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.

Monte Carlo and integration
↪→ All MC calculations are equivalent to preforming an integration.
⇒ Assumptions: ri random numbers from U(0, 1). The MC result:

F = F (r1, r2, ...rn)

is unbias estimator of an integral:

I =

∫ 1
0

...

∫ 1
0

F (x1, x2, ..., xn)dx1, dx2..., dxn

aka the expected value of the I integral is:

E(F ) = I.

.

.

⇛ This mathematical identity is the most useful property of the MC methods. It is a
link between mathematical analysis and statistic world. Now we can use the best of
the both world!

If we want to calculate the integral in different range then (0, 1) we just scale the the
previous result:

1
N

N∑
i=1

f(xi)
N→∞−−−−→ E(f) = 1

b− a

∫ b
a

f(x)dx
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Uncertainty from Monte Carlo methods

⇛ In practice we do not have N →∞ so we will never know the exact result of an
integral :(
7−→ Let’s use the statistical world and estimate the uncertainty of an integral in this
case :)
↣ A variance of a MC integral:

V (Î) =
1
n

{
E(f2)− E2(f)

}
=
1
n

{ 1
b− a

∫ b
a

f2(x)dx− I2
}

.

.↬ To calculate V (Î) one needs to know the value of I !

⇛ In practice V (Î) is calculated via estimator:

V̂ (Î) =
1
n
V̂ (f), V̂ (f) =

1
n− 1

n∑
i=1

[
f(xi)−

1
n

n∑
i=1

f(xi)
]2
.

⇛ MC estimator of standard deviation: σ̂ =
√
V̂ (Î)
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Buffon needle - π number calculus
⇛ Buffon needle (Buffon 1777, Laplace 1886): We are throwing a needle (of length l)
on to a surface covered with parallel lines width distance L. If a thrown needle
touches a line we count a hit, else miss. Knowing the number of hits and misses one
can calculate the π number.

Experiment: Theory:

n - number of hits
N number of hits and misses,
aka number of tries.

⇒ x - angle between needle and horizontal line,
x ∈ U(0, π).⇒ the probability density function
(p.d.f.) for x:

ρ(x) =
1
π

⇒ p(x) probability to hit a line for a given x value:

p(x) =
l

L
| cosx|

⇒ Total hit probability:

P = E[p(x)] =

∫ π
0

p(x)ρ(x)dx =
2l
πL

Now one can calculate P̂ from MC : P̂ =
n

N

N→∞−−−−→ P = 2l
πL
⇒ π̂ = 2Nl

nL

Marcin Chrząszcz (Universität Zürich) Monte Carlo integration and variance reduction 4/22...

4/22



.

Buffon needle - Simplest Carlo method
Monte Carlo type ”hit or miss”
Let’s use the summery of p(x) function and stake 0 < x < π2 .
⇒ Algorithm:

Generate 2 dim. distribution:

(x, y) : U(0, π
2
)× U(0, 1) and

y

{
¬ p(x) : hit,
> p(x) : miss.

Let’s define weight function: w(x, y) = Θ(p(x)− y),
where Θ(x) is the step function.
↣ p.d.f.: ϱ(x, y) = ρ(x)g(y) = 2

π
· 1

⇒ Integrated probability:

P = E(w) =

∫
w(x, y)ϱ(x, y)dxdy =

2l
πL

N→∞←−−−− P̂ = 1
N

N∑
i=1

w(xi, yi) =
n

N

Standard deviation for P̂ : σ̂ =
1√
N − 1

√
n

N

(
1− n
N

)
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Heads or tails MC
.

.
⇛ MC estimator of an integral that is based on counting the numbers
of positive trials compared to the failed ones is called ”hit or miss”

⇛ The probability is described by the Bernoulli distribution:

P(n) =
(
N

n

)
Pn(1− P )N−n,

where P is the probability of success, N is the number of trials and n
is the number of successes.
⇛ The following are true:

E(n) = NP,

V (n) = NP (1− P ),
⇛ Translating this into probability basis:

E(P̂ ) = P, V (P̂ ) =
P (1− P )
N

.

⇛ E2.1 prove the above.
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Buffon needle
⇛ Lets make this toy experiment and calculate the π number.
↪→ We can simulate the central position (y) of an needle between (−L,L)
from U(−L,L).
.
Symmetry:
..

.
Please note the symmetry of the problem, if the position of the needle would
be > L then we can shift the needle by any number of L’s.

↪→ New we simulate the angle (ϕ) with a flat distribution from (0, π). ↪→ The
maximum and minimum y position of the needle are:

ymax = y + | cosϕ|l
ymin = y − | cosϕ|l

↪→ Now we check if the needle touches any of the lines: y = L, y = 0 or
y = −L. If yes we count the events.

N π̂ π̂ − π σ(π̂)
10000 3.12317 −0.01842 0.03047

100000 3.14707 0.00547 0.00979
1000000 3.13682 −0.00477 0.00307

10000000 3.14096 −0.00063 0.00097

⇛ E2.2 Write the program that calculates the π number using the Buffon needle.
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Crude Monte Carlo method of integration
⇛ Crude Monte Carlo method of integration is based on Law of Large Numbers:

1
N

N∑
i=1

f(xi)
N→∞−−−−→ 1

b− a

∫ b
a

f(x)dx = E(f)

⇛ The standard deviation can be calculated:

σ =
1√
N

√[
E(f2)− E2(f)

]
⇛ From LNT we have:

P =

∫
w(x)ρ(x)dx =

∫ π/2
0

(
l

L
cosx)

2
π
dx =

2l
πL

N→∞−−−−→ 1
N

N∑
i=1

w(xi)

⇛ Important comparison between ”Hit and mishit” and Crude MC methods. One can
analytically calculate:

σ̂Crude < σ̂Hit and mishit

⇛ Crude MC is always better then ”Hit and mishit” method. We will prove this on an
example (can be proven analytically as well).
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Crude vs ”hit or miss”
⇛ The Crude MC is never worse then the ”hit or miss” method.
⇛ Prove: Let’s assume we calculate an integral:

I =

∫ 1
0

f(x)dx, and 0 ¬ f(x) ¬ 1 ∀x ∈ (0, 1)

⇛ The variation for the ”hit-or-miss”(HM) method: V (ÎHM ) =
1
N
(I − I2)⇛ The

variation for the crude method: V (ÎCrude) =
1
N
[
∫ 1
0
f2(x)dx− I2] ⇛ Now the

difference:

V (ÎHM )− V (ÎCrude) =
1
N
[I −

∫ 1
0

f2(x)dx] =
1
N

∫ 1
0

f(x)[1− f(x)]dx  0 q.e.d

⇛ E2.3 Calculate the following integrals with uncertainties using ”hit or miss” and
crude methods: ∫ 1

0

dx
1√
2π
e−
x2
2∫

x2+y2¬1

1
4

√
1− (x2 + y2)dxdy
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Generalization to multi-dimension case, Crude method

⇛ Let x = (x1, x2, ..., xn)- vector in the n-dim vector space Rn.
Ω ⊂ Rn - some subspace in the n-dim space.
V ≡ (Ω) - volume of the Ω subspaces.

I =

∫
Ω

f(x)dx = V

∫
Ω

f(x)dx/V = V

∫
Ω

f(x)dp(x) ≡ V J = V E(f),

where the MC estimator:

Ĵ =
1
N

N∑
i=1

f(x(i)), x ∈ U(Ω)

⇛ The standard deviation:

σ̂(Ĵ)
1√

N(N − 1)

√√√√ N∑
i=1

f2(x(i))− 1
N
[
N∑
i=1

f(x(i))]2

⇛ In the end we get:
Î = V Ĵ, σ̂(Î) = V σ(Ĵ)
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Generalization to multi-dimension case, ”Hit-or-miss”
⇛ Let x = (x1, x2, ..., xn)- vector in the n-dim vector space Rn.
Ω ⊂ Rn - some subspace in the n-dim space.
V ≡ (Ω) - volume of the Ω subspaces.

I =

∫
Ω

dx

∫ fmax
0

dyΘ(f(x)− y) = V fmax
∫
Ω

dx

V

∫ fmax
0

dy

fmax
Θ(f(x)− y)

where (x, y) ∈ U(Ω× [0, fmax]. ⇛ Now we define K :

K =

∫
Ω

dx

V

∫ fmax
0

dy

fmax
Θ(f(x)− y) = E(Θ)

⇛ We generator: (x, y) ∈ U(Ω× [0, fmax]) and check:

y =

{
¬ f(x)hit, weight=1
> f(x)hit, weight=0

⇛ In the end:

K̂ =
n

N
, σ̂(K̂) =

1√
N − 1

√
K̂(1− K̂)

Î = fmaxV K̂, σ̂(Î) = fmaxV σ̂(K̂)

Marcin Chrząszcz (Universität Zürich) Monte Carlo integration and variance reduction 11/22...

11/22



.

Crude MC vs ”Hit and misss”
⇛ We can repeat a toy MC studies as we did in the Euler needle case.
↪→ In this example we want to calculate

∫ π/2
0 cosxdx

0.7 0.8 0.9 1 1.1 1.2 1.30

20

40

60

80

100

HT_100
HT_100

Entries  1000
Mean   0.9983
RMS    0.07424

 / ndf 2χ  23.34 / 26
Constant  3.34± 83.87 
Mean      0.0024± 0.9978 
Sigma     0.00176± 0.07276 

HT_100

0.7 0.8 0.9 1 1.1 1.2 1.30

10

20

30

40

50

60

C_100
C_100

Entries  1000
Mean        1
RMS    0.04901

 / ndf 2χ  43.33 / 37
Constant  2.25± 56.05 
Mean      0.002± 1.001 
Sigma     0.00120± 0.04791 

C_100

0.9 0.95 1 1.05 1.10

10

20

30

40

50

HT_1000
HT_1000

Entries  1000
Mean   0.9989
RMS    0.02458

 / ndf 2χ  209.3 / 61
Constant  1.38± 29.98 
Mean      0.0009± 0.9976 
Sigma     0.00071± 0.02344 

HT_1000

0.9 0.95 1 1.05 1.10

10

20

30

40

50

60

70

C_1000
C_1000

Entries  1000
Mean   0.9997
RMS    0.01496

 / ndf 2χ   36.5 / 40
Constant  2.42± 58.19 
Mean      0.0005± 0.9999 
Sigma     0.00040± 0.01467 

C_1000
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Crude MC vs ”Hit and misss”
⇛ We can repeat a toy MC studies as we did in the Euler needle case.
↪→ In this example we want to calculate

∫ π/2
0 cosxdx

0.97 0.98 0.99 1 1.01 1.02 1.030

10

20

30

40

50

HT_10000
HT_10000

Entries  1000

Mean        1

RMS    0.007308

 / ndf 2χ  64.76 / 60

Constant  1.64± 38.36 

Mean      0.0±     1 

Sigma     0.000193± 0.006833 

HT_10000

0.97 0.98 0.99 1 1.01 1.02 1.030

10

20

30

40

50

60

70

C_10000
C_10000

Entries  1000

Mean   0.9999

RMS    0.004772

 / ndf 2χ  34.91 / 38

Constant  2.39± 58.09 

Mean      0.0±     1 

Sigma     0.000122± 0.004654 

C_10000

0.99 0.995 1 1.005 1.010

5

10

15

20

25

30

35

40

HT_100000
HT_100000

Entries  1000

Mean        1

RMS    0.002495

 / ndf 2χ   52.5 / 57

Constant  1.43± 34.18 

Mean      0.0±     1 

Sigma     0.000070± 0.002474 

HT_100000

0.99 0.995 1 1.005 1.010

10

20

30

40

50

60

C_100000
C_100000

Entries  1000

Mean        1

RMS    0.001548

 / ndf 2χ  29.67 / 38

Constant  2.21± 55.49 

Mean      0.0±     1 

Sigma     0.000039± 0.001559 

C_100000
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Crude MC vs ”Hit and misss”
⇛ We can repeat a toy MC studies as we did in the Euler needle case.
↪→ In this example we want to calculate

∫ π/2
0 cosxdx

210 310 410 510
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Graph
 / ndf 2χ  11.64 / 3

p0        0.01005± 0.7295 

 / ndf 2χ  11.64 / 3

p0        0.01005± 0.7295 

Graph

210 310 410 510
0

0.01

0.02

0.03

0.04

0.05

Graph
 / ndf 2χ  3.597 / 3

p0        0.006143± 0.4753 

 / ndf 2χ  3.597 / 3

p0        0.006143± 0.4753 

Graph

⇛ One clearly sees that both methods follow 1/
√
N dependence and

that the Crude MC is always better then the ”Hit and mishit”.
⇛ Please note that for the ”Hit and mishit” we are suing 2 times more
random numbers than for the Crude method so in terms of timing the
Crude MC is also much faster.
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Classical methods of variance reduction

⇛ In Monte Carlo methods the statistical uncertainty is defined as:

σ =
1√
N

√
V (f)

⇛ Obvious conclusion:

• To reduce the uncertainty one needs to increase N .
⇒ Slow convergence. In order to reduce the error by factor of 10 one needs to
simulate factor of 100 more points!

⇛ How ever the other handle (V (f)) can be changed! −→ Lot’s of theoretical effort
goes into reducing this factor.
⇛ We will discuss four classical methods of variance reduction:

1. Stratified sampling.

2. Importance sampling.

3. Control variates.

4. Antithetic variates.
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Stratified sampling

⇛ The most intuitive method of variance reduction. The idea behind it is to divide
the function in different ranges and to use the Riemann integral property:

I =

∫ 1
0

f(u)du =

∫ a
0

f(u)du+

∫ 1
a

f(u)du, 0 < a < 1.

⇛ The reason for this method is that in smaller ranges the integration function is
more flat. And it’s trivial to see that the more flatter you get the smaller uncertainty.
⇒ A constant function would have zero uncertainty!
.
General schematic:
..

.

Let’s take our integration domain and divide it in smaller domains. In the jth domain
with the volume wj we simulate nj points from uniform distribution. We sum the
function values in each of the simulated points for each of the domain. Finally we
sum them with weights proportional to wi and anti-proportional to ni.
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Stratified sampling - mathematical details
Let’s define our integrals and domains:

I =

∫
Ω

f(x)dx, Ω =
k∪
i=1

wi

The integral over jth domain:

Ij =

∫
wj

f(x)dx, ⇒ I =
k∑
j=1

Ii

⇒ pj uniform distribution in the wj domain: dpj = dx
wj

.
⇒ The integral is calculated based on crude MC method. The estimator is equal:

Îj =
wj
nj

nj∑
i=1

f(xij)

Now the total integral is just a sum:

Î =
k∑
j=1

Îj =
k∑
j=1

wj
nj

nj∑
i=1

f(x(i)j ),

Variance: V (Î) =
∑k

j=1

w2j
nj
Vj(f), and it’s estimator: V̂ (Î) =

∑k

j=1

w2j
nj
V̂j(f)
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Stratified sampling in practice

.

..

.
One can show that splitting the integration region Ω into equal regions will not
increase the variance!

⇛ For example in case of two sub samples:

V (Icrude)− V (ISS) =
1
N

[∫
ω1

f(x)dx−
∫
ω2

f(x)dx

]−2
 0

A2.1 Prove the above.
.
Practical advise:
..

.
If we know very little about the integrating function the equal splitting of the Ω space
is the best option!
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Stratified sampling for the Buffon needle

⇛ Lets apply our Stratified sampling to my favourite :) Buffon needle with 5 samples.

⇛ We have ωi = Ω/5 =
π

10
and ni =

N

5
.

⇛ The integral estimator:

P̂ =
1
Ω

5∑
j=1

N/5∑
i=1

p(xji ) =
1
N

N∑
i=1

p(xi)

⇛ The standard deviation (for l = L):

σ(π̂)SS =
0.34√
N
< σ(π̂)Crude =

1.52√
N

⇛ In the following example we generated a constant number of events (N/5) for
each subsample independently of their impact on the integral.
⇛ We can improve this by generating events in each of the sub sample accordingly to
the area of the blue rectangle.
⇛ E2.4 Using the Stratified Sampling please calculate the integrals from E2.3 by
dividing the are into 5 samples. Compute the errors and compare them to the ones
obtained from the Crude method.
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Importance sampling
⇛ If the function is changing rapidly in its domain one needs to use a more elegant
method: make the function more stable.
⇒ The solution is from first course of mathematical analysis: change the integration
variable :)

f(x)dx −→ f(x)
g(x)
dG(x), where g(x) =

dG(x)
dx

.
Schematic:
..

.

• Generate the distribution from G(x) instead of U .
• For each generate point calculate the weight: w(x) = f(x)

g(x) .

• We calculate the expected value Ê(w) and its variance V̂G(w) for the whole
sample.

• If g(x) is choose correctly the resulting variance can be much smaller.
• There are some mathematical requirements:
◦ g(x) needs to be non-negative and analytically integrable on its

domain.
◦ G(x) invertible or there should be a direct generator of g distribution.
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Importance sampling - Example
⇛ Let’s take our good old π determination example.

⇛ Let’s take here for simplicity: L = l.

• Let’s take a trivial linear weight function:
g(x) = 4

π
(1− 2

π
x)

• It’s invertible analytically: G(x) = 4
π
x(1− x

π
)

• The weight function:

w(x) =
p(x)
g(x)

=
π

4
cosx
1− 2x/π

• Now the new standard deviation is smaller:

σISπ ≃
0.41√
N
< σπ ≃

1.52√
N

• Importance sampling has advantages:
◦ Big improvements of variance reduction.
◦ The only method that can cope with singularities.

⇛ Calculate the first function from E2.3 using the importance sampling. As a weight
function g(x) take a linear function.
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Control variates

⇛ Control variates uses an other nice property of Riemann integral:∫
f(x)dx =

∫
[f(x)− g(x)]dx+

∫
g(x)dx

• g(x) needs to be analytically integrable.

• The uncertainty comes only from the integral:
∫
[f(x)− g(x)]dx.

• Obviously: V (f → g) f→g−−−→ 0
⇛ Advantages:

• Quite stable, immune to the singularities.

• g(x) doesn’t need to be invertible analytically.

⇛ Disadvantage:

• Useful only if you know
∫
g(x)dx
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Antithetic variates

⇛ In MC methods usually one uses the independent random variables. The Antithetic
variates method on purpose uses a set of correlated variables (negative correlation is
the important property):

• Let f and f ′ will be functions of x on the same domain.

• The variance: V (f + f ′) = V (f) + V (f ′) + 2Cov(f, f ′).
• If Cov(f, f ′) < 0 then you can reduce the variance.

⇛ Advantages:

• If you can pick up f and f ′ so that they have negative correlation one can
significantly reduce the variance!

⇛ Disadvantages:

• There are no general methods to produce such a negative correlations.

• Hard to generalize this for multidimensional case.

• You can’t generate events from f(x) with this method.
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Wrap up

⇛ To sum up:

• We discussed basic mathematical properties of MC methods.

• We shown that besides the stochastic nature of MC they can be used to
determine totally non stochastic quantities.

• We demonstrated there is a perfect isomorphism between MC method and
integration.

• We learned how co calculate integrals and estimate the uncertainties.

• Finally we discussed several classical methods of variance reduction.
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