$$

where the MC estimator:

$$
\hat{J} = \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}), \ x \in \mathcal{U}(\Omega)
$$

 \Rightarrow The standard deviation:

$$
\hat{\sigma}(\hat{J}) \frac{1}{\sqrt{N(N-1)}} \sqrt{\sum_{i=1}^{N} f^2(x^{(i)}) - \frac{1}{N} [\sum_{i=1}^{N} f(x^{(i)})]^2}
$$

¹⁰*/*22

 $\hat{I} = V \hat{J}, \hat{\sigma}(\hat{I}) = V \sigma(\hat{J})$

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 10/22

 \Rightarrow In the end we get:

Generalization to multi-dimension case, "Hit-or-miss"

 \Rightarrow Let $x = (x_1, x_2, ..., x_n)$ - vector in the n-dim vector space \mathcal{R}^n .

 $\Omega \subset \mathcal{R}^n$ - some subspace in the n-dim space.

 $V \equiv (\Omega)$ - volume of the Ω subspaces.

$$
I = \int_{\Omega} dx \int_0^{f_{max}} dy \Theta(f(x) - y) = Vf_{max} \int_{\Omega} \frac{dx}{V} \int_0^{f_{max}} \frac{dy}{f_{max}} \Theta(f(x) - y)
$$

where $(x, y) \in \mathcal{U}(\Omega \times [0, f_{max}]) \Rightarrow$ Now we define *K*:

$$
K = \int_{\Omega} \frac{dx}{V} \int_{0}^{f_{max}} \frac{dy}{f_{max}} \Theta(f(x) - y) = E(\Theta)
$$

⇛ We generator: (*x, y*) *∈ U*(Ω *×* [0*, fmax*]) and check:

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 11/22

$$
y = \begin{cases} \leqslant f(x)\text{hit, weight=1} \\ > f(x)\text{hit, weight=0} \end{cases}
$$

 \Rightarrow In the end:

$$
\hat{K} = \frac{n}{N}, \quad \hat{\sigma}(\hat{K}) = \frac{1}{\sqrt{N-1}} \sqrt{\hat{K}(1-\hat{K})}
$$
\n
$$
\hat{I} = f_{max} V \hat{K}, \quad \hat{\sigma}(\hat{I}) = f_{max} V \hat{\sigma}(\hat{K})
$$

 $\frac{11}{22}$

Crude MC vs "Hit and misss"

- \Rrightarrow We can repeat a toy MC studies as we did in the Euler needle case.
- \hookrightarrow In this example we want to calculate $\int_0^{\pi/2} \cos x dx$

Crude MC vs "Hit and misss"

- \Rrightarrow We can repeat a toy MC studies as we did in the Euler needle case.
- \hookrightarrow In this example we want to calculate $\int_0^{\pi/2} \cos x dx$

Crude MC vs "Hit and misss"

- \Rightarrow We can repeat a toy MC studies as we did in the Euler needle case.
- \hookrightarrow In this example we want to calculate $\int_0^{\pi/2} \cos x dx$

 \Rightarrow One clearly sees that both methods follow $1/\sqrt{N}$ dependence and that the Crude MC is always better then the "Hit and mishit". \Rightarrow Please note that for the "Hit and mishit" we are suing 2 times more random numbers than for the Crude method so in terms of timing the Crude MC is also much faster. ¹²*/*22

Classical methods of variance reduction

 \Rightarrow In Monte Carlo methods the statistical uncertainty is defined as:

$$
\sigma = \frac{1}{\sqrt{N}}\sqrt{V(f)}
$$

⇛ Obvious conclusion:

• To reduce the uncertainty one needs to increase *N*. ⇒ Slow convergence. In order to reduce the error by factor of 10 one needs to simulate factor of 100 more points!

⇛ How ever the other handle (*V* (*f*)) can be changed! *−→* Lot's of theoretical effort goes into reducing this factor.

 \Rightarrow We will discuss four classical methods of variance reduction:

Marcin Chrząszcz (Universität Zürich) **Monte Carlo integration and variance reduction**

- 1. Stratified sampling.
- 2. Importance sampling.
- 3. Control variates.
- 4. Antithetic variates.

Stratified sampling

 \Rightarrow The most intuitive method of variance reduction. The idea behind it is to divide the function in different ranges and to use the Riemann integral property:

$$
I = \int_0^1 f(u) du = \int_0^a f(u) du + \int_a^1 f(u) du, \ 0 < a < 1.
$$

 \Rightarrow The reason for this method is that in smaller ranges the integration function is more flat. And it's trivial to see that the more flatter you get the smaller uncertainty. \Rightarrow A constant function would have zero uncertainty!

. General schematic: .

sum them with weights proportional to w_i and anti-proportional to $n_i.$ Let's take our integration domain and divide it in smaller domains. In the *j th* domain with the volume *w^j* we simulate *n^j* points from uniform distribution. We sum the function values in each of the simulated points for each of the domain. Finally we

¹⁴*/*22

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 14/22

Stratified sampling - mathematical details

Let's define our integrals and domains:

$$
I = \int_{\Omega} f(x)dx, \ \ \Omega = \bigcup_{i=1}^{k} w_i
$$

The integral over *j th* domain:

$$
I_j = \int_{w_j} f(x) dx, \Rightarrow I = \sum_{j=1}^k I_j
$$

 \Rightarrow p_j uniform distribution in the w_j domain: $dp_j = \frac{dx}{w_j}.$

 \rightrightarrows The integral is calculated based on crude MC method. The estimator is equal:

$$
\hat{I}_j = \frac{w_j}{n_j} \sum_{i=1}^{n_j} f(x_j^i)
$$

Now the total integral is just a sum:

$$
\hat{I} = \sum_{j=1}^{k} \hat{I}_j = \sum_{j=1}^{k} \frac{w_j}{n_j} \sum_{i=1}^{n_j} f(x_j^{(i)}),
$$

 w_j^2 $\frac{w_j}{n_j} \hat{V}_j(f)$

¹⁵*/*22

$$
\text{Variance: } V(\hat{I}) = \sum_{j=1}^k \frac{w_j^2}{n_j} V_j(f), \quad \text{ and it's estimator: } \hat{V}(\hat{I}) = \sum_{j=1}^k \hat{V}_j(\hat{I})
$$

Marcin Chrząszcz (Universität

Stratified sampling in practice

One can show that splitting the integration region Ω into equal regions will not . increase the variance!

 \Rightarrow For example in case of two sub samples:

$$
V(I_{\text{crude}}) - V(I_{\text{SS}}) = \frac{1}{N} \left[\int_{\omega_1} f(x) dx - \int_{\omega_2} f(x) dx \right]^{-2} \geq 0
$$

A2.1 Prove the above.

.

. Practical advise:

. The second is the set of the integrating function the equal splitting of the Ω space is the best option!

¹⁶*/*22

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 16/22

Stratified sampling for the Buffon needle

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 17/22

⇒ Lets apply our Stratified sampling to my favourite :) Buffon needle with 5 samples.
 $\frac{p(x)}{x}$ ⇒ We have $\omega_i = \Omega/5 = \frac{\pi}{10}$ and $n_i = \frac{N}{r}$.

$$
\Rightarrow \text{ We have } \omega_i = \Omega/5 = \frac{\pi}{10} \text{ and } n_i = \frac{N}{5}.
$$

$$
\Rightarrow \text{ The integral estimator:}
$$

$$
\hat{P} = \frac{1}{\Omega} \sum_{i=1}^{5} \sum_{j=1}^{N/5} p(x_i^j) = \frac{1}{N} \sum_{i=1}^{N} p(x_i^j).
$$

$$
\hat{P} = \frac{1}{\Omega} \sum_{j=1}^{\infty} \sum_{i=1}^{N} p(x_i^j) = \frac{1}{N} \sum_{i=1}^{N} p(x_i)
$$

 \Rightarrow The standard deviation (for $l = L$):

$$
\sigma(\hat{\pi})_{SS} = \frac{0.34}{\sqrt{N}} < \sigma(\hat{\pi})_{Crude} = \frac{1.52}{\sqrt{N}}
$$

¹⁷*/*22

 \Rightarrow In the following example we generated a constant number of events $(N/5)$ for each subsample independently of their impact on the integral.

 \Rightarrow We can improve this by generating events in each of the sub sample accordingly to the area of the blue rectangle.

 \Rightarrow E2.4 Using the Stratified Sampling please calculate the integrals from E2.3 by dividing the are into 5 samples. Compute the errors and compare them to the ones obtained from the Crude method.

Importance sampling

 \Rightarrow If the function is changing rapidly in its domain one needs to use a more elegant method: make the function more stable.

 \Rightarrow The solution is from first course of mathematical analysis: change the integration variable :)

$$
f(x)dx \longrightarrow \frac{f(x)}{g(x)}dG(x)
$$
, where $g(x) = \frac{dG(x)}{dx}$

. Schematic: .

- Generate the distribution from $G(x)$ instead of \mathcal{U} .
- \bullet For each generate point calculate the weight: $w(x) = \frac{f(x)}{g(x)}.$

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 18/22

- *We calculate the expected value* $\hat{E}(w)$ *and its variance* $\hat{V}_G(w)$ *for the whole* sample.
- *•* If *g*(*x*) is choose correctly the resulting variance can be much smaller.
- *•* There are some mathematical requirements:
	- *◦ g*(*x*) needs to be non-negative and analytically integrable on its domain.
	- *◦ G*(*x*) invertible or there should be a direct generator of *g* distribution. ¹⁸*/*22

Importance sampling - Example

 \Rightarrow Let's take our good old π determination example.

- \Rightarrow Let's take here for simplicity: $L = l$.
- *•* Let's take a trivial linear weight function: $g(x) = \frac{4}{\pi}(1 - \frac{2}{\pi}x)$
- It's invertible analytically: $G(x) = \frac{4}{\pi}x(1 \frac{x}{\pi})$
- *•* The weight function:

$$
w(x) = \frac{p(x)}{g(x)} = \frac{\pi}{4} \frac{\cos x}{1 - 2x/\pi}
$$

• Now the new standard deviation is smaller:

$$
\sigma_\pi^{\rm IS} \simeq \frac{0.41}{\sqrt{N}} < \sigma_\pi \simeq \frac{1.52}{\sqrt{N}}
$$

- *•* Importance sampling has advantages:
	- *◦* Big improvements of variance reduction.
	- *◦* The only method that can cope with singularities.
- \Rightarrow Calculate the first function from E2.3 using the importance sampling. As a weight

√ N

function $g(x)$ take a linear function. Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 19/22

¹⁹*/*22

Control variates

 \Rightarrow Control variates uses an other nice property of Riemann integral:

$$
\int f(x)dx = \int [f(x) - g(x)]dx + \int g(x)dx
$$

 $^{20}/_{22}$

- *• g*(*x*) needs to be analytically integrable.
- *•* The uncertainty comes only from the integral: [∫] [*f*(*x*) *− g*(*x*)]*dx*.
- *•* Obviously: $V(f \to g) \xrightarrow{f \to g} 0$
- \Rightarrow Advantages:
- *•* Quite stable, immune to the singularities.
- *• g*(*x*) doesn't need to be invertible analytically.

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 20/22

- \Rightarrow Disadvantage:
- *•* Useful only if you know [∫] *g*(*x*)*dx*

Antithetic variates

 \Rightarrow In MC methods usually one uses the independent random variables. The Antithetic variates method on purpose uses a set of correlated variables (negative correlation is the important property):

- *•* Let *f* and *f′* will be functions of x on the same domain.
- The variance: $V(f + ft) = V(f) + V(ft) + 2Cov(f, ft)$.
- If $Cov(f, f') < 0$ then you can reduce the variance.
- \Rightarrow Advantages:
- *•* If you can pick up *f* and *f′* so that they have negative correlation one can significantly reduce the variance!
- ⇛ Disadvantages:
- *•* There are no general methods to produce such a negative correlations.

²¹*/*22

- *•* Hard to generalize this for multidimensional case.
- *•* You can't generate events from *f*(*x*) with this method.

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 21/22

Wrap up

- \Rightarrow To sum up:
- *•* We discussed basic mathematical properties of MC methods.
- *•* We shown that besides the stochastic nature of MC they can be used to determine totally non stochastic quantities.
- *•* We demonstrated there is a perfect isomorphism between MC method and integration.

²²*/*22

- *•* We learned how co calculate integrals and estimate the uncertainties.
- *•* Finally we discussed several classical methods of variance reduction.

Marcin Chrząszcz (Universität Zürich) *Monte Carlo integration and variance reduction* 22/22