

General methodology

. How to check if we have a good generator?

. The generator is good if the number sequences that it produces have properties of . But how to check this!?! truly random numbers.

 \Rightarrow Traditional methodology: Define some properties of random numbers from $\mathcal{U}(0,1)$ and check if in the tests

- the properties are conserved.
- *•* The problem with this approach is the fact that there are infinite number of test like this one would have to do :(
- In practice one can only only prove the generator is bad, but not that it's good.
- There is no way to guarantee that if the n tests are fulfilled the $n + 1$ will not fail!
- \Rightarrow The testing can be only in terms of so-called negative selection.

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 2/15

 \Rightarrow By each test our trust in the generator increases our trust in it, but it's not GM cars! There is no guarantee.

General methodology, example

- \Rightarrow Let's assume we have a generator that has $\mathcal{U}(0, 1)$:
- *•* We generate *n* numbers(*n* is fixed).
- *•* From them we calculate a values of test function *T*.
- *•* We calculate the *F*(*T*) where F is the CDF of the *T* statistics.
- Repeat the procedure *N* times: $T_1, ..., T_N$ and $F(T_1), ..., F(T_N)$.

 \Rightarrow If the generator is good(hipothesis of $\mathcal{U}(0,1)$ is true the $F(T_1),...,F(T_N)$ will have the distribution of $U(0, 1)$. One usually quotes the credibility level of a test! \Rightarrow There are number of test that the generator can be applied to. in the literature:

- *•* "The Art of Computer Programming", Author Donald Knuth
- *•* DIEHARD by G.Marsaglia, stat.fsu.edu/pub/diehard/

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 3

⇛Modern approach:

Us the same formalism as is in studies the classical chaotic dynamical systems (same formalism is used in the modern generators).

³*/*15

 \Rightarrow The RANLUX generator fulfils the chaotic test and all known classical tests (not surprisingly ;))

The χ^2 texts with $\mathcal{U}(0,1)$

- \Rightarrow The algorithm:
- *•* Divide the [0*,* 1) into *k* subdivisions:

$$
0 = a_0 < a_1 < a_2 < a_3 < \dots < a_k = 1
$$

- *•* Let *aⁿⁱ* = *X*1*, X*2*, ..Xⁿ* be an series of elements in the interval [*aⁱ−*¹*, ai*) (with *n*_{*i*} elements). The $p_i = P(a_{i-1} < X < a_i) = a_i - a_{i-1}$.
- *•* A random variable:

$$
\chi_k^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}, \quad n = \sum_{i=1}^k n_i,
$$

had a χ^2 distribution of $k-1$ degrees of freedom.

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 4/15

 \Rightarrow The above hypothesis verifies if the random numbers are indeed $\mathcal{U}(0,1).$ \Rightarrow The χ^2 distribution: $X \in \mathbb{R}, X > 0, N \in \mathbb{N}$:

$$
\rho(X) = \frac{1}{2} \left(\frac{X}{2}\right)^{\frac{N}{2}-1} e^{\frac{X}{2}} \left[\Gamma\left(\frac{N}{2}\right)\right]^{-1} \quad E(X) = N, \quad V(X) = 2N
$$

The multi dimension test

 \Rightarrow From the obtained numbers we construct an m dimension points:

(*X*1*, X*2*, ..., Xm*)*,* (*Xm*+1*, ..., X*2*m*)*, ...,* (*X*(*n−*1)*m*+1*, Xnm*)

- In principle they should have a uniform distribution in an $(0, 1)^m$ hipercube.
• we divide each edge of the hipercube into k equal subdivisions: $[i 1]/k$, a
- *•* we divide each edge of the hipercube into *k* equal subdivisions: $[j 1]/k$, j/k), $j = 1...k$.
- *•* Now: *ⁿⁱ* is the number of *^m* dimensional points, which are in the *ⁱ*-th hipercube.
- The χ^2 test statistics:

$$
\chi_{k\,m\,-1}^2 = \frac{k^m}{n} \sum_{i=1}^{k^m} n_i^2 - n, \quad n = \sum_{i=1}^{k^m} n_i
$$

 \Rightarrow Now we construct other points:

 $(X_1, X_2, \ldots, X_m), (X_2, X_3, \ldots, X_{m+1}), \ldots$

- *•* For *^N* random numbers we have *^N [−] ^m* + 1 such numbers.
- *•* We define the statistics:

$$
\psi_0^2 = 0, \quad \psi_m^2 = \sum_{i=1}^{k^m} \frac{\left[n_1 - \left(N - m + 1\right)/k^m\right]^2}{\left(N - m + 1\right)k^m}, \quad m = 1, 2, \dots
$$

 $^{5}/_{15}$

• For large *N* the $(\psi_m^2 - \psi_{m-1}^2)$ has a χ^2 distribution with $k^m - k^{m-1}$ degrees of freedom.

Overlaping-pairs-sparse-occupancy

⇛ The OPSO (G.Marsaglia 1984)is an analysis of pairs obtained from random number generator.

. *X*1*, X*2*, ..., Xⁿ* - *n* random numbers obtained from generator. From each number we take *b* bits from which we construct a second series: *I*1*, I*2*, ..., In*, where

 \Rightarrow Next we create the pair series:

 $(I_1, I_2), (I_2, I_3), \ldots, (I_{n-1}, I_n)$

 \Rightarrow Y - number of pairs from : $(i,j) : i,j = 0,1,...,2^b-1$, which DIDN'T occur in the above series.

 $^{6}/_{15}$

 \Rightarrow This kind of test can be exteded to triple-pairs, and quadro-pairs.

⇛ See DIEHARD G.Marsgalia 1993 http://stat.fsu.edu/pub/diehard/

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 6/15

Kolmogorov - Smirnov

 \Rightarrow The K-S test is used to check if a Random variable has pdf of a distribution F . The test is based on the difference between the two distributions:

$$
D_n = \sup_{-\infty < x < \infty} |F_n(x) - F(x)|, \quad F_n = \frac{1}{n} \sum_{j=1}^n \Theta(x - X_j).
$$

 \Rightarrow If the random generator is from the F distribution then the $D_n \to 0$ with the probability 1.

 \Rightarrow Large values of D_n exclude the generator. \Rightarrow The critical values of the test $D_n(\alpha)$ can be find in the mathematical tables for every *α*:

$$
\mathcal{P}[D_n < D_n(\alpha)] = \alpha
$$

 \Rightarrow They do not depend on the F function.

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 7

 \Rightarrow For the $\mathcal{U}(0,1)$:

$$
F(x) = x, \ 0 < x < 1
$$

Kolmogorov - Smirnov in practice

. Take note:

. Empirical CDF of *Fⁿ* is a step function and sup*−∞<x<[∞] |Fn*(*x*) *− F*(*x*)*|* is achieved . only in one point!

 \Rightarrow In practice one should sort the numbers: $X_1, ..., X_n$ and calculate the following:

$$
D_n^+ = \max_{1 \le i \le n} \left(\frac{i}{n} - F(X_{i:n}) \right), \quad D_n^- = \max_{1 \le i \le n} \left(F(X_{i:n}) - \frac{i-1}{n} \right)
$$

$$
D_n = \max \{ D_n^+, D_n^-\}
$$

where *Xⁱ*:*ⁿ* is so-called position statistic: *X*1:*ⁿ, X*2:*ⁿ, ..., Xⁱ*:*ⁿ*. \Rightarrow The statistic D_n asymptotically (in practice $n\geqslant 80$) is approaching the *λ*-Kolomogorows cdf:

$$
\lim_{n \to \infty} \mathcal{P}\{\sqrt{n}D_n \leq t\} = K(t) = \sum_{j=-\infty}^{\infty} (-1)^j e^{-2j^2 t^2}, \ t > 0
$$

for which the critical values $\lambda_\alpha(\mathcal{P}\{\sqrt{n}D_n\}) > \lambda_\alpha$ can be found in the mathematical tables.

 $\frac{8}{15}$

 \Rightarrow Commonly the $\lambda_{0.1} = 1.224$, $\lambda_{0.05} = 1.358$, $\lambda_{0.01} = 1.628$ are used.

Marcin Chrząszcz (Universität Zürich) **Testing random number generators** 8

Statistic distributions test- sum test

 \Rightarrow The *h* function has the form:

$$
y = x_1 + x_2 + x_3...x_m.
$$

 \Rightarrow the random variables form the new pdf:

$$
g_m(y) = \begin{cases} \frac{1}{m-1} \left[y^{m-1} - {m \choose 1} (y-1)^{m-1} + {m \choose 2} (y-2)^{m-1} - \ldots \right] & \text{for } 0 \le y \le m, \\ 0 & \text{else} \end{cases}
$$

where you stop when *y − m* is negative. ⇛ For *m* = 2 we have the triangle pdf:

$$
g_2(y) = \begin{cases} y, \text{ for } 0 \leq y \leq 1 \\ 2 - y, \text{ for } 0 \leq y \leq 1 \end{cases}
$$

 \Rightarrow For $m = 3$ we have the triangle pdf:

$$
g_3(y) = \begin{cases} \frac{1}{2}y^2, \text{ for } 0 \le y \le 1\\ \frac{1}{2} [y^2 - 3(y - 1)^2], \text{ for } 1 \le y \le 2\\ \frac{1}{2} [y^2 - 3(y - 1)^2 3(y - 2)^2], \text{ for } 2 \le y \le 3 \end{cases}
$$

⁹*/*15

 \Rightarrow For large m the g_m approaches the normal distribution.

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 9/15

Statistic distributions test- *d* 2

 \Rightarrow for $m = 4$ we define the *h*:

$$
y = (x_1 - x_3)^2 + (x_2 - X_4)^2
$$

aka the square distance between (x_1, x_2) and (x_3, x_4) . \Rightarrow If the X_1 , X_2 , X_3 , X_4 are from $\mathcal{U}(0,1)$ then:

$$
d^{2} = (X_{1} - X_{3})^{2} + (X_{2} - X_{4})^{2}
$$

had a pdf given by the following formula:

$$
\mathcal{P}(d^2 - y) = \begin{cases} \pi y - \frac{8}{3}y^{\frac{3}{2}} + \frac{1}{2}y^2 & \text{for } 0 \le y \le 1 \\ -\frac{1}{2}y^2 - 4\arcsin(y^{\frac{3}{2}}) & \text{for } 1 \le y \le 2 \end{cases}
$$

 \Rightarrow Test is to check if the generated numbers have the aforementioned distribution.

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 10/15

Statistic distributions test- pair distance

 \Rightarrow Generate n points from $(0,1)^m.$ We take $\binom{n}{2}$ pairs of points and we calculate the distance between them.

⇛ If *D* is the smallest distance between the pairs *7−→* for the *U*(0*,* 1)*^m* the $T = n^2 D^m / 2$ has the exponential distribution with the mean $1/V_m$, where V_m is the hiper volume of the unite ball. \Rightarrow In Patrice:

-
- *•* We generate *Nn* points in the hipercube (0*,* 1)*^m*, getting *^N* points in the *^T* statistics.
- *•* We compare the empirical distribution *T* with the exponential distribution.
- *•* WARNING: the *N, n, m* need to be choose smartly for the test to make sense.

¹¹*/*15

 \Rightarrow Linear generators usually fail this test!

Marcin Chrząszcz (Universität Zürich) ⁷esting random number generators

Statistic distributions test- series test

 \Rightarrow Lets assume our numbers are generated with a CDF *F*. The values of *F* we divide

in two separated sub-samples: *A* and *B*.

 \Rightarrow Furthermore we define the new variables *Y* such as:

$$
Y = \begin{cases} = aX \in A \\ = bX \in B \end{cases}
$$

 \Rightarrow The random number sequence we transform the $X_1, X_2, X_3, ..., X_n$ into

*Y*1*, Y*2*, Y*3*, ..., Yn*.

 \Rightarrow Next we make series: For example the $a, a, b, a, a, b, b, b, a$ will be grouped into aa , *b*, *aa*, *bbb*, *a*.

 \Rightarrow Let n_a be number of *a* symbols in $Y_1, Y_2, Y_3, ..., Y_n$. $n_b = N - n_a$.

 \Rightarrow Distribution of number of series (R) is given by the equation:

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 12/15

$$
\mathcal{P}(R=r,n_a,n_b)=\begin{cases}2{n_a-1 \choose k-1}{n_b-1 \choose k-1}/{N \choose n_a} \text{ if } r=2k \\ [\binom{n_a-1}{k}{n_b-1 \choose k-1}+\binom{n_a-1}{k-1}{n_b-1 \choose k}] / \binom{N}{n_a} \text{ if } r=2k+1 \end{cases}
$$

Statistic distributions test- poker test

 \Rightarrow The values of X random variable we divide into k identical sub samples:

$$
0
$$

 \Rightarrow For $X_1, X_2, ..., X_n$ from $\mathcal{U}(0, 1)$:

$$
\mathcal{P}(a_{i-1} < X_j < a_i) = \frac{1}{k}.
$$

 \Rightarrow We create the new variables Y_1 accordingly:

$$
Y_j = i \text{ if } X_j \in (a_{i-1}, a_i), \ i = 0, 1, \dots k - 1
$$

 \Rightarrow Now we create "the fives":

(*Y*1*, Y*2*, Y*3*, Y*4*, Y*5)*,*(*Y*6*, ...*

¹³*/*15

 \Rightarrow There are couple of types of fives:

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 13/15

aabcd pair

aaabc three

- aaaab four
- aaaaa five

Statistic distributions test- poker test

 \Rightarrow If the variables are independent then we can calculate the probability:

$$
\mathcal{P}\{(abcde)\} = \frac{(k-1)(k-2)(k-3)(k-4)}{k^4}, \quad k \ge 5
$$

$$
\mathcal{P}\{(aabcd)\} = \frac{10(k-1)(k-2)(k-3)}{k^4}, \quad k \ge 4,
$$

$$
\mathcal{P}\{(aabbc)\} = \frac{15(k-1)(k-2)}{k^4}, \quad k \ge 3,
$$

$$
\mathcal{P}\{(aabbc)\} = \frac{10(k-1)(k-2)}{k^4}, \quad k \ge 3,
$$

$$
\mathcal{P}\{(aaabb)\} = \frac{10(k-1)}{k^4}, \quad k \ge 3,
$$

$$
\mathcal{P}\{(aaaab)\} = \frac{5(k-1)}{k^4}, \quad k \ge 2,
$$

$$
\mathcal{P}\{(aaaaa)\} = \frac{1}{k^4}, \quad k \ge 1,
$$

 \Rightarrow In practice people choose: $k=2,8,10$

Marcin Chrząszcz (Universität Zürich) *Testing random number generators* 14/15

 \Rrightarrow The agreemnt of the distribution of different types of fives is check using the χ^2 test.

Conclusions

 \Rightarrow There are infinite number of tests one can invent for the testing of the generators.

 \Rightarrow All of the tests are in the same taste: invent a problem where you know the analytic solution, solve the problem and compare the results. ⇛ Homework: Use one of the previously implemented random number generator and :

¹⁵*/*15

• E5.1 Test them with chi-square test k=10.

Marcin Chrząszcz (Universität Zürich) *Testing random number gene*

- *•* E5.2 Kolomorov-smirnon.
- *•* E5.3 Multidimensional test.

Backup

