Arbitrary p.d.f. generation

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich^{UZH}

Monte Carlo methods, 7 April, 2016

Reverting the c.d.f.

⇒ Let U be a random variable from U(0, 1)⇒ Now let F be a non decreasing function such that:

$$F(-\infty) = 0 \quad F(\infty) = 1$$

then:

 $X = F^{-1}(U)$

has a p.d.f. distribution with a c.d.f. function of F.

 \Rightarrow Prove:

$$F(x) = \mathcal{P}(U \leqslant F(x)) = \mathcal{P}(F^{-1}(U) \leqslant x) = \mathcal{P}(X \leqslant x) \quad \Box$$

⇒ So it looks very simple if $x_1, X_2, ..., X_n$ are random variables from $\mathcal{U}(0, 1)$ then: $\{X_i = F^{-1}(x_i)\}, i = 1, ..., n$ is the sequence that has a c.d.f. distirbution of F.

Reverting the c.d.f., examples

$$\begin{array}{l} \Rightarrow \text{ The exponential distribution: } E(0,1). \\ \Rightarrow \text{ The p.d.f.: } \rho(X) = e^{-X}, \ X \geqslant 0. \\ \Rightarrow \text{ The c.d.f.: } F(x) = \int_0^x e^{-X} dX = 1 - e^{-x}. \\ \Rightarrow \text{ Now let } R \in \mathcal{U}(0,1): \ R = F(X) = 1 - e^{-X} \longrightarrow X = -\ln(1-R) \\ \Rightarrow \text{ Now we can play a trick: if } R \in \mathcal{U}(0,1) \text{ then } 1 - R \text{ also in } \mathcal{U}(0,1). \\ \Rightarrow \text{ In the end we get: } X = -\ln(R) \end{array}$$

 \Rightarrow Use the reverting to generate the following distributions:

- E 6.1 $\rho(X) = \frac{c}{X}$ on the interval [a, b], where $0 < a < b < \infty$.
- E6.2 The Breit-Wigner function:

$$\rho_{\theta,\lambda}(X) = \frac{\lambda}{\pi} \frac{1}{(X-\theta)^2 + \lambda^2}$$

Hit: First do C(0,1) then transform the variables.

Reverting the c.d.f., general case

Marcin Chrząszcz (Universität Zürich)

The χ^2 texts with $\mathcal{U}(0,1)$

- \Rightarrow The algorithm:
- Divide the [0,1) into k subdivisions:

$$0 = a_0 < a_1 < a_2 < a_3 < \dots < a_k = 1$$

- Let $a_{n_i} = X_1, X_2, ... X_n$ be an series of elements in the interval $[a_{i-1}, a_i)$ (with n_i elements). The $p_i = Pa_{i-1} < X < a_i = a_i a_{i-1}$.
- A random variable:

$$\chi_k^2 = \sum_{i=1}^k \frac{(n_1 - np_i)^2}{np_i}, \quad n = \sum_{i=1}^k n_i,$$

had a χ^2 distribution of k-1 degrees of freedom.

⇒ The above hypothesis verifies if the random numbers are indeed $\mathcal{U}(0,1)$. ⇒ The χ^2 distribution: $X \in \mathbb{R}, X > 0, N \in \mathbb{N}$:

$$\rho(X) = \frac{1}{2} \left(\frac{X}{2}\right)^{\frac{N}{2}-1} e^{\frac{X}{2}} \left[\Gamma\left(\frac{N}{2}\right)\right]^{-1} \quad E(X) = N, \quad V(X) = 2N$$

The multi dimension test

 \Rightarrow From the obtained numbers we construct an m dimension points:

$$(X_1, X_2, ..., X_m), (X_{m+1}, ..., X_{2m}), ..., (X_{(n-1)m+1}, X_{nm})$$

- In principle they should have a uniform distribution in an (0, 1)^m hipercube.
- we divide each edge of the hipercube into k equal subdivisions: (j 1)/k, j/k), j = 1...k.
- Now: n_i is the number of m dimensional points, which are in the i-th hipercube.
- The χ² test statistics:

$$\chi^2_{k^m-1} = \frac{k^m}{n} \sum_{i=1}^{k^m} n_i^2 - n, \quad n = \sum_{i=1}^{k^m} n_i$$

⇒ Now we construct other points:

$$(X_1, X_2, ..., X_m), (X_2, X_3, ..., X_{m+1}), ...$$

For N random numbers we have N − m + 1 such numbers.

We define the statistics:

$$\psi_0^2 = 0, \quad \psi_m^2 = \sum_{i=1}^{k^m} \frac{\left[n_1 - (N - m + 1)/k^m\right]^2}{(N - m + 1)k^m}, \quad m = 1, 2, \dots$$

• For large N the $(\psi_m^2-\psi_{m-1}^2)$ has a χ^2 distribution with k^m-k^{m-1} degrees of freedom.

^D/15

Overlaping-pairs-sparse-occupancy

 \Rightarrow The OPSO (G.Marsaglia 1984)is an analysis of pairs obtained from random number generator.

 $X_1, X_2, ..., X_n$ - n random numbers obtained from generator. From each number we take b bits from which we construct a second series: $I_1, I_2, ..., I_n$, where $I_j \in [0, 1, ..., 2^b - 1]$.

 \Rightarrow Next we create the pair series:

$$(I_1, I_2), (I_2, I_3), \dots (I_{n-1}, I_n)$$

 $\Rightarrow Y$ - number of pairs from : $(i,j):i,j=0,1,...,2^b-1,$ which DIDN'T occur in the above series.

Bitstream	No. missing words	z-score	p-value
23 to 32	141989	0.2747	0.391764
22 to 31	142538	2.1678	0.015086
21 to 30	142084	0.6023	0.273484
20 to 29	142081	0.5920	0.276937

 \Rightarrow This kind of test can be exteded to triple-pairs, and quadro-pairs.

⇒ See DIEHARD G.Marsgalia 1993 http://stat.fsu.edu/pub/diehard/

Kolomogorox-Smirnow

 \Rightarrow The K-S test is used to check if a Random variable has pdf of a distribution *F*. The test is based on the difference between the two distributions:

$$D_n = \sup_{-\infty < x < \infty} |F_n(x) - F(x)|, \quad F_n = \frac{1}{n} \sum_{j=1}^n \Theta(x - X_j).$$

 \Rightarrow If the random generator is from the *F* distribution then the $D_n \rightarrow 0$ with the probability 1.

 \Rightarrow Large values of D_n exclude the generator. \Rightarrow The critical values of the test $D_n(\alpha)$ can be find in the mathematical tables for every α :

$$\mathcal{P}[D_n < D_n(\alpha)] = \alpha$$

⇒ They do not depend on the F function. ⇒ For the $\mathcal{U}(0,1)$:

$$F(x) = x, \ 0 < x < 1$$

Kolomogorox-Smirnow in practice

Take note:

Empirical CDF of F_n is a step function and $\sup_{-\infty < x < \infty} |F_n(x) - F(x)|$ is achieved only in one point!

 \Rightarrow In practice one should sort the numbers: $X_1, ..., X_n$ and calculate the following:

$$D_{n}^{+} = \max_{1 \le i \le n} \left(\frac{i}{n} - F(X_{i:n}) \right), \quad D_{n}^{-} = \max_{1 \le i \le n} \left(F(X_{i:n}) - \frac{i-1}{n} \right)$$
$$D_{n} = \max\{D_{n}^{+}, D_{n}^{-}\}$$

where $X_{i:n}$ is so-called position statistic: $X_{1:n}, X_{2:n}, ..., X_{i:n}$. \Rightarrow The statistic D_n asymptotically (in practice $n \ge 80$) is approaching the λ -Kolomogorows cdf:

$$\lim_{n \to \infty} \mathcal{P}\{\sqrt{n}D_n \leqslant t\} = K(t) = \sum_{j=-\infty}^{\infty} (-1)^j e^{-2j^2t^2}, \ t > 0$$

for which the critical values $\lambda_{\alpha}(\mathcal{P}\{\sqrt{n}D_n > \lambda_{\alpha} \text{ can be found in the mathematical tables.}$

 \Rightarrow Commonly the $\lambda_{0.1} = 1.224$, $\lambda_{0.05} = 1.358$, $\lambda_{0.01} = 1.628$ are used.

Statistic distributions test- sum test

 \Rightarrow The *h* function has the form:

$$y = x_1 + x_2 + x_3 \dots x_m.$$

 \Rightarrow the random variables form the new pdf:

$$g_m(y) = \begin{cases} \frac{1}{m-1} \left[y^{m-1} - {m \choose 1} (y-1)^{m-1} + {m \choose 2} (y-2)^{m-1} - .. \right] & \text{for} 0 \leqslant y \leqslant m, \\ 0 & \text{else} \end{cases}$$

where you stop when y - m is negative. \Rightarrow For m = 2 we have the triangle pdf:

$$g_2(y) = \begin{cases} y, \text{ for } 0 \leq y \leq 1\\ 2-y, \text{ for } 0 \leq y \leq 1 \end{cases}$$

 \Rightarrow For m = 3 we have the triangle pdf:

$$g_{3}(y) = \begin{cases} \frac{1}{2}y^{2}, \text{ for } 0 \leq y \leq 1\\ \frac{1}{2} \left[y^{2} - 3(y-1)^{2}\right], \text{ for } 1 \leq y \leq 2\\ \frac{1}{2} \left[y^{2} - 3(y-1)^{2} 3(y-2)^{2}\right], \text{ for } 2 \leq y \leq 3 \end{cases}$$

 \Rightarrow For large *m* the g_m approaches the normal distribution.

Marcin Chrząszcz (Universität Zürich)

Arbitrary p.d.f. generation

Statistic distributions test- d^2

 \Rightarrow for m = 4 we define the h:

$$y = (x_1 - x_3)^2 + (x_2 - X_4)^2$$

aka the square distance between (x_1, x_2) and (x_3, x_4) . \Rightarrow If the X_1, X_2, X_3, X_4 are from $\mathcal{U}(0, 1)$ then:

$$d^{2} = (X_{1} - X_{3})^{2} + (X_{2} - X_{4})^{2}$$

had a pdf given by the following formula:

$$\mathcal{P}(d^2 - y) = \begin{cases} \pi y - \frac{8}{3}y^{\frac{3}{2}} + \frac{1}{2}y^2 & \text{for } 0 \leq y \leq 1\\ -\frac{1}{2}y^2 - 4 \operatorname{arcsec}(y^{\frac{1}{2}}) & \text{for } 1 \leq y \leq 2 \end{cases}$$

 \Rightarrow Test is to check if the generated numbers have the aforementioned distribution.

Statistic distributions test- pair distance

 \Rightarrow Generate n points from $(0,1)^m.$ We take $\binom{n}{2}$ pairs of points and we calculate the distance between them.

 \Rightarrow If D is the smallest distance between the pairs \mapsto for the $\mathcal{U}(0,1)^m$ the $T = n^2 D^m/2$ has the exponential distribution with the mean $1/V_m$, where V_m is the hiper volume of the unite ball.

 \Rightarrow In Patrice:

- We generate Nn points in the hipercube $(0,1)^m$, getting N points in the T statistics.
- We compare the empirical distribution *T* with the exponential distribution.
- WARNING: the N, n, m need to be choose smartly for the test to make sense.
- \Rightarrow Linear generators usually fail this test!

Statistic distributions test- series test

 \Rightarrow Lets assume our numbers are generated with a CDF *F*. The values of *F* we divide in two separated sub-samples: *A* and *B*.

 \Rightarrow Furthermore we define the new variables Y such as:

$$Y = \begin{cases} = aX \in A \\ = bX \in B \end{cases}$$

 \Rightarrow The random number sequence we transform the $X_1, X_2, X_3, ..., X_n$ into $Y_1, Y_2, Y_3, ..., Y_n$.

 \Rightarrow Next we make series: For example the a, a, b, a, a, b, b, b, a will be grouped into aa, b, aa, bbb, a.

- \Rightarrow Let n_a be number of a symbols in $Y_1, Y_2, Y_3, ..., Y_n$. $n_b = N n_a$.
- \Rightarrow Distribution of number of series (*R*) is given by the equation:

$$\mathcal{P}(R=r,n_a,n_b) = \begin{cases} 2\binom{n_a-1}{k-1}\binom{n_b-1}{k-1} / \binom{N}{n_a} & \text{if } r=2k\\ [\binom{n_a-1}{k}\binom{n_b-1}{k-1} + \binom{n_a-1}{k-1}\binom{n_b-1}{k}] / \binom{N}{n_a} & \text{if } r=2k+1 \end{cases}$$

Statistic distributions test- poker test

 \Rightarrow The values of X random variable we divide into k identical sub samples:

 $0 < a_1 < \ldots < a_k = 1$

 \Rightarrow For $X_1, X_2, ..., X_n$ from $\mathcal{U}(0, 1)$:

$$\mathcal{P}(a_{i-1} < X_j < a_i) = \frac{1}{k}.$$

 \Rightarrow We create the new variables Y_1 accordingly:

$$Y_j = i$$
 if $X_j \in (a_{i-1}, a_i), \ i = 0, 1, \dots k - 1$

 \Rightarrow Now we create "the fives":

 $(Y_1, Y_2, Y_3, Y_4, Y_5), (Y_6, \dots$

 \Rightarrow There are couple of types of fives:

aabcd pair

aaabc three

aaaab four

aaaaa five

Statistic distributions test- poker test

 \Rightarrow If the variables are independent then we can calculate the probability:

$$\begin{aligned} \mathcal{P}\{(abcde)\} &= \frac{(k-1)(k-2)(k-3)(k-4)}{k^4}, \quad k \ge 5, \\ \mathcal{P}\{(aabcd)\} &= \frac{10(k-1)(k-2)(k-3)}{k^4}, \quad k \ge 4, \\ \mathcal{P}\{(aabbc)\} &= \frac{15(k-1)(k-2)}{k^4}, \quad k \ge 3, \\ \mathcal{P}\{(aaabc)\} &= \frac{10(k-1)(k-2)}{k^4}, \quad k \ge 3, \\ \mathcal{P}\{(aaabb)\} &= \frac{10(k-1)}{k^4}, \quad k \ge 3, \\ \mathcal{P}\{(aaaab)\} &= \frac{5(k-1)}{k^4}, \quad k \ge 2, \\ \mathcal{P}\{(aaaaa)\} &= \frac{1}{k^4}, \quad k \ge 1, \end{aligned}$$

 \Rightarrow In practice people choose: k = 2, 8, 10

 \Rightarrow The agreemnt of the distribution of different types of fives is check using the χ^2 test.

Conclusions

 \Rightarrow There are infinite number of tests one can invent for the testing of the generators.

 \Rightarrow All of the tests are in the same taste: invent a problem where you know the analytic solution, solve the problem and compare the results.

 \Rightarrow Homework: Use one of the previously implemented random number generator and :

- E5.1 Test them with chi-square test k=10.
- E5.2 Kolomorov-smirnon.
- E5.3 Multidimensional test.

Backup

Marcin Chrząszcz (Universität Zürich)