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[12] Hénon, M. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 
50, 69–77 (1976). 

[13] Barnsley, M. Fractals Everywhere. Academic Press, San Diego, (1988). 

[14] Grassberger, P.	 and Procaccia, I. Measuring the strangeness of strange attractors. 
Physica D 9, 189–208 (1983). 

[15] Feigenbaum, M. Universal behavior in nonlinear systems.	 Los Alamos Science 1, 4–27 
(1980). 

[16] Schuster, H. G.	 Deterministic Chaos: An Introduction. VCH, Weinheim, Germany, 
(1988). 

[17] Kadanoff, L. P. Roads to chaos. Physics Today , December (1983). 

6




1 Pendulum 

1.1 Free oscillator 

To introduce dynamical systems, we begin with one of the simplest: a free 
oscillator. Specifically, we consider an unforced, undamped pendulum. 

The arc length (displacement) between the pendulum’s current position and 
rest position (β = 0) is 

s = lβ 

Therefore 

ṡ = lβ̇ 

¨ s̈ = lβ 

From Newton’s 2nd law, 
¨ F = mlβ 

The restoring force is given by −mg sin β. (It acts in the direction opposite 
to sgn(β)). Thus 

¨ F = mlβ = −mg sin β 

or 
d2β g

+ sin β = 0. 
dt2 l 

l 

mg 
mg sinθ 

θ 

Our pendulum equation is idealized: it assumes, e.g., a point mass, a rigid 
geometry, and most importantly, no friction. 
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� 

� 

The equation is nonlinear, because of the sin β term. Thus the equation is 
not easily solved. 

However for small β � 1 we have sin β β. Then 
d2β 

◦ 
g 
β 

dt2 
= − 

l 
whose solution is 

g
β = β0 cos t + θ 

l 
or 

β = β0 cos(γt + θ) 

where the angular frequency is 

g
γ = ,

l 
the period is 

l 
T = 2α , 

g 

and β0 and θ come from the initial conditions. 

Note that the motion is exactly periodic.

Furthermore, the period T is independent of the amplitude β0.


0 1 2
−1 

0 

1 

θ 
/ θ

 0 

t / T 

1.2 Global view of dynamics 

What do we need to know to completely describe the instantaneous state of 
the pendulum? 

The position β and the velocity 
dβ 

= β. ˙
dt 
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Instead of integrating our o.d.e. for the pendulum, we seek a representation 
of the solution in the plane of β and β̇. 

Because the solution is periodic, we know that the resulting trajectory must 
be closed: 

θ 

θ 

In which direction is the flow? 
What shape does the curve take? 

To calculate the curve, we note that it should be characterized by constant 
energy, since no energy is input to the system (it is not driven) and none is 
dissipated (there is no friction). 

Therefore we compute the energy E(β, β̇), and expect the trajectories to be 
curves of E(β, β̇) = const. 

1.3 Energy in the plane pendulum 

mg 
mg sinθ 

θθl cos 

h 

l 

The pendulum’s height above its rest position is h = l − l cos β. 
As before, s = arc length = lβ. 
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The kinetic energy T is 

1 2 1 1 
T = mṡ = m(lβ̇)2 = ml2β̇2 

2 2 2 

The potential energy U is 

U = mgh	 = mg(l − l cos β) 

= mgl(1 − cos β) 

Therefore the energy E(β, β̇) is 

E(β, β̇) = 
1 
ml2β̇2 + mgl(1 − cos β)

2 

We check that E(β, β̇) is a constant of motion by calculating its time deriva
tive: 

dE 1 
= ml2(2β̇β̈) + mglβ̇ sin β 

dt 2 

= ml2β̇ 
�

¨ β + 
g 

sin β 
� 

l 
= 0 (since the pend. eqn. ¨ β = − 

g 
l 

sin β) 

So what do these curves look like?

Take β0 to be the highest point of motion.


θ0 

Then 
β̇(β0) = 0 

and 
E(β0, β̇ | ) = mgl(1 − cos β0)λ0 

Since cos β = 1 − 2 sin2(β/2), 

E(β0, β̇ |λ0 ) = 2mgl sin2 

�
β

2 
0 
� 

= E(β, β̇) in general, since E is conserved 
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Now write T = E − U : 

1 
2 
ml2β̇2 = 2mgl 

� 

sin2 β0 

2 
− sin2 β 

2 

� 

(1) 

β̇2 = 4 
g 
l 

� 

sin2 β0 

2 
− sin2 β 

2 

� 

(2) 

For small β0 such that β � 1, 

β̇2 ◦ 4 
g

l 

�
β

4 
0
2 

− 
β

4 

2 � 

or � �2 
β̇ 

+ β2 β2 
� 0 
g/l 

◦ 

Thus for small β the curves are circles of radius β0 in the plane of β and 
˙
�

β/ g/l. 
θ / (g/l)1/2 

θ 

What about β0 large? 
Consider the case β0 = α. 

For β0 = α, E = 2mgl, and equation (2) gives 

g 
⎡ �α �

�
β
�� 

β̇2 = 4 sin2 − sin2 

l 2 2 
�
β
� 

g 2 = 4 cos 
l 2 

Thus for β0 = α, the curves are the cosines 

β̇ = ±2 

� 
g 

�
β 
� 

cos . 
l 2 
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Intuitively, we recognize that this curve separates

oscillatory motion (E < 2mgl) from rotary motion (E > 2mgl).


Thus for undampled, nonlinear pendulum we can construct the following

phase portrait:


−2 −1 0 1 2
−2 

0 

2 

(d
θ 

/ d
t)

 / 
(g

 / 
l)1/

2 

θ / π 

The portrait is periodic.


The points β̇ = 0, β = . . . , −2α, 0, 2α, . . . are stable equilibrium, or fixed,

points (actually, marginally stable).


The points β̇ = 0, β = . . . , −3α, −α, α, 3α . . . are unstable fixed points.
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The trajectories appear to cross, but they do not. Why not? 
(Deterministic trajectories.) 

If the trajectories actually arrive to these crossing points, then what happens? 
(The motion stops, awaiting instability. But we shall see that it would take 
infinite time to arrive at these points.) 
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2 Stability of solutions to ODEs 

How can we address the question of stability in general? 

We proceed from the example of the pendulum equation. We reduce this 
second order ODE, 

¨ g
β + sin β = 0,

l 
to two first order ODE’s. 

Write x1 = β, x2 = β̇. Then 

ẋ1 = x2 
g 

ẋ2 = sin x1− 
l 

The equilibrium points, or fixed points, are where the trajectories in phase 
space stop, i.e. where 

ψẋ = 
ẋ1 = ψ0 
ẋ2 

For the pendulum, this requires 

x2 = 0 

x1 = ±nα, n = 0, 1, 2, . . . 

Since sin x1 is periodic, the only distinct fixed points are 
� 
β 
� � 

0 
� � 

β 
� � 

α 
�


β̇
=

0 
and 

β̇
=

0


Intuitively, the first is stable and the second is not. 
How may we be more precise? 

2.1 Linear systems 

Consider the problem in general. First, assume that we have the linear system 

u̇1 = a11u1 + a12u2 

u̇2 = a21u1 + a22u2 

14 



� � � � 

or

ψu̇ = Aψu


with 
u1(t) a11 a12ψu(t) = and A = 
u2(t) a21 a22 

Assume A has an inverse and that its eigenvalues are distinct. 
Then the only fixed point (where ψu̇ = 0) is ψu = 0. 

The solution, in general, is 

ψu(t) = �1e 
�1t cψ1 + �2e 

�2t cψ2 

where 

• �1, �2 are eigenvalues of A. 

• cψ1, cψ2 are eigenvectors of A. 

• �1 and �2 are constants (deriving from initial conditions). 

What are the possibilities for stability? 

1. �1 and �2 are both real. 

(a) If �1 < 0 and �2 < 0, then u(t) ∗ 0 as t ∗ →. 
∞ stable. 

u2 

u1 

15




(b) If �1 > 0 and �2 > 0, then u(t) ∗ → as t ∗ →. 
∞ unstable. 

u2 

u1 

(c) If �1 < 0 < �2, 

• If ψu(0) is a multiple of cψ1, then u(t) ∗ 0 as t ∗ →. 

• If ψu(0) is a multiple of cψ2, then u(t) ∗ → as t ∗ →. 

∞ unstable saddle. 
u2 

u1 

c2 

c1 

2. �1, �2 are both complex. Then 

� = ε ± iq. 

Assuming ψu(t) is real,


ψu(t) = e θt(λψ1 cos qt + λψ2 sin qt)


(�ρ1, �ρ2 are formed from a linear combination of of A’s eigenvectors and the initial conditions). 

There are three possibilities: 

(a) Re{�} = ε > 0 =∞ unstable. 
u2 

u1 
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� � 

(b) ε < 0 =∞ stable. 
u2 

u1 

(c) ε = 0 =∞ marginally stable. 
u2 

u1 

We leave the case of repeated eigenvalues to Strogatz (pp. 135-6). 

2.2 Nonlinear systems 

We are interested in the qualitative behavior of systems like 

ẋ1 = f1(x1, x2) 

ẋ2 = f2(x1, x2) 

where f1 and f2 are nonlinear functions of x1 and x2. 

x�1Suppose is a fixed point. Is it stable? 
x�2 

Define ui = xi − x� to be a small departure from the fixed point. i 

Perform a Taylor expansion around the fixed point. 

For a one dimensional function g(x) we would have 

g(x � + u) � g(x �) + g �(x �) u· 
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 �


�
�
�
�
�
�
�
�

�
 � � �
 �
 �


�
 �
 �
 �


Here we obtain


fi(x1, x2) = fi(x1
�, x�2) + 

ωfi 
(x1

�, x�2) u1 + 
ωfi 

(x1
�, x�2) u2 + O(u 2)


ωx1 ωx2⎜�

=0 since fixed pt 

The first term vanishes since it is evaluated at the fixed point. 

Also, since 
ui = xi − x�i 

we have 
u̇i = ẋi = fi(x1, x2) 

Substituting u̇i = fi(x1, x2) above, we obtain 

ψu̇ Aψu◦ 

where


A is called the Jacobian matrix of f at ψx�. 

We now apply these results to the pendulum. We have 

ẋ1 = f1(x1, x2) = x2 
g 

ẋ2 = f2(x1, x2) = − sin x1
l 

⎪

γf1 γf1 

γx1 γx2 �
⎞ 

⎬
⎛A =


γf2 γf2 

γx1 γx2 τx=τx� 

and

0 1
 x�1 0


A = for
−g/l 0

= 

x�2 0


x�1 α

There is a different A for the case
 = . (The sign of g/l changes.)


x�2 0 

The question of stability is then addressed just as in the linear case, via 
calculation of the eigenvalues and eigenvectors. 
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3 Conservation of volume in phase space 

We show (via the example of the pendulum) that frictionless systems conserve 
volumes (or areas) in phase space. 

Conversely, we shall see, dissipative systems contract volumes. 

Suppose we have a 3-D phase space, such that 

ẋ1 = f1(x1, x2, x3) 

ẋ2 = f2(x1, x2, x3) 

ẋ3 = f3(x1, x2, x3) 

or 
dψx 

= fψ(ψx)
dt 

The equations describe a “flow,” where dψx/dt is the velocity. 

A set of initial conditions enclosed in a volume V flows to another position 
in phase space, where it occupies a volume V ∗, neither necessarily the same 
shape nor size: 

x3n 
’V

ds 

x 
V 

x2 

x1 

Assume the volume V has surface S. 
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� 

Let 

•	 δ = density of initial conditions in V ; 

δfψ = rate of flow of points (trajectories emanating from initial condi• 
tions) through unit area perpendicular to the direction of flow; 

•	 ds = a small region of S; and 

•	ψn = the unit normal (outward) to ds. 

Then 

net flux of points out of S = (δfψ ψn)ds· 
S 

or �	
ωδ 

� 

ωt 
dV = − (δfψ · ψn)ds 

V	 S 

i.e., a positive flux = a loss of “mass.” ∞ 

Now we apply the divergence theorem to convert the integral of the vector 
field δfψ on the surface S to a volume integral: 

� 
ωδ 

� 
dV = − [ψ f)]dV 

ωt V	 V 
� · (δψ

Letting the volume V shrink, we have 

ωδ 
= −ψ f)

ωt 
� · (δψ

Now follow the motion of V to V ∗ in time νt: 

V 
V’ 

The boundary deforms, but it always contains the same points. 
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We wish to calculate dδ/dt, which is the rate of change of δ as the volume 
moves: 

dδ ωδ ωδ dx1 ωδ dx2 ωδ dx3 
= + + + 

dt ωt ωx1 dt ωx2 dt ωx3 dt 

= � · (δfψ) + (ψ · fψ−ψ �δ) 

= −(�ψ δ) fψ− δψ �δ) fψ� · f + (ψ· · 

= −δψ fψ� · 
Note that the number of points in V is 

N = δV 

Since points are neither created nor destroyed we must have 

dN dδ dV 
= V + δ = 0. 

dt dt dt 
Thus, by our previous result, 

−δV ψ fψ = −δ 
dV � · 
dt 

or 
1 dV 

= ψ fψ
V dt 

� · 
This is called the Lie derivative. 

We shall next arrive at the following main results by example: 

ψ• � · fψ = 0 ∞ volumes in phase space are conserved. Characteristic of 
conservative or Hamiltonian systems. 

ψ f < 0 ∞ dV/dt < 0 ∞ volumes in phase space contract. Character• � · ψ
istic of dissipative systems. 

We use the example of the pendulum: 

ẋ1 = x2 = f1(x1, x2) 
g 

ẋ2 = − 
l 

sin x1 = f2(x1, x2) 
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Calculate

ψ ψ ωẋ1 ωẋ2 � · f = 

ωx1 
+ 
ωx2 

= 0 + 0 

Pictorially


2 

1 

x 

x 

Note that the area is conserved. 

Conservation of areas holds for all conserved systems. This is conventionally 
derived from Hamiltonian mechanics and the canonical form of equations of 
motion. 

In conservative systems, the conservation of volumes in phase space is known 
as Liouville’s theorem. 

4 Damped oscillators and dissipative systems 

4.1 General remarks 

We have seen how conservative systems behave in phase space. 
What about dissipative systems? 

What is a fundamental difference between dissipative systems and conserva
tive systems, aside from volume contraction and energy dissipation? 

• Conservative systems are invariant under time reversal. 

• Dissipative systems are not; they are irreversible. 
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Consider again the undamped pendulum: 

d2β 
+ γ2 sin β = 0. 

dt2 

Let t ∗ −t and thus ω/ωt ∗ −ω/ωt. 
There is no change—the equation is invariant under the transformation. 

The fact that most systems are dissipative is obvious if we run a movie 
backwards (ink drop, car crash, cigarette smoke...) 

Formally, how may dissipation be represented? Include terms propor
tional to odd time derivatives., i.e., break time-reversal invariance. 

In the linear approximation, the damped pendulum equation is 

d2β dβ 
+ ρ + γ2β = 0 

dt2 dt 

where 

γ2 = g/l 

ρ = damping coefficient 

The sign of θ is chosen so that positive damping is opposite the direction of motion. 

How does the energy evolve over time? As before, we calculate 

1 
kinetic energy = ml2β̇2 

2 
�
β2 � 

potential energy = mlg(1 − cos β) mlg ◦ 
2 

where we have assumed β � 1 in the approximation. 

Summing the kinetic and potential energies, we have 

E(β, β̇) = 
1 � g

β2
� 

ml2 β̇2 + 
2 l 

1 
= ml2(β̇2 + γ2β2)

2 
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Taking the time derivative, 

dE 1 
= ml2(2β̇β ̈+ 2γ2 β̇β)

dt 2 

¨ Substituting the damped pendulum equation for β, 

dE 
= ml2[β̇(−ρβ̇ − γ2β) + γ2 β̇β]

dt 

= −ml2ρβ̇2 

Take ml2 = 1. Then 
dE 

= −ρβ̇2 

dt 
Conclusion: 

ρ = 0 Energy conserved (no friction) ∞ 

ρ > 0 friction (energy is dissipated) ∞ 

ρ < 0 energy increases without bound ∞ 

4.2 Phase portrait of damped pendulum 

Let x = β, y = β̇. 
Then 

ẋ = β̇ = y 

ẏ = β ̈= −ρβ̇ − γ2β = −ρy − γ2 x 

or � 
ẋ 
� � 

0 1 
� � 

x 
� 

= 
ẏ −γ2 −ρ y 

The eigenvalues of the system are solutions of 

(−�)(−ρ − �) + γ2 = 0 

Thus 
ρ 1� 

� = − 
2 
± 

2 
ρ2 − 4γ2 
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Assume ρ2 � γ2 (i.e., weak damping, small enough to allow oscillations). 
Then the square root is complex, and we may approximate � as 

� = − 
2 
± iγ 

The solutions are therefore exponentially damped oscillations of frequency γ: 

β(t) = β0e
−εt/2 cos(γt + θ) 

β0 and θ derive from the initial conditions. 

There are three generic cases: 

• for ρ > 0, trajectories spiral inwards and are stable. 

θ 

ρ 

θ 

• for ρ = 0, trajectories are marginally stable periodic oscillations. 

θ 

θ 

• for ρ > 0, trajectories spiral outwards and are unstable. 

θ 

θ 
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It is obvious from the phase portraits that the damped pendulum contracts 
areas in phase space: 

θ 

θ 

We quantify it using the Lie derivative, 

V 
1 d

d

V

t 
� · ψ= ψ f 

which yields 
ωẋ ωẏ

ωx 
+ 
ωy 

= 0 − ρ = −ρ < 0 

The inequality not only establishes area contraction, but ρ gives the rate. 

4.3 Summary 

Finally, we summarize the characteristics of dissipative systems: 

•	 Energy not conserved.


Irreversible.
• 

•	 Contraction of areas (volumes) in phase space. 
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Note that the contraction of areas is not necessarily simple. 

In a 2-D phase space one might expect 

θ 

θ time 

However, we can also have 

time


i.e., we can have expansion in one dimension and (a greater) contraction in 
the other. 

In 3-D the stretching and thinning can be even stranger! 
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5 Forced oscillators and limit cycles 

5.1 General remarks 

How may we describe a forced oscillator? 
The linear equation 

β ̈+ ρβ̇ + γ2β = 0 (3) 

is in general inadequate. Why? 

Linearity ∞ if β(t) is a solution, then so is �β(t), � real. This is incompatible 
with bounded oscillations (i.e., βmax < α). 

We therefore introduce an equation with 

• a nonlinearity; and 

• an energy source that compensates viscous damping. 

5.2 Van der Pol equation 

Consider a damping coefficient ρ(β) such that 

ρ(β) > 0 for β large| | 

ρ(β) < 0 for β small| | 
Express this in terms of β2: 

�
β2 � 

ρ(β) = ρ0 
β2 − 1 
0 

where ρ0 > 0 and β0 is some reference amplitude. 

Now, obviously, 
ρ > 0 for β2 > β0

2 

ρ < 0 for β2 < β0
2 
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Substituting ρ into (3), we get 

d2β 
�
β2 � 

dβ 
dt2 

+ ρ0 
β0

2 − 1
dt 

+ γ2β = 0 

This equation is known as the van der Pol equation. It was introduced in the 
1920’s as a model of nonlinear electric circuits used in the first radios. 

In van der Pol’s (vaccum tube) circuits, 

• high current =∞ positive (ordinary) resistance; and 

• low current =∞ negative resistance. 

The basic behavior: large oscillations decay and small oscillations grow. 

We shall examine this system in some detail. First, we write it in non-

dimensional form.


We define new units of time and amplitude:


• unit of time = 1/γ 

• unit of amplitude = β0. 

We transform 

t t∗/γ∗ 

β β∗β0∗ 

where β∗ and t∗ are non-dimensional. 

Substituting above, we obtain 

d2β∗ 
��

β∗β0 
�2 

� 
dβ∗ 

γ2 

dt∗2 
β0 + ρ0 

β0 
− 1

dt
γβ0 + γ2β∗β0 = 0 ∗ 

Divide by γ2β0: 
d2β∗ ρ0 � 2 

� dβ∗ 

2 
+ β∗ − 1 + β∗ = 0 

dt γ dt∗ ∗ 
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Now define the dimensionless control parameter


ρ0
π = > 0. 

γ 

Finally, drop primes to obtain 

d2β dβ 
+ π(β2 − 1) + β = 0.	 (4)

dt2	 dt 

What can we say about the phase portraits? 

•	 When the amplitude of oscillations is small (βmax < 1), we have


π(β2

max − 1) < 0 ∞ negative damping


Thus trajectories spiral outward:


θ 

θ 

•	 But when the amplitude of oscillations is large (βmax > 1), 

π(β2 
max − 1) > 0 ∞ positive damping


The trajectories spiral inward:


θ 

θ 
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Intuitively, we expect a closed trajectory between these two extreme cases:


θ 

θ 

This closed trajectory is called a limit cycle.


For π > 0, the limit cycle is an attractor (and is stable).


This is a new kind of attractor. Instead of representing a single fixed point,

it represents stable oscillations.


Examples of such stable oscilations abound in nature: heartbeats (see Fig

ure from Glass); circadian (daily) cycles in body temperature, etc. Small

perturbations always return to the standard cycle.


What can we say about the limit cycle of the van der Pol equation?


With the help of various theorems (see Strogatz, Ch. 7) one can prove the

existence and stability of the limit cycle.


We may, however, make substantial progress with a simple energy balance

argument.


5.3 Energy balance for small π 

Let π ∗ 0, and take β small. Using our previous expression for energy in the 
pendulum, the non-dimensional energy is 

(β̇2 + β2)E(β, β̇) = 
1 
2
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The time variation of energy is 

dE 1 
= (2β̇β ̈+ 2 ̇ββ)

dt 2

From the van der Pol equation (4), we have 

β ̈= −π(β2 − 1)β̇ − β. 

Substituting this into the expression for dE/dt, we obtain 

dE 
= πβ̇2(1 − β2) − ββ̇ + ββ̇ (5)

dt 
= πβ̇2(1 − β2) (6) 

Now define the average of a function f(t) over one period of the oscillation: 

1 
� tO+2� 

f ∈ 
2α t0 

f(t)dt. 

Then the average energy variation over one period is


dE 1 
� t0+2� dE 

= dt. 
dt 2α t0 

dt 

Substituting equation (6) for dE/dt, we obtain 

dE 
= πβ̇2 − πβ̇2β2 . 

dt 

In steady state, the production of energy, πβ̇2, is exactly compensated by the 

dissipation of energy, πβ̇2β2 . Thus 

πβ̇2 = πβ̇2β2 

or 
β̇2 = β̇2β2 . 

Now consider the limit π ∗ 0 (from above). 
We know the approximate solution: 

β(t) = δ sin t, 
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i.e., simple sinusoidal oscillation of unknown amplitude δ.


We proceed to calculate δ from the energy balance.


The average rate of energy production is


1 
� t0+2� 

2 1 
β̇2 δ2 cos tdt = δ2 .◦ 

2α t0 
2 

The average rate of energy dissipation is


1 
� t0+2� 

2 1 
β̇2β2 δ4 sin2 t cos tdt = δ4 .◦ 

2α t0 
8 

The energy balance argument gives


1 
δ2 = 

1 
δ4 . 

2 8 

Therefore 
δ = 2. 

We thus find that, independent of π = ρ0/γ, we have the following approxi

mate solution for π � 1: 
β(t) 2 sin t.◦ 

That is, we have a limit cycle with an amplitude of 2 dimensionless units. 
Graphically, 

θ 

θ 

2 

0 1 2
−2 

0 

2 

θ 

t / 2π 

Further work (see, e.g., Strogatz) shows that this limit cycle is stable. 
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5.4 Limit cycle for π large 

The case of π large requires a different analysis. We follow the argument 
given in Strogatz (p. 212).


First, we introduce an unconventional set of phase plane variables (not ẋ =

y, ẏ = . . .). That is, the phase plane coordinates will not be β and β̇.


Recall the van der Pol equation (4), but write in terms of x = β:


ẍ+ π(x 2 − 1)ẋ + x = 0. (7) 

Notice that 

ẍ + π ̇x(x 2 − 1) = 
d 
dt 

⎡ 

ẋ + π 

�
1 
3 
x 3 − x 

�� 

. 

Let 

F (x) = 
1 
3 
x 3 − x (8) 

and 
w = ẋ + πF (x). (9) 

Then, using (8) and (9), we have 

ẇ = ẍ+ πẋ(x 2 − 1). 

Substituting the van der Pol equation (7), this gives 

ẇ = −x (10) 

Now rearrange equation (9) to obtain 

ẋ = w − πF (x) (11) 

We have thus parameterized the system by x and w. However we make one 
more change of variable. Write 

y = w/π. 

Then (10) and (11) become 

ẋ = π[y − F (x)] (12) 
1 

ẏ = −
π
x (13) 
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Now consider a trajectory in the x-y plane. 

First, draw the nullcline for x, that is, the curve showing where ẋ = 0. This 
is the cubic curve y = F (x). 

Now imagine a trajectory starting not too close to y = F (x), i.e.. suppose 

y − F (x) � 1. 

Then from the equations of motion (12) and (13), 

ẋ � π � 1


ẏ � 1/π � 1 assuming x � 1.


Thus the horizontal velocity is large and the vertical velocity is small. 
∞ trajectories move horizontally. 
The y-nullcline shows that the vertical velocity vanishes for x = 0.) 

Eventually the trajectory is so close to y = F (x) such that 

1 
y − F (x) � 

π2 

implying that 
1 

ẋ � ẏ � . 

Thus the trajectory crosses the nullcline (vertically, since ẋ = 0 on the null-
cline). 

Then ẋ changes sign, we still have ẋ � ẏ � 1/π, and the trajectories crawl 
slowly along the nullcline. 

π 
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What happens at the knee (the minimum of F (x))?

The trajectories jump sideways again, as may be inferred from the symmetry

x ∗ −x, y ∗ −y.


The trajectory closes to form the limit cycle.


Summary: The dynamics has two widely separated time scales:


• The crawls: Γt � π (ẋ � 1/π) 

• The jumps: Γt � 1/π (ẋ � π) 

A time series of x(t) = β(t) shows a classic relaxation oscillation: 

Relaxation oscillations are periodic processes with two time scales: a slow 
buildup is followed by a fast discharge. 

Examples include 

• stick-slip friction (earthquakes, avalanches, bowed violin strings, etc.) 

• nerve cells, heart beats ( large literature in mathematical biology...) 

5.5 A final note 

Limit cycles exist only in nonlinear systems. Why? 
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�

A linear system ψẋ = Aψx can have closed periodic orbits, but not an isolated 
orbit. 

That is, linearity requires that if ψx(t) is a solution, so is �ψx(t), � = 0. 

Thus the amplitude of a periodic cycle in a linear system depends on the 
initial conditions. 

The amplitude of a limit cycle, however, is independent of the initial condi

tions. 
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6 Parametric oscillator 

6.1 Mathieu equation 

We now study a different kind of forced pendulum. 

Specifically, imagine subjecting the pivot of a simple frictionless pendulum 
to an alternating vertical motion: 

rigid rod 

This is called a “parametric pendulum,” because the motion depends on a 
time-dependent parameter. 

Consider the parametric forcing to be a time-dependent gravitational field: 

g(t) = g0 + λ(t) 

The linearized equation of motion is then (in the undamped case) 

d2β g(t)
+ β = 0. 

dt2 l 

The time-dependence of g(t) makes the equation hard to solve. We know, 
however, that the rest state 

β = β̇ = 0 

is a solution. But is the rest state stable? 

We investigate the stability of the rest state for a special case: g(t) periodic 
and sinusoidal: 

g(t) = g0 + g1 cos(2γt) 

Substituting into the equation of motion then gives 

d2β 
+ γ0

2 [1 + h cos(2γt)] β = 0 (14)
dt2 
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where 
γ2 = g0/l and h = g1/g0 � 0.0 

Equation (14) is called the Mathieu equation. 

The excitation (forcing) term has amplitude h and period 

2α α 
Texc = = 

2γ γ 

On the other hand, the natural, unexcited period of the pendulum is 

2α 
Tnat = 

γ0 

We wish to characterize the stability of the rest state. Our previous methods 
are unapplicable, however, because of the time-dependent parametric forcing. 

We pause, therefore, to consider the theory of linear ODE’s with periodic 
coefficients, known as Floquet theory. 

6.2 Elements of Floquet Theory 

Reference: Bender and Orszag, p. 560. 

We consider the general case of a second-order linear ODE with periodic 
coefficients. We seek to determine the conditions for stability. 

We begin with two observations: 

1. If the coefficients are periodic with period T , then if β(t) is a solution, 
so is β(t + T ). 

2. Any solution	 β(t) is a linear combination of two linearly independent 
solutions β1(t) and β2(t): 

β(t) = Aβ1(t) + Bβ2(t)	 (15) 

where A and B come from initial conditions. (Reason: the system is linear and 

second-order.) 
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� � 

� � 

Since β1(t) and β2(t) are solutions, periodicity ∞ β1(t + T ) and β2(t + T ) are 
also solutions. 

Then β1(t + T ) and β2(t + T ) may themselves be represented as linear com
binations of β1(t) and β2(t): 

β1(t + T ) = �β1(t) + λβ2(t) 

β2(t + T ) = ρβ1(t) + νβ2(t) 

Thus 

β(t + T ) = A [�β1(t) + λβ2(t)] + B [ρβ1(t) + νβ2(t)] 

= (A� + Bρ)β1(t) + (Aλ + Bν)β2(t) 

We rewrite the latter expression as 

β(t + T ) = A∗β1(t) + B∗β2(t) (16) 

where � � � �� �
A∗ � ρ A 

= 
B λ ν B∗ 

or 
A 

ψa∗ = Mψa, ψa = . 
B 

A 
Now choose to be an eigenvector of M , with � the associated eigen-

B 
value. Any other ρa would have a projection onto one of the eigenvectors. 

Then 
A∗ = �A and B∗ = �B. 

Using (16) and (15), we find that 

β(t + T ) = �β(t). 

Thus β(t) is periodic within a scale factor �. The question of stability then 
hinges on the magnitude of �. 
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Define 

µ = 
ln 
T

|�| ∞ � = eµT . 

(We are interested only in growth or decay, not oscillations due to the exponential multiplier.) 

Then 
β(t + T ) = eµT β(t). 

Here β is rescaled by eµT each period. 

Finally, define P (t) to be periodic such that P (t + T ) = P (t). The rescaling 
may now be expressed continuously as 

β(t) = eµtP (t). 

[The above � �(t + T ) = eµ(t+T )P (t + T ) = eµT eµtP (t) = eµT �(t).] 

Stability thus rests on the sign of µ. 

Thus we find that the solution to a linear second-order ODE with periodic 
coefficient—e.g., the Mathieu equation—is of the form 

(exponential growth or decay) � (periodic function of time) 

6.3 Stability of the parametric pendulum 

We proceed to determine under what conditions the rest state of the Mathieu 
equation is unstable, leading to exponentially growing oscillations. 

We expect the tendency toward instability to be strongest when the excitation 
frequency is twice the natural frequency, γ0, of the pendulum. 

This is called parametric resonance. 
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� � � � 

The Mathieu equation (for β � 1) is 

d2β 
+ γ0

2 [1 + h cos(2γt)] β = 0. 
dt2 

We take the forcing frequency to be 2γ0 + π, π � 1: 

β ̈+ γ0
2 [1 + h cos(2γ0 + π)t] β = 0. (17) 

We assume that the excitation amplitude h � 1, and seek solutions of the 
general form 

1 1 
β(t) = a(t) cos γ0 + π t + b(t) sin γ0 + π t. 

2 2 

The frequency γ0 + 
2
1 π is motivated by our resonance argument. Stability will 

depend on whether a(t) and b(t) exponentially grow or decay. 

We begin by substituting β(t) into the equation of motion. We will then 
retain terms that are linear in π and first-order in h. 

The calculation is messy but is aided by recalling trig identities like� 

⎡� � � ⎡ � � � ⎡� � �
1 1 1 1 1 

cos γ0 + π t cos [(2γ0 + π) t] = cos 3 γ0 + π t + cos γ0 + π t . 
2 2 2 2 2 

� ⎜� � 
higher freq term 

The term with frequency 3(γ0 + 
2
1 π) may be shown to be higher order with 

respect to h. Such higher frequency terms create small amplitude perturba
tions of the solution and are neglected. (You shall see on a problem set how 
such terms arise from nonlinearities.) 

Also, we shall retain only those terms that are first-order in π. Thus we 
neglect the O(π2) associated with accelerations β̈. We also assume 

ȧ � πa, ḃ � πb, 

¨ and thereby neglect ä, b. These assumptions are validated by the final result. 

�That is, we use cos A cos B = 
2

1 
2

1[cos(A + B) + cos(A − B)] and sin A sin B = [sin(A + B) + sin(A − B)]. 
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The result of the substitution is 
� � ⎡� � �

1 1 − 2ȧ + bπ +
2 
hγ0b γ0 sin γ0 +

2 
π t 

� � ⎡� � � 

+ 2ḃ− aπ +
1 1 
hγ0a γ0 cos γ0 + π t = 0 

2 2 

For this expression to be true for all t, the coefficients of both cos and sin 
must equal zero, i.e, 

1 
2ȧ + bπ + hγ0b = 0 

2 

2ḃ− aπ +
1 
hγ0a = 0 

2 

We seek solutions a(t) ≥ eµt and b(t) ≥ eµt. 
Thus, substitute ȧ = µa, ḃ = µb: 

1 
� 

1 
� 

µa + b π + hγ0 = 0 
2 2 

1 
� 

1 
� 

2 
π − 

2 
hγ0 − µb = 0a 

These equations have a solution when the determinant of the coefficients of 
a and b vanishes. Thus 

1 
� �

1 
�2
� 

2 π2 −µ − 
4 

− 
2 
hγ0 = 0 

or ��
1 

�2 
� 

12 or µ = hγ0 − π2 (18)
4 2 

Instability (parametric resonance) occurs when µ is real and positive. This 
will occur when µ2 > 0, or 

1 1 −
2 
hγ0 < π < 

2 
hγ0. 
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This result is summarized in the following phase diagram:


ε h ω /20 

unstable 

h 

exact resonance 
−h ω /20 

Thus we see that resonance occurs not only for π = 0, but for a range of π 
within the lines ±hγ0/2. 

The larger the forcing amplitude, the less necessary it is for the force to be 
exactly resonant (γ = 0). 

Conversely, infinitesimal forcing (i.e., h) is sufficient for instability so long as 
π ∗ 0. 

6.4 Damping 

The damped parametric pendulum is 

β ̈+ 2ρβ̇ + γ0
2 [1 + h cos((2γ0 + π)t)] β = 0 

For unforced oscillations (h = 0), damping produces solutions like 

β(t) e−εt × (oscillation).◦ 

For h > 0, we expect 

β(t) � e(µ−ε)t × (oscillation) 

where the factor eµt results from the periodic forcing. 

The instability boundary is therefore no longer given by µ = 0 (i.e., equation 
(18)), but by 

µ − ρ = 0. 
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Instability thus occurs for µ2 > ρ2 . Using equation (18), we obtain 
��

1 
�2 

� 
12 µ = hγ0 − π2 > ρ2 

4 2 

or 
��

1 
�2 

�1/2 ��
1 

�2 
�1/2 

− 
2 
hγ0 − 4ρ2 < π < 

2 
hγ0 − 4ρ2 

Setting π = 0 (exact resonance) shows that instability is only possible when 
the quantity in the brackets is positive. Thus we require h > hc, where 

4ρ 
hc = 

γ0 

The phase diagram is therefore modified accordingly: 

h ω0 /2 

h ω0 /2− 

ε 

h 

unstable 

hc 

6.5 Further physical insight 

We have seen that the instability is strongest at exact resonance. 

That is, if the natural period of the pendulum is Tnat, the most unstable 
excitation has period 

1 
Texc = Tnat

2 
corresponding to angular frequencies 

γexc = 2γ0 

This is called a subharmonic instability, because instability results at half the 
frequency of the excitation (i.e., γ0 = γexc/2). 
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What other periods of excitation would be expected to lead to instability for 
small h? 

Any integer multiple of Tnat suffices. Why? Because this would correspond 
roughly to, say, pushing a child on a swing every nth time he/she arrives at 
maximum height. 

Therefore (weaker) instabilities will occur for 
�

1 
� 

Texc = integer × 
2 
Tnat . 
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7 Fourier transforms 

Except in special, idealized cases (such as the linear pendulum), the precise 
oscillatory nature of an observed time series x(t) may not be identified from 
x(t) alone. 

We may ask 

• How well-defined is the the dominant frequency of oscillation? 

• How many frequencies of oscillation are present? 

• What are the relative contributions of all frequencies? 

The analytic tool for answering these and myriad related questions is the 
Fourier transform. 

7.1 Continuous Fourier transform 

We first state the Fourier transform for functions that are continuous with 
time. 

The Fourier transform of some function f(t) is 

1 
� � 

F (γ) = f(t)e−iσtdt�
2α −� 

Similarly, the inverse Fourier transform is


1 
� � 

iσtdγ. f(t) = F (γ)e�
2α −� 

That the second relation is the inverse of the first may be proven, but we 
save that calculation for the discrete transform, below. 
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7.2 Discrete Fourier transform 

We are interested in the analysis of experimental (or numerical) data, which 
is almost always discrete. Thus we specialize to discrete Fourier transforms. 

In modern data, one almost always observes a discretized signal 

xj, j = {0, 1, 2, . . . , n − 1}


We take the sampling interval—the time between samples—to be Γt. Then


xj = x(jΓt).


The discretization process is pictured as 

t 

x 

x(t) 

Δ t 

j−1 j j+1 

A practical question concerns the choice of Γt. To choose it, we must know 
the highest frequency, fmax, contained in x(t). 

The shortest period of oscillation is 

Tmin = 1/fmax 

Pictorially, 

x 

t 

Tmin 

We require at least two samples per period. Therefore


Tmin 1 
= .Γt ∼ 

2 2fmax 
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The discrete Fourier transform (DFT) of a time series xj, j = 0, 1, . . . , n − 1 
is 

n−1 � �
1 � 2αjk 

x̂k = �
n

xj exp −i
n 

k = 0, 1, . . . , n − 1 
j=0 

To gain some intuitive understanding, consider the range of the exponential 
multiplier. 

•	 k = 0 ∞ exp(−i2αjk/n) = 1. Then


1 �

x̂0 = xj�

n 
j 

Thus x̂0 is, within a factor of 1/
�
n, equal to the mean of the xj’s. 

This is the “DC” component of the transform. 

Question: Suppose a seismometer measures ground motion. What would 
x̂0 = 0 mean? 

• k = n/2 ∞ exp(−i2αjk/n) = exp(−iαj). Then 

x̂n/2 = 
1 �
n 

� 

j 

xj(−1)j 

= x0 − x1 + x2 − x3 . . . 

Frequency index n/2 is clearly the highest accessible frequency. 

(19) 

(20) 

• The frequency indices k = 0, 1, . . . , n/2 correspond to frequencies 

fk = k/tmax, 

i.e., k oscillations per tmax, the period of observation. 
Index k = n/2 then corresponds to 

�n�
� 

1 
� 

1 
fmax =	 = 

2 nΓt 2Γt 

But if n/2 is the highest frequency that the signal can carry, what is the 
significance of x̂k for k > n/2? 
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For real xj, frequency indicies k > n/2 are redundant, being related by 

x̂k = x̂�n−k 

where z� is the complex conjugate of z (i.e., if z = a + ib, z� = a − ib). 

We derive this relation as follows. From the definition of the DFT, we have 

x̂�n−k = 
1 �
n 

n−1 � 

j=0 

xj exp 

� 

+i 
2αj(n − k) 

n 

� 

= 
1 �
n 

n−1 � 

j=0 

xj exp (i2αj) 
� ⎜� � 

1 

exp 

�−i2αjk 
n 

� 

= 
1 �
n 

n−1 � 
xj exp 

�−i2αjk 
n 

� 

j=0 

= x̂k 

where the + in the first equation derives from the complex conjugation, and 
the last line again employs the definition of the DFT. 

Note that we also have the relation 

x̂� = x̂� = x̂k.−k n−k 

The frequency indicies k > n/2 are therefore sometimes referred to as negative 
frequencies 

7.3 Inverse DFT 

The inverse DFT is given by 

n−1 � �
1 � 2αjk 

xj = �
n

x̂k exp +i
n 

j = 0, 1, . . . , n − 1 
k=0 
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We proceed to demonstrate this inverse relation. We begin by substituting 
the DFT for x̂k, using dummy variable j ∗: 

⎭ ⎣ 
n−1 n−1 � � � �

1 � 1 � 2αj ∗k 2αkj 
xj = �

n 
�
n 
� xj� exp −i ⎤ exp +i 

n n 
k=0 j�=0 

n−1 n−1 � � 

=
1 � 

xj� 

� 
exp −i 2αk(j

∗ − j)

n n


j�=0 k=0 

n−1 �
1 � n, j ∗ = j 

= xj� 
n 

j�=0 

× 
0, j ∗ =� j 

1 
= (nxj) 

n 

= xj 

The third relation derives from the fact that the previous 
� 

k amounts to a 
sum over the unit circle in the complex plane, except when j ∗ = j. The sum 
over the circle always sums to zero. For example, consider j ∗ − j = 1, n = 4. 
The elements of the sum are then just the four points on the unit circle that 
intersect the real and imaginary axes, i.e., the 

n−1 � �
� 2αk(j

exp −i 
∗ − j)

= e 0 + e−i�/2 + e−i� + e−i3�/2 

n 
k=0 

= 1 + i − 1 − i 

= 0. 

Finally, note that the DFT relations imply that xj is periodic in n, so that 
xj+n = xj. This means that a finite time series is treated precisely as if it 
were recurring, as illustrated below: 

x(t) 

maxttmax 2 
t 

maxt− 0 
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7.4	 Autocorrelations, power spectra, and the Wiener-Khintchine 
theorem 

Assume that the time series xj has zero mean and that it is periodic, i.e., 
xj+n = xj. 

Define the autocorrelation function η: 
n−1 

1 � 
ηm = xjxj+m 

n 
j=0 

where 
ηm = η(mΓt) 

The autocorrelation function measures the degree to which a signal resembles 
itself over time. Thus it measures the predictability of the future from the 
past. Some intuition may be gained as follows: 

•	 Consider, for example, m = 0. Then 
n−1 

η0 =
1 � 

x 2 
j , n 

j=0 

which is the mean squared value of xj (i.e., its variance). 

•	 Alternatively, if mΓt is much less than the dominant period of the data, 
ηm should not be too much less than η0. 

•	 Last, if mΓt is much greater than the dominant period of the data, |ηm|
is relatively small. 

A typical ηm looks like 

Ψm 

m 
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Define the power spectrum to be the magnitude squared of the Fourier 
transform; i.e., 

n−1 2 

|
x̂k
2 |
 =


1

n


xj exp −i
2αjk

n


.

j=0 

We proceed to show that for real time series xj, 

autocorrelation ≥ Fourier transform of the power spectrum. 

This is called the the Wiener-Khintchine theorem. We proceed to derive this 
relation. 

1−n� 

Substitute the inverse DFT for xj in ηm: 
���


n−1 n−1 

ηm = x̂k exp i�
n 

∗1
 1
 2αkj
 1
 2αk
(j + m)

x̂k� exp i�

n
n
 n
 n

j=0 k=0 k�=0 

1 1 1�− − −n n n� 

j=0�k=0 k =0 
n n 

� 

i

∗ ∗1


n2 

2αmk
 2αj(k + k
)

x̂kx̂k� exp i
=
 exp


⎜�

= n, k∗ = n − k 
= 0, k∗ =� n − k 

1−n �1
 2αm(n − k)

= x̂kx̂n−k exp i 

n n

k=0 

1−n�1
 2αmk

x̂kx̂k

� exp −i=

n
 n


k=0 

In the last line we have used the redundancy relation x̂�k = x̂n−k. 

We thus find that 

ηm ≥ Fourier transform of the power spectrum x̂kx̂
� = |x̂k| 2 
k 

Of course the inverse relation holds also. 

For real time series {xj}, the power spectrum contains redundant information 
that is similar to that of the Fourier transform but more severe: 

|x̂k| 2 = x̂kx̂
�
k = x̂kx̂n−k = x̂�n−kx̂n−k = |x̂n−k| 2 . 
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This redundancy results from the fact that neither the autorcorrelation nor 
the power spectra contain information on any “phase lags” in either xj or its 
individual frequency components. 

Thus while the DFT of an n-point time series results in n independent quan
tities (2 ×n/2 complex numbers), the power spectrum yields only n/2 inde

pendent quantities. 

One may therefore show that there are an infinite number of time series that 
have the same power spectrum, but that each time series uniquely defines its 
Fourier transform, and vice-versa. 

Consequently a time series cannot be reconstructed from its power spectrum 
or autocorrelation function. 

7.5 Power spectrum of a periodic signal 

Consider a periodic signal 

2α 
x(t) = x(t + T ) = x t + 

γ 

Consider the extreme case where the period T is equal to the duration of the 
signal: 

T = tmax = n�t 
The Fourier components are separated by 

1 
Γf = 

tmax 

i.e. at frequencies 
0, 1/T, 2/T, . . . , (n − 1)/T. 

7.5.1 Sinusoidal signal 

In the simplest case, x(t) is a sine or cosine, i.e., 
� 

2αt 
� 

x(t) = sin . 
tmax 
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What is the Fourier tranform? Pictorially, we expect


x(t) 

tmax 
t 

xk 
2 

Δk f = k/T1/T 

We proceed to calculate the power spectrum analytically, beginning with the 
DFT: 

1 �
�−i2αjk 

� 

x̂k = xj exp�
n n 

j 

1 �
�

2αjΓt
� �−i2αjk 

� 

= sin exp�
n tmax n 

j 

1 �
⎡ �

i2αjΓt
� �−i2αjΓt�� �−i2αjk 

� 

=
2i
�
n 

exp 
tmax 

− exp 
tmax 

exp 
n 

j 

1 �
⎡ � � 

Γt k 
�� � � 

Γt k 
��� 

=
2i
�
n 

exp i2αj 
tmax 

− 
n 

− exp −i2αj 
tmax 

+ 
n 

j 
�
n ±nΓt 

= when k =± 
2i tmax 

Thus 
n |x̂j| 2 = 
4 

for k = ±1. 

7.5.2 Non-sinusoidal signal 

Consider now a non-sinusoidal yet periodic signal, e.g., a relaxation oscillation 
as obtained from the van der Pol system. 
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The non-sinusoidal character of the relaxation oscillation implies that it con
tains higher-order harmonics, i.e., integer multiples of the fundamental 
frequency 1/T . Thus, pictorially, we expect 

xk 
2 

Δk f = k/T1/T 

x(t) 

tmax 
t 

2/T 
3/T 

harmonics 

fundamental 

Now suppose tmax = pT , where p is an integer. The non-zero components of 
the power spectrum must still be at frequencies 

1/T, 2/T, . . . . 

But since 
1 1 

Γf = = 
tmax pT 

the frequency resolution is p times greater. Contributions to the power spec
trum would remain at integer multiples of the frequency 1/T , but spaced p 
samples apart on the frequency axis. 

7.5.3 tmax/T = integer 

If tmax/T is not an integer, the (effectively periodic) signal looks like 

x(t) 

ttmax 
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We proceed to calculate the power spectrum of such a signal. Assume the 
sinusoidal function 

2αt 
x(t) = exp i 

T 

which yields 
2αjΓt 

xj = exp i 
T 

The DFT is 

n−1 � � � �
1 � 2αjΓt 2αjk 

x̂k = �
n 

exp i
T 

exp −i
n 

j=0 

Set 
Γt k 

θk = . 
T 

− 
n 

Then 
n−1

1 � 
x̂k = exp (i2αθkj)�

n 
j=0 

Recall the identity 
n−1 n� 

j x − 1 
x = 

x − 1 
j=0 

Then 

x̂k = 
1 exp(i2αθkn) − 1 �
n exp(i2αθk) − 1 

The power spectrum is 

1 
�

1 − cos(2αθkn)
� 

|x̂k| 2 = x̂kx̂k
� = 

n 1 − cos(2αθk) 

1 
�

sin2(αθkn)
� 

= 
n sin2(αθk) 

Note that 
nΓt tmax

nθk = − k = − k 
T T 

is the difference between a DFT index k and the “real” non-integral frequency 
index tmax/T . 
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Assume that n is large and k is close to that “real” frequency index such that


nΓt 
nθk = − k � n. 

T 

Consequently θk � 1, so we may also assume 

αθk � 1. 

Then 

1 sin2(αθkn) |x̂k| 2 ◦ 
n (αθk)2 

sin2(αθkn) 
= n 

(αθkn)2 

sin2 z 
2

≥ 
z

where 
nΓt tmax 

z = nαθk = α − k = α − k 
T T 

Thus |x̂k|2 is no longer a simple spike. Instead, as a function of z = nαθk it 
appears as 

sin 2z / z2 

1 

πφkπ 2π 3π−3π −2π −π 0 z=n 

The plot gives the kth component of the power spectrum of ei2�t/T as a 
function of α(tmax/T − k). 

To interpret the plot, let k0 be the integer closest to tmax/T . There are then 
two extreme cases: 
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xk 
2 

kk0 
0 z 

sin2z/z 

1.	 tmax is an integral multiple of T:

tmax
− k0 = 0. 
T 

The spectrum is perfectly sharp: 

2	 sin2z/zxk 

k0 k	 0 z 

2.	 tmax/T falls midway between two frequencies. Then


tmax 1

= .− k0

T 2

The spectrum is smeared:


The smear decays like

1 1


(k − tmax/T )2 
� 
k2 

7.5.4 Conclusion 

The power spectrum of a periodic signal of period T is composed of: 

1. a peak at the frequency 1/T 

2. a smear (sidelobes) near 1/T 

3. possibly harmonics (integer multiples) of 1/T 

4. smears near the harmonics. 
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7.6 Quasiperiodic signals 

Let y be a function of r independent variables: 

y = y(t1, t2, . . . , tr). 

y is periodic, of period 2α in each argument, if 

y(t1, t2, . . . , tj + 2α, . . . , tr) = y(t1, t2, . . . , tj, . . . , tr), j = 1, . . . , r 

y is called quasiperiodic if each tj varies with time at a different rate (i.e., 
different “clocks”). We have then 

tj = γjt, j = 1, . . . , r. 

The quasiperiodic function y has r fundamental frequencies: 
γj

fj = 
2α 

and r periods 
1 2α 

Tj = = . 
fj γj 

Example: The astronomical position of a point on Earth’s surface changes 
due to 

•	 rotation of Earth about axis (T1 = 24 hours).


revolution of Earth around sun (T2 365 days).
•	 ◦ 

•	 we ignore precession and other orbital changes. 

Mathematically, we can conceive of such a function on a 2-D torus T 2, existing 
in a 3-D space. 
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Here we think of a disk spinning with period T1 while it revolves along the 
circular path with period T2. 

Such behavior can be conceived as a trajectory on the surface of a doughnut 
or inner tube, or a torus T2 in R3 . 

f1 

f2 

What is the power spectrum of a quasiperiodic signal x(t)? There are two 
possibilities: 

1. The quasiperiodic signal is a linear combination of independent periodic 
functions. For example: 

r 

x(t) = xi(γit). 
i=1 

Because the Fourier transform is a linear transformation, the power spec
trum of x(t) is a set of peaks at frequencies 

f1 = γ1/2α, f2 = γ2/2α, . . . 

and their harmonics 

m1f1, m2f2, . . . (m1,m2, . . . positive integers). 

2. The quasiperiodic signal x(t) depends nonlinearly on periodic functions. 
For example,


1 1

x(t) = sin(2αf1t) sin(2αf2t) = 

2 
cos(|f1 − f2|2αt) − 

2 
cos(|f1 + f2|2αt). 

The fundamental frequencies are 

|f1 − f2| and |f1 + f2|. 
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The harmonics are 

m1|f1 −f2| and m2|f1 +f2|, m1,m2 positive integers. (21) 

The nonlinear case requires more attention. In general, if x(t) depends non
linearly on r periodic functions, then the harmonics are 

|m1f1 + m2f2 + . . . + mrfr|, mi arbitrary integers. 

(This is the most general case, for which equation (21) is a specific example. The expression above 

derives from m1f1 ± m2f2 ± . . ., with mi positive) 

We proceed to specialize to r = 2 frequencies, and forget about finite Γf . 

Each nonzero component of the spectrum of x(γ1t, γ2t) is a peak at 

f = |m1f1 + m2f2|, m1,m2 integers . 

There are two cases: 

1. f1/f2 rational ∞ sparse spectrum. 

2. f1/f2 irrational ∞ dense spectrum. 

To understand this, rewrite f as 

f = f2 .

f1 

m1 + m2
f2 

In the rational case, 
f1 

f2 
= 

integer 
integer 

. 

Then 

+ integer 

Thus the peaks of the spectrum must separated (i.e., sparse).


Alternatively, if f1/f2 is irrational, then m1 and m2 may always be chosen so


f1 integer
 1

integer multiple of
m1 + m2 =
 =
 .


f2 f2 f2 

that

f1 

m1 + m2
f2 

is not similarly restricted.
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These distinctions have further implications. 

In the rational case, 

f1 n1 
= , n1, n2 integers. 

f2 n2 

Since 
n1 n2 

= 
f1 f2 

the quasiperiodic function is periodic with period 

T = n1T1 = n2T2. 

All spectral peaks must then be harmonics of the fundamental frequency 

1 f1 f2
f0 = = = . 

T n1 n2 

Thus the rational quasiperiodic case is in fact periodic, and some writers 
restrict quasiperiodicity to the irrational case. 

Note further that, in the irrational case, the signal never exactly repeats 
itself. 

One may consider, as an example, the case of a child walking on a sidewalk, 
attempting with uniform steps to never step on a crack (and breaking his 
mother’s back...). 

Then if x(t) were the distance from the closest crack at each step, it would 
only be possible to avoid stepping on a crack if the ratio 

step size 
crack width 

were rational. 

7.7 Aperiodic signals 

Aperiodic signals are neither periodic nor quasiperiodic. 
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Aperiodic signals appear random, though they may have a deterministic foun
dation. 

An example is white noise, which is a signal that is “new” and unpredictable 
at each instant, e.g., 

t 

x(t) 

Statistically, each sample of a white-noise signal is independent of the others, 
and therefore uncorrelated to them. 

The power spectrum of white noise is, on average, flat: 

2xk 

k 

The flat spectrum of white noise is a consequence of its lack of harmonic 
structure (i.e., one cannot recognize any particular tone, or dominant fre
quency). 

We proceed to derive the spectrum of a white noise signal x(t). 

Rather than considering only one white-noise signal, we consider an ensem

ble of such signals, i.e., 
x(1)(t), x(2)(t), . . . 

where the superscipt denotes the particular realization within the ensemble. 
Each realization is independent of the others. 

Now discretize each signal so that 

xj = x(jΓt), j = 0, . . . , n − 1 
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We take the signal to have finite length n but consider the ensemble to contain 
an infinite number of realizations. 

We use angle brackets to denote ensemble averages (i.e., averages taken 
over the ensemble). 

The ensemble-averaged mean of the jth sample is then 

p
1
 (i) 

jxj≡ = lim x
p�� p

⇒

i=1 

Similarly, the mean-square value of the jth sample is


1

p
�

(i) 
j )22 lim (xxj ≡ = ⇒


p�� p 
i=1 

2Now assume stationarity: xj≡ and⇒
2

j ≡ are independent of j. 
⇒x≡ and ⇒x ≡, respectively, assume ⇒

We take these
x
⇒

mean values to be
 x≡ = 0.


Recall the autocorrelation ηm: 

1−n� 
xjxj+m. 

n 
j=0 

1 
ηm = 

By definition, each sample of white noise is uncorrelated with its past and 
future. Therefore 

⎝ 
1
⇒ηm≡ = 
n

xjxj+m 

j 

= x⇒ 2 ≡νm 

where

1 m = 0


νm = 
0 else 
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We obtain the power spectrum from the autocorrelation function by the 
Wiener-Khintchine theorem: 

n−1 � �
� 2αmk ⇒|x̂k| 2 ≡ = ⇒ηm≡ exp i

n 
m=0 

n−1 � �
� 

2 2αmk 
= ⇒x ≡νm exp i

n 
m=0 

2 = x⇒ ≡ 

= constant. 

Thus for white noise, the spectrum is indeed flat, as previously indicated: 

2xk 

k 

A more common case is “colored” noise: a continuous spectrum, but not 
constant: 

xk 
2 

k 

In such (red) colored spectra, there is a relative lack of high frequencies. The 
signal is still apparently random, but only beyond some interval Γt. 

The autocorrelation of colored noise is broader, e.g., 

Ψm 

m 
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Finally, we note a problem: power spectra can recognize a signal that is 
approximately aperiodic, but they cannot distinguish between deterministic 
systems and statistical, random systems. 

Thus we turn to Poincaré sections. 
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8 Poincaré sections 

The dynamical systems we study are of the form 

d 
ψx(t) = F (ψx, t)

dt 

Systems of such equations describe a flow in phase space. 

The solution is often studied by considering the trajectories of such flows. 

But the phase trajectory is itself often difficult to determine, if for no other 
reason than that the dimensionality of the phase space is too large. 

Thus we seek a geometric depiction of the trajectories in a lower-dimensional 
space—in essence, a view of phase space without all the detail. 

8.1 Construction of Poincaré sections 

Suppose we have a 3-D flow �. Instead of directly studying the flow in 3-D, 
consider, e.g., its intersection with a plane (x3 = h): 

Γ 

x2 

S

P0 
P1 P2

x3 

h 

x1 

• Points of intersection correspond (in this case) to ẋ3 < 0 on �. 

• Height h of plane S is chosen so that � continually crosses S. 

• The points P0, P1, P2 form the 2-D Poincaré section. 
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The Poincaré section is a continuous mapping T of the plane S into itself:


Pk+1 = T (Pk) = T [T (Pk−1)] = T 2(Pk−1) = . . . 

Since the flow is deterministic, P0 determines P1, P1 determines P2, etc. 

The Poincaré section reduces a continuous flow to a discrete-time map
ping. However the time interval from point to point is not necessarily con

stant. 

We expect some geometric properties of the flow and the Poincaré section to 
be the same: 

• Dissipation ∞ areas in the Poincaré section should contract. 

• If the flow has an attractor, we should see it in the Poincaré section. 

Essentially the Poincaré section provides a means to visualize an otherwise 
messy, possibly aperiodic, attractor. 

8.2 Types of Poincaré sections 

As we did with power spectra, we classify three types of flows: periodic, 
quasiperiodic, and aperiodic. 

8.2.1 Periodic 

The flow is a closed orbit (e.g., a limit cycle): 

P0 
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P0 is a fixed point of the Poincaré map: 

P0 = T (P0) = T 2(P0) = . . . . 

We proceed to analyze the stability of the fixed point. 

To first order, a Poincaré map T can be described by a matrix M defined in 
the neighborhood of P0: 

P0 

In this context, M is called a Floquet matrix. It describes how a point P0 + ν 
moves after one intersection of the Poincaré map. 

A Taylor expansion about the fixed point yields: 

P0 

ωTi
Mij = .


ωxj 

ωTi ωTi
Ti(P0 + ν) Ti(P0) + ν1 +
 ν2, i = 1, 2◦
 ·
 ·


ωx1 ωx2 P0 

Since T (P0) = P0, 
T (P0 + ν) P0 + Mν ◦ 

Therefore 

T T (P0 + ν) T (P0 + Mν)◦ 

T (P0) + M2ν◦ 

P0 + M2ν◦ 

After m interations of the map, 

T m(P0 + ν) − P0 Mmν. ◦ 

Stability therefore depends on the properties of M . 

Assume that ν is an eigenvector of M . (There will always be a projection onto an 

eigenvector.) Then 
Mmν = �mν, 

where � is the corresponding eigenvalue. 
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Therefore 

|�| < 1 ∞ linearly stable 

|�| > 1 ∞ linearly unstable 

Conclusion: a periodic map is unstable if one of the eigenvalues of the 
Floquet matrix crosses the unit circle in the complex plane. 

8.2.2 Quasiperiodic flows 

Consider a 3-D flow with two fundamental frequencies f1 and f2. The flow is 
a torus T 2: 

The points of intersection of the flow with the plane S appear on a closed 
curve C. 

As with power spectra, the form of the resulting Poincaré section depends on 
the ratio f1/f2: 

•	 Irrational f1/f2. The frequencies are called incommensurate. The 
closed curve C appears continuous, e.g. 
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C 

x1 

x2 

– The trajectory on the torus T 2 never repeats itself exactly. 

–	 The curve is not traversed continuously, but rather


T (C) = finite shift along C.


• Rational f1/f2. 

– f1 and f2 are frequency locked. 

– There are finite number of intersections (points) along the curve C. 

– Trajectory repeats itself after n1 revolutions and n2 rotations. 

–	 The Poincaré section is periodic with


period = n1/f1 = n2/f2


–	 The Poincaré section contains just n1 points. Thus


Pi = T n1 (Pi)


– Example, n1 = 5: 

P0 

P1 
P4 

P2 

P3 

8.2.3 Aperiodic flows 

Aperiodic flows may no longer lie on some reasonably simple curve. 
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In an extreme case, one has just a point cloud:


This would be expected for statistical white noise. 

Deterministic aperiodic systems often display more order, however. In some 
cases they create mild departures from a simple curve, e.g. 

Such cases arise from strong dissipation (and the resulting contraction of 
areas in phase space). 

It then becomes useful to define a coordinate x that falls roughly along this 
curve, and to study the iterates of x. This is called a first return map. 

8.3 First-return maps 

First return maps are 1-D reductions of the kind of 2-D Poincaré maps that 
we have been considering. 

Such maps are of the form 
xk+1 = f(xk). 

We will study these extensively at the end of the course. 

We shall give particular attention to the following quadratic mapping of the 
unit interval onto itself: 

xk+1 = 4µxk(1 − xk), 0 ∼ µ ∼ 1. 
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 =
 x k 

x k+
1

x0 x1 x 1 x 

f(x) 

The mapping is easily described graphically. The quadratic rises from x = 0, 
falls to x = 1, and has its maximum at x = 1/2, where it rises to height µ. 

Consider, for example, the case µ = 0.7: 

f(x)


1


f(x0) = x1 

Eventually the interations converge to x = x̄, which is where the diagonal 
(the identity map xk+1 = xk) intersects f(x). 

Thus x̄ is a fixed point of f , i.e., 

x̄ = f(x̄) 

Another fixed point is x = 0, since f(0) = 0. 

However we can see graphically that x = 0 is unstable; iterates initiated at

x0 = π still converges to x̄.


Thus x = 0 is an unstable fixed point, while x = x̄ is stable.


What determines stability? Consider graphically the case µ = 0.9:
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1 

1 

x 

f(x) 

We infer that the slope f ∗(x̄) determines whether x̄ is stable. We proceed to 
show this formally. 

Suppose x� is any fixed point such that 

x� = f(x�). 

Define 
xk = x� + πk, πk small. 

In general, our mappings are described by 

xk+1 = f(xk). 

Then 

x� + πk+1 = f(x� + πk) 

= f(x�) + f ∗(x�)πk + O(πk
2) 

Therefore 
πk+1 f ∗(x�)πk.◦ 

Thus 
|f ∗(x�)| < 1 ∞ stability. 
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8.4 1-D flows 

It is instructive to compare the stability of 1-D maps to the stability of the 
continuous 1-D flow 

ẋ = f(x). 

Consider, for example, a particular f(x) that looks like 

x 

f(x) 

x 
x1 x2 

Clearly x1 and x2 are fixed points. Which are stable?


The arrows show the direction of flow on the x-axis, i.e., the sign of ẋ = f(x).


Thus x1 is stable while x2 is not.


Stability of a fixed point x� is therefore determined as follows:


f ∗(x�) < 0 stable∞ 

f ∗(x�) > 0 unstable∞ 

Whereas the stability of a continuous 1-D flow f depends on the sign of f ∗, 
the stability of a 1-D map depends on the magnitude f ∗ .| |

In higher dimensions this same distinction holds for the eigenvalues � of 
the Jacobian (which, in the case of mappings, we have called the Floquet 
matrix). That is, the sign of Re(�) determines the stability of flows, whereas 
the magnitude � is the relevant quantity for maps. | | 
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8.5 Relation of flows to maps 

We now consider explicitly how flows may be related to maps. 

8.5.1 Example 1: the van der Pol equation 

Consider again the van der Pol equation 

d2β 
+ π(β2 dβ 

+ β = 0 
dt2 

− 1)
dt 

Recall that for π > 0 the rest position is unstable and that the system has a 
limit cycle. 

We draw a ray emanating from the origin, and consider two representative 
trajectories initiating and terminating on it: 

Let xk be the position of the kth intersection of the trajectory with the ray. 
There is then some mapping f such that 

xk+1 = f(xk). 
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The precise form of f(x) is unknown, but physical and mathematical reason
ing allows us to state some of its properties: 

•	 f maps xk to a unique xk+1.


f is continuous.
• 

•	 f ∗(x) > 1 near the origin (divergent spirals). 

•	 f ∗(x) < 1 far from the origin (convergent spirals). 

•	 f ∗(x) > 0 for all x > 0 (since f(x + ν) > f(x)). 

The simplest form of f is therefore a curve rising steeply from the origin, 
followed by a gentle upward slope: 

f(x) 

x * 

xk+1 = xk 

f(x*) 

x 

By continuity, there must be a stable fixed point x� characterized by 

x� = f(x�) and f ∗(x�) < 1. 

Thus x� gives the effective radius of the stable limit cycle. 

8.5.2 Example 2: Rössler attractor 

Consider the following 3-D flow (the Rössler attractor): 

ẋ = −y − z 

ẏ = x + ay 

ż = b + z(x − c) 
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a,	b, and c are fixed parameters. 

Numerical solutions yield the time series x(t): 

Figure IV.11, BPV 

The time series z(t): 
Figure IV.11, BPV 

A Poincaré section in the x-y plane: 

Figure IV.12a, BPV 

And a 3-D perspective of the flow: 

Figure 12.1, unknown source 

The time series display great irregularity, but the Poincaré section and the 
full flow display some order. 

Consider now another Poincaré section, in the plane 

y + z = 0. 

From the Rössler equations, we identify this plane with extrema in the time 
series x(t), i.e., each intersection of the plane corresponds to 

ẋ = 0. 

Consider a sequence xk of such extrema, but only when the extremum is a 
maximum (local peak) of x(t). 

Then plot xk+1 vs. xk: 
Figure IV.10, BPV 

Conclusions: 

•	 The 1-D map, even more so than the Poincaré section, reveals that the 
flow contains much order. 

•	 The time series, however, displays no apparent regularity. 
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This is the essence of deterministic chaos. 

We proceed to show how such Poincaré sections and 1-D maps can be con

structed from experimental data. 

8.5.3 Example 3: Reconstruction of phase space from experimental data 

Suppose we measure some signal x(t) (e.g., the weather, the stock market, 
etc.) 

In most cases it is unlikely that we can specify the equations of motion of the 
dynamical system that is generating x(t). 

How, then, may we visualize the system’s phase space and its attractor? 

The (heuristic but highly successful) idea, originally due to Santa Cruz un
dergraduates Packer, Crutchfield, Farmer, and Shaw (1980), is to measure 
any 3 independent quantities from x(t). 

For example: 

•	x(t), x(t + φ), x(t +2φ); φ large enough for “independence,” i.e., beyond 
an autocorrelation time. This is the most popular; it is known as the 
method of delays. 

•	x(t), ẋ(t), ẍ(t) (where the derivatives are finite differences xk − xk−1, 
etc.). 

Such a representation of the attractor is not identical to the “real” phase 
space, but it should retain similar geometric properties. 

We use the Rössler attractor as an example. 

•	 Comparison of the projection of the trajectories in the x-y plane to the 
projection of the trajectories in the x-ẋ plane: 

Figure IV.12, BPV 
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• Example of different values for φ using the method of delays: 

Figure 78, Schuster 

With the method of delays, φ is typically the period of the forcing, or the 
period of a characteristic limit cycle. 

Here we have discussed only qualitative, geometric properties. We shall see 
that the various representations also yield similar quantitative properties 
(e.g., measures of Lyaponov exponents). 
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9 Fluid dynamics and Rayleigh-Bénard convection 

In these lectures we derive (mostly) the equations of viscous fluid dynamics. 
We then show how they may be generalized to the problem of Rayleigh-
Bénard convection—the problem of a fluid heated from below. Later we show 
how the RB problem itself may be reduced to the famous Lorenz equations. 

The highlights of these lectures are as follows: 

•	 Navier-Stokes equations of fluid dynamics (mass and momentum conser
vation). 

•	 Reynolds number 

•	 Phenomenology of RB convection 

•	 Rayleigh number 

•	 Equations of RB convection 

Thus far we have dealt almost exclusively with the temporal behavior of a 
few variables. 

In these lectures we digress, and discuss the evolution of a continuum. 

9.1 The concept of a continuum 

Real fluids are made of atoms or molecules. 

The mean free path κmfp is the characteristic length scale between molecular

collisions.


Let Lhydro be the characteristic length scale of macroscopic motions.


Fluids may be regarded as continuous fields if


Lhydro � κmpf . 
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When this condition holds, the evolution of the macroscopic field may be 
described by continuum mechanics, i.e., partial differential equations. 

To make this idea clearer, consider a thought experiment in which we measure 
the density of a fluid over a length scale κ using some particularly sensitive 
device. We then move the device in the x-direction over a distance of roughly 
10κ. 

Suppose κ � L1 � κmpf . Then we expect the density to vary greatly in space 
as in Figure (a) below: 

de
ns

it
y 

x/L1 x/L2 x/Lhydro
(a) (b) (c) 

We expect that the fluctuations in (a) should decrease as κ increases. (Statistics 

tells us that these fluctuations should decrease like 1/N 1/2, where N � ε3 is the average number of 

molecules in a box of size ε. ) 

On the other hand, if κ � Lhydro (see (c)), variations in density should reflect 
density changes due to macroscopic motions (e.g., a rising hot plume), not 
merely statistical fluctuations. 

Our assumption of a continuum implies that there is an intermediate scale, 
κ � L2, over which fluctuations are small. Thus the continuum hypothesis 
implies a separation of scales between the molecular scale, L1 � κmfp, and the 
hydrodynamic scale, Lhydro. 

Thus, rather than dealing with the motion �1023 molecules and therefore 
�6 × 1023 ordinary differential equations of motion (3 equations each for 
position and momentum), we model the fluid as a continuum. 
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The motion of the continuum is expressed by partial differential equations for 
evolution of conserved quantities. We begin with the conservation of mass. 

9.2 Mass conservation 

Let 
δ = density 

� 

of a macroscopic fluid particle 
ψu = velocity 

Consider a volume V of fluid, fixed in space: 

V 

dS 

u 

dψs is an element of the surface, dψs is its area, and it points in the outward | |
normal direction. 

ψu is the velocity. 

The outward mass flux through the element dψs is 

δψu dψs. · 
Therefore, 

rate of mass loss from V = δψu dψs.· 
s 

The total mass in V is 

δdv 
V 

Thus the rate of mass loss may be rewritten as 
d 
� � 

ωδ 
� 

− 
V 
δdv = − 

V 
dv = + 

s 
δψu · dψs 

dt ωt 
Shrinking the volume, we eliminate the integrals and obtain 

ωδ 
⎡� � 

= − lim δψu dψs/V . 
ωt V �0 

· 
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Recall that the RHS above is the definition of the divergence operator. We 
thus obtain 

ωδ 
= −ψ u)

ωt 
� · (δψ

We see that to conserve mass, a net divergence creates a corresponding change 
in density. 

For incompressible fluids, 
δ � constant. 

(This result is not an assumption, but instead derives from the assumption that the Mach number, 

the square of the ratio of the fluid velocity to the speed of sound, is much less than unity.) 

Then 
ψ� · ψu = 0. 

which is the equation of continuity for incompressible fluids. 

9.3 Momentum conservation 

We seek an expression of Newton’s second law: 

(momentum of fluid particle) = force acting on fluid particle (22)
dt

9.3.1 Substantial derivative 

We first focus on the LHS of (22). 

There is a conceptual problem: d (particle momentum) cannot be given at a 
dt 

fixed location, because 

•	 the momentum field itself changes with respect to time; and 

•	 fluid particle can change its momentum by flowing to a place where the 
velocity is different. 
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To better understand this problem physically, consider how a scalar property— 
the temperature T —of a fluid particle changes in time. 

A small change νT is produced by a small changes νt in time and νx, νy, νz 
in the position of the fluid particle: 

ωT ωT ωT ωT 
νT = νt + νx + νy + νz 

ωt ωx ωy ωz 

Divide by νt to obtain the rate of change: 

νT ωT ωT νx ωT νy ωT νz 
= + + + 

νt ωt ωx νt ωy νt ωz νt 

In the limit νt ∗ 0, 

νx νy νz 
νt 

∗ ux, 
νt 

∗ uy, 
νt 

∗ uz 

The rate of change of T of a fluid particle is then 

DT ωT ωT ωT ωT 
= + ux + uy + uz

Dt ωt ωx ωy ωz 

= 
ωT 

+ ψu ψ
ωt 

· �T 

where 
D ω 

= + ψu ψ
Dt ωt 

· � 

is the substantial derivative or convective derivative operator. 

Thus we see that the temperature of a fluid particle can change because 

• the temperature field changes “in place” (via ω/ωt); and 

• the particle can flow to a position where the temperature is different (via 
ψψu �).· 

Note that the same analysis applies to vector fields such as the velocity ψu: 

Dψu ωψu ψ
Dt 

= 
ωt 

+ (ψu · �)ψu 
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Therefore the velocity ψu enters Dψu/Dt in 2 ways: 

•	ψu changes (in place) as the fluid moves (ω/ωt)


ψ
• ψu governs how fast that change occurs (ψu · �). 

This dual role of velocity is the essential nonlinearity of fluid dynamics and 
thus the cause of turbulent instabilities. 

We can now express the rate-of-change of momentum per unit volume (i.e., 
LHS of (22)): 

δ 
Dψu 

= δ
ωψu 

+ δ(ψu ψ u 
Dt ωt 

· �)ψ

δ is outside the differential because a fluid particle does not lose mass. Density changes thus mean 

volume changes, which are irrelevant to the momentum change of that particle. Above we have 

written the (rate of change of momentum) per unit volume, which need not be equal to the rate of 

change of (momentum per unit volume). 

9.3.2 Forces on fluid particle 

To obtain the full dynamical equation, we need the RHS of 

Dψu 
δ = Force acting on fluid particle / unit volume. 

Dt 

These forces are 

• body force (i.e., gravity) 

• pressure 

• viscous friction (internal stresses) 

Body force. We represent the externally imposed body force by Fψ . 
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Pressure. Fluid flows from high to low pressure. Thus


pressure force ωp 
unit volume 

= −
ωx 

in 1-D 

= −ψ in 3-D �p 

Viscous friction. Viscous stresses are the source of dissipation in fluids. 
They resist relative movements between fluid particles. 

For example, the shear flow 

y 

x 

u 

u 

is resisted more by high viscosity fluids than low viscosity fluids. 

This resistance derives from molecular motions. (A nice analog is Reif’s picture of 

two mail trains, one initially fast and the other initially slow, that trade mailbags.) 

In the simple shear flow above, there is a flux of x-momentum in the y-
direction. 

In Newtonian fluids, this flux, which we call Pxy, is proportional to the gra
dient: 

ωux
Pxy = −σ 

ωy 

where σ is called the dynamic viscosity. σ has units of mass/(length × time). 

The shear stress can occur at any orientation. Analogous to the 1-D Newto

nian condition above, we define the viscous momentum flux 

ωui
Pij = −σ

ωxj 
. 
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The conservation of momentum requires that the divergence of the momen
tum flux Pij be balanced by a change in the momentum of a fluid particle. 
Loosely stated, 

ω(δui)�
�

� = −ψ = − 
� ω

Pij = σ 
� ω2 

ui
ωt �viscous 

� · Pij 

j 
ωxj j 

ωx2 
j 

We thus find that 
viscous force 

= σ� 2ψu. 
unit volume 

(A careful derivation requires consideration of the tensorial relationship between viscous stress and 

the rate of deformation.) 

Newton’s second law then gives the Navier-Stokes equation for incompressible 
fluids: 

δ
ωψu 

+ δ(ψu ψ u = �p + σ� 2ψu + Fψ�)ψ −ψ
ωt 

· 
� ⎜� � �⎜�� 

� ⎜� � 
stresses on fluid element per unit vol body force per unit vol 

(mass per unit vol)×acceleration 

Incompressibility arose from our negelect of compressive forces on fluid ele
ments. 

9.4 Nondimensionalization of Navier-Stokes equations 

Define the characteristic length scale L and velocity scale U . We obtain the 
non-dimensional quantities 

x∗ = 
x
, y∗ = 

y
, z∗ = 

z 
L L L 

ψu∗ = 
ψu
, t∗ = t

U
, p∗ = 

p 
U L δU2 

The dynamical equations (without body force) become 

ψ�∗ · ψu∗ = 0 

ωψu 1∗ 
+ (ψu∗ ψ ∗)ψu∗ = −ψ ∗p∗ + ∗2ψu∗ 

ωt∗ 
· � �

Re
�
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where

δUL 

Re = Reynolds number = 
σ 

is the dimensionless control parameter. 

The Reynolds number quantifies the relative importance of the nonlinear term 
to the viscous term. To see why, note the following dimensional quantities: 

δU2 

δψu ψ u nonlinearity | · �ψ | � 
L 

σU |σ� 2ψu| � 
L2 

dissipation 

Their ratio is 
δψu ψ u δUL | · �ψ | 

= Reynolds number |σ�2ψu| � 
σ 

High Re is associated with turbulence (i.e., nonlinearities). Low Re is asso

ciated with laminar or creeping flows dominated by viscous friction. 

Note that as long as Re remains the same, the dimensional parameters like 
U and L can change but the the flow (i.e., the equation it solves) does not. 
This is dynamical similarity. 

An example is running vs. swimming: 
�
σ 
�
 �

σ 
�

= 0.15 cm2/sec and = 0.01 cm2/sec
δ
 δ
air water 

On the other hand, comparing 100 meter world records, 

104 cm 
Urun � 

10 sec 
= 103 cm/sec 

104 cm 
Uswim � 

55 sec 
� 2 × 102 cm/sec 

Taking L � 100 cm, 

Re(swim) � 2 × 104 and Re(run) � 6 × 103 
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Thus for both swimming and running, Re � 104 , well into the turbulent 
regime. Surprisingly, despite the slower speed of swimming, Re(swim) is 
somewhat greater. 

Another example: bacteria swimming in water is roughly like us swimming in 
molasses, since the the small size and slow speed of bacteria would correspond 
to a larger and faster body in a more viscous fluid. 

9.5 Rayleigh-Bénard convection 

In a thermally expansive fluid, hot fluid rises. 

R-B convection concerns the study of the instabilities caused by rising hot 
fluid and falling cold fluid. 

Typically,, fluid is confined between two horizontal, heat-conducting plates: 

T=T0 (cold) 

g d fluid 

T=T0 + δ T (hot) T=T0 + δ T 

pure 
conduction 

T0 

temperature 

In the absence of convection—the transport of hot fluid up and cold fluid 
down—the temperature gradient is constant. 

Two cases of interest: 

•	 νT small: no convective motion, due to stabilizing effects of viscous 
friction. 

•	 νT large: convective motion occurs. 
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How large is a “large νT ” ? We seek a non-dimensional formulation. 

The following fluid properties are important: 

• viscosity 

• density 

• thermal expansivity 

• thermal diffusivity (heat conductivity) 

Convection is also determined by 

• d, the box size 

• νT (of course) 

Consider a small displacement of a cold blob downwards and a hot blob 
upwards: 

T=T0 

T=T0 + δ T 

Left undisturbed, buoyancy forces would allow the hot blob to continue rising 
and cold blob to continue falling. 

There are however damping (dissipation) mechanisms: 

diffusion of heat • 

viscous friction • 
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Let DT = thermal diffusivity, which has units 

length2 

[DT ] = 
time 

The temperature difference between the two blobs can therefore be main

tained at a characteristic time scale 

d2 

φth � 
DT 

We also seek a characteristic time scale for buoyant displacement over the 
length scale d. 

Let 

δ0 = mean density 

Γδ = −�δ0ΓT, � = expansion coefficient 

Setting ΓT = νT , 

buoyancy force density = ψgΓδ| | 
= g�δ0 νT. 

Note units: 
mass 

[g�δ0νT ] = 
(length)2(time)2 

The buoyancy force is resisted by viscous friction between the two blobs 
separated by � d. 

The viscous friction between the two blobs diminishes like 1/d (since viscous 
stresses ≥ velocity gradients). The rescaled viscosity has units 

�σ � mass 
= 

(length)2(time) 

Dividing the rescaled viscosity by the buoyancy force, we obtain the charac

teristic time φm for convective motion: 

d 

σ/d σ 
= .φm � 

buoyancy force g�δ0 d νT 
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Convection (sustained motion) occurs if 

time for motion < diffusion time for temperature difference 

φm < φth 

Thus convection requires 
φth 

> constant 
φm 

or 
δ0g�d

3 

νT ∈ Ra > constant 
σDT 

Ra is the Rayleigh number. A detailed stability calculation reveals that the 
critical constant is 1708. 

Our derivation of the Rayleigh number shows that the convective instability 
is favored by 

• large νT , �, d, δ0. 

• small σ, DT . 

In other words, convection occurs when the buoyancy force δ0g�d
3 νT exceeds 

the dissipative effects of viscous drag and heat diffusion. 

Note that box height enters Ra as d3 . This means that small increases in box 
size can have a dramatic effect on Ra. 

9.6 Rayleigh-Bénard equations 

9.6.1 Dimensional form 

We employ the Boussinesq approximation: density perturbations affect only 
the gravitational force. 

The momentum equation is therefore the Navier-Stokes equation augmented 
by the buoyancy force: 

ωψu 1 
+ ψu ψ ψ 2ψ g�(T − T0)

ωt 
· �ψu = −

δ0 
�p + �� u − ψ
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Here we have written the kinematic viscosity 

� = σ/δ0 

The mass conservation equation is again 

ψ u = 0.� · ψ

We now additionally require an equation for the convection and diffusion of 
heat: 

ωT 
ωt 

+ (ψu · �)T = DT � 2T. 

9.6.2 Dimensionless equations 

The equations are nondimensionalized using 

length scale = d 

time scale = d2/DT 

temperature scale = νT/Ra. 

An additional dimensionless parameter arises: 

Pr = Prandtl number = �/DT , 

which is like the ratio of momentum diffusion to thermal diffusion. 

We shall employ the dimensionless temperature fluctuation 

β = deviation of dimensionless T from the simple conductive gradient 

The mass conservation equation is 

ψ u = 0 � · ψ

Momentum conservation yields (ẑ is a unit upward normal) 

1 
⎡
ωψu 

� 

+ ψu ψ u = −ψ z + � 2ψu 
Pr ωt 

· �ψ �p + βˆ
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The heat equation becomes 

ωβ ψ	 2β 
ωt 

+ ψu · �β = Ra(ψu · ẑ) + � 

Note that there are two nonlinear terms: 

ψ•	ψu · �ψu


ψ
• ψu · �β 

Their relative importance depends on Pr: 

small Pr ∞ ψu ψ u dominates. Instabilities are “hydrodynamic.” •	 · �ψ


ψ
• large Pr ∞ ψu · �β dominates. Instabilities are thermally induced. 

9.6.3 Bifurcation diagram 

For Ra < Rac, there is no convection. 

For Ra > Rac, but not too large, a regular structure of convection “rolls” 
forms, with hot fluid rising and cold fluid falling: 

T = T0 

d 

T = T0 + δ d 

Now imagine placing a probe that measures the vertical component v of 
velocity, somewhere in the box midway between the top and bottom. A plot 
of v(Ra) looks like 
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v 

0 conduction 

rest 

v+ 

v− 

conduction 

(unstable) 

Rac 

convection (stable) 

Ra 

Such a plot is called a bifurcation diagram. Here the stable states are bold 
and the unstable states are dashed. 

Note that we cannot know in advance whether the velocity will be up or 
down. This is called symmetry breaking. 

9.6.4 Pattern formation 

Rayleigh-Bénard convection makes fascinating patterns. Some examples: 

•	 Figures 22.3–8, Tritton. 

•	 Plate 1, Schuster, showing quasiperiodic regime. (The 40 sec period is 
not precise: note details in upper right are not quite periodic.) 

•	 Plumes: Figure 22.12, Tritton 

•	 Plumes in the wind: Zocchi, Moses, and Libchaber (1990) 

•	 Collective plumes: Zhang et al (1997). 

9.6.5 Convection in the Earth 

The Earth’s radius is about 6378 km. It is layered, with the main divisions 
being the inner core, outer core, mantle, and crust. 
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The Earth’s crust—the outermost layer—is about 30 km thick.


The mantle ranges from about 30–2900 km.


The mantle is widely thought to be in a state of thermal convection. The

source of heat is thought to be the radioactive decay of isotopes of uranium,

thorium, and potassium. Another heat source is related to the heat deriv

ing from the gravitational energy dissipated by the formation of the Earth

roughly 4.5 Ga.


At long time scales mantle rock is thought to flow like a fluid. However its

effective viscosity is the subject of much debate.


One might naively think that the huge viscosity would make the Rayleigh

number quite small. Recall, however, that Ra scales like d3, where d is the

“box size”. For the mantle, d is nearly 3000 km!!!


Consequently Ra is probably quite high. Current estimates suggest that 

3 × 106 � Ramantle � 109 

which corresponds to roughly 

103 × Rac � Ramantle � 106Rac 

The uncertainty derives principally from the viscosity, and its presumed vari

ation by a factor of about 300 with depth. 

Some pictures illustrate these ideas: 

•	 Science cover, 26 May 1989 

•	 van der Hilst seismic tomography, showing cold slab descending toward 
the core-mantle boundary. 

•	 Gurnis (1988) simulation/cartoon showing breakup of continents. 

•	 Zhang and Libchaber (2000) showing floater-plates. 

Thermal convection is the “engine” that drives plate tectonics and volcanism. 
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It turns out that volcanism is, over the long-term, responsible for the CO2 

in the atmosphere, and thus the source of carbon that is fixed by plants. 
(Weathering reactions remove C from the atmosphere.) 

Thus in some sense thermal convection may be said to also sustain life. 

That is, without convection, there probably would be no CO2 in the atmo
sphere, and therefore we wouldn’t be around to discuss it... 
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10 Introduction to Strange Attractors 

Thus far, we have studied only classical attractors such as fixed points and 
limit cycles. In this lecture we begin our study of strange attractors. We 
emphasize their generic features. 

10.1 Dissipation and attraction 

Our studies of oscillators have revealed explicitly how forced systems can 
reach a stationary (yet dynamic) state characterized by an energy balance: 

average energy supplied = average energy dissipated 

An example is a limit cycle: 

θ 

θ 

Initital conditions inside or outside the limit cycle always evolve to the limit 
cycle. 

Limit cycles are a specific way in which 

dissipation ∞ attraction. 

More generally, we have an n-dimensional flow 

d 
ψx(t) = Fψ [ψx(t)], ψx ≤ Rn (23)

dt 

Assume that the flow ψx(t) is dissipative, with attractor A. 
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Properties of the attractor A: 

•	A is invariant with flow (i.e., it does not change with time). 

•	A is contained within B, the basin of attraction. B is that part of phase 
space from which all initial conditions lead to A as t ∗ →: 

A 

B 

A	has dimension d < n.• 
Consider, for example, the case of a limit cycle: 

θ 

θ 

Γ 

The surface � is reduced by the flow to a line segment on the limit cycle 
(the attractor). Here 

d	 = attractor dimension = 1 

n = phase-space dimension = 2. 

This phenomenon is called reduction of dimensionality. 

Consequence: loss of information on initial conditions. 
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We have already quantified volume contraction. Given an initial volume V 
evolving according to the flow (23), the Lie derivative tells us that V changes 
as 

n 

V 
1 d

d

V

t 
= � · ψẋ = 

� 

ωx

ωẋ

i

i 

i 

As we showed earlier, dissipation yields volume contraction; i.e., 

dV 
< 0. 

dt 

Consequently, the attractor cannot have n-dimensional volumes, so d < n. 

What, then, is the dimension of the attractor? 

We proceed by example, by considering the case d = 2. 

10.2 Attractors with d = 2 

What happens when d (the dimension of the attractor) is 2? 

Assume a quasiperiodic attractor on a torus T 2: 

ω 
ω 

2 
1 

C 

Cut the torus on a small circle C and open it:


A 
B 

A’ 
B’ 

Finally, cut the long way, from A to A∗, and open it again: 
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ω1 t 

ω2t 
A A’ 

B B’ 

2π 

2π 

Note the parallel trajectories. 

As usual, the quasiperiodic flows are characterized by two cases: 
γ1/γ2 rational or irrational. 

• Rational. Consider, e.g., γ1/γ2 = 1/3: 

ω1 t 

ω2t 

’ 

2π 

2π 

The trajectory repeats itself exactly every three times around the 2-axis, 
or each timen around the 1-axis. 

Irrational.• 

ω1 t 

ω2 t 

’ 

2π 

2π 

The trajectories densely fill the plane. 
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Determinism forbids non-parallel trajectories, because they would cross:


ω1 t 

ω2 t 

’ 

2π 

2π 

Thus a torus T 2 can only be a periodic or quasiperiodic attractor. 

The attractor cannot be aperiodic if d = 2. 

10.3 Aperiodic attractors 

We have already shown that the power spectrum of an aperiodic signal x(t) 
is continuous: 

xk 
2 

k 

And the autocorrelation �m = xjxj+m≡ has finite width: ⇒
Ψm 

m 

The finite width of �m implies that knowledge of no finite interval of x(t) 
allows prediction of all future x(t). 

This “unpredictability” is associated with what we call “chaos.” We seek, 
however, a more precise definition of chaos. 
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On an aperiodic attractor, small differences in initial conditions on the at-
tractor lead at later times to large differences, still on the attractor. 

In phase space, trajectories on an aperiodic attractor can diverge, e.g., 

We shall see that the divergence of trajectories is exponential in time. 

This phenomenon is called sensitivity to initial conditions (SIC). It defini
tively identifies chaos, i.e., a chaotic attractor. 

Note that, despite the precision of this definition, we are left with an apparent 
conundrum: simultaneously we have 

• attraction, such that trajectories converge. 

• sensitivity to initial conditions, such that trajectories diverge. 

The conundrum is solved by noting that trajectories converge to the attractor, 
but diverge on the attractor. 

Note further that divergence on the attractor implies that the attractor di
mension 

d > 2, 

since phase tractories cannot diverge in two dimensions. 

Thus we conclude that an aperiodic (chaotic) attractor must have phase space 
dimension 

n √ 3. 

Assume n = 3. How may trajectories converge, but still remain bounded on 
an attractor? 
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The trajectories are successively stretched (by SIC) and folded (thus re
maining bounded). 

To illustrate these ideas, see 

Figures 4.1.9–10, Abraham and Shaw 

• Trajectories diverge in plane by spiralling out (stretching). 

• Trajectories leave plane. 

• Trajectories return to plane (folding), back to center of spiral. 

At the same time, we must have volume contraction. One dimension can 
expand while another contracts, e.g. 

Figures 4.3.1, Abraham and Shaw 

10.4 Example: Rössler attractor 

We proceed to consider stretching and folding in more detail, using the Rössler 
attractor: 

ẋ = −y − z 

ẏ = x + ay 

ż = b + z(x − c) 

where we assume 
a > 0. 

Assume z and ż are small. Then in the x, y plane the system is apprxoximated 
by 

ẋ = −y 

ẏ = x + ay. 

Then 
ẍ = −ẏ = −x + aẋ
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yielding the negatively damped oscillator 

ẍ− aẋ+ x = 0. 

Consequently the trajectories spiral out of the origin. 

How is the spreading confined? From the equation for ż, we see that, for 
small b, 

x < c ˙∞ z < 0 

x > c ˙∞ z > 0 

Thus we expect trajectories to behave as follows: 

• Divergence from the origin creates x > c. 

• x > c ∞ z increases ∞ x decreases. 

• Eventually x decreases such that x < c. 

• Then x < c ∞ z decreases ∞ back in the x, y plane. 

• The process repeats. 

Thus we have 

• stretching, from the outward spiral; and 

• folding, from the feedback of z into x. 

A sequence of figures shows how endless divergence can occur in a bounded 
region: 

Figures 4.3.2–4, Abraham and Shaw 

Trajectories never close exactly as a surface, but more like filo dough: 

Figures 4.4.1–4, Abraham and Shaw 
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10.5 Conclusion 

We arrive at the following conclusions: 

•	 Aperiodic attractors must have


d > 2.


• Since dissipation contracts volumes, 

d < n,


where n is the dimension of the phase space.


•	 Suppose n = 3. Then a chaotic attractor must have 

2 < d < 3. 

How can 2 < d < 3? The attractor has a fractal dimension. 

Chaotic attractors have three properties: 

Attraction • 

SIC• 

• Non-integer fractal dimension. 

The combination of these three properties defines a strange attractor. The 
“strangeness” arises not so much from each individual property but their 
combined presence. 

Next we study the most celebrated strange attractor—the Lorenz attractor. 
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11 Lorenz equations 

In this lecture we derive the Lorenz equations, and study their behavior. 

The equations were first derived by writing a severe, low-order truncation of 
the equations of R-B convection. 

One motivation was to demonstrate SIC for weather systems, and thus point 
out the impossibility of accurate long-range predictions. 

Our derivation emphasizes a simple physical setting to which the Lorenz 
equations apply, rather than the mathematics of the low-order truncation. 

See Strogatz, Ch. 9, for a slightly different view. This lecture derives from Tritton, Physical Fluid 

Dynamics, 2nd ed. The derivation is originally due to Malkus and Howard. 

11.1 Physical problem and parameterization 

We consider convection in a vertical loop or torus, i.e., an empty circular 
tube: 

cold 

hot 

g 

We expect the following possible flows: 

• Stable pure conduction (no fluid motion) 

• Steady circulation 

• Instabilities (unsteady circulation) 
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The precise setup of the loop:


T0−T1 (external) 

(T0+T3 

T +T20 

T0+T1 (external) 

z 

(T0−T3) ) 

T0−T2 

q 
a φ 

g 

θ = position round the loop. 

External temperature TE varies linearly with height: 

TE = T0 − T1z/a = T0 + T1 cos θ (24) 

Let a be the radius of the loop. Assume that the tube’s inner radius is much 
smaller than a. 

Quantities inside the tube are averaged cross-sectionally: 

velocity = q = q(θ, t) 

temperature = T = T (θ, t) (inside the loop) 

As in the Rayleigh-Bénard problem, we employ the Boussinesq approximation 
(here, roughly like incompressiblity) and therefore assume 

ωδ 
= 0. 

ωt 

Thus mass conservation, which would give � · ψu in the full problem, here 
gives 

ωq 
= 0. (25)

ωθ 
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Thus motions inside the loop are equivalent to a kind of solid-body rotation, 
such that 

q = q(t). 

The temperature T (θ) could in reality vary with much complexity. Here we 
assume it depends on only two parameters, T2 and T3, such that 

T − T0 = T2 cos θ + T3 sin θ. (26) 

Thus the temperature difference is 

• 2T2 between the top and bottom, and 

• 2T3 between sides at mid-height. 

T2 and T3 vary with time: 

T2 = T2(t), T3 = T3(t) 

11.2 Equations of motion 

11.2.1 Momentum equation 

Recall the Navier-Stokes equation for convection: 

ωψu 1 
+ ψu ψ ψ g�ΓT + �� 2ψu 

ωt 
· �ψu = −

δ
�p − ψ

We write the equivalent equation for the loop as 

ωq 1 ωp 
+ g�(T − T0) sin θ − �q. (27)= −

ωt δa ωθ 

The terms have the following interpretation: 

• ψu ∗ q 

• ψu · �ψu ∗ 0 since ωq/ωθ = 0. 
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•	�p ∗ 1 γp by transformation to polar coordinates. a γπ 

•	 A factor of sin θ modifies the buoyancy force F = g�(T − T0) to obtain 
the tangential component: 

φ φ 

F 
Fsinφ 

The sign is chosen so that hot fluid rises. 

•	 � is a generalized friction coefficient, corresponding to viscous resistance 
proportional to velocity. 

Now substitute the expression for T − T0 (equation (26)) into the momentum 
equation (27): 

ωq 1 ωp 
+ g�(T2 cos θ + T3 sin θ) sin θ − �q= −

ωt δa ωθ 

Integrate once round the loop, with respect to θ, to eliminate the pressure 
term: 

2α
ωq 

= g� 
� 2� 

(T2 cos θ sin θ + T3 sin
2 θ)dθ − 2α�q. 

ωt 0 

The pressure term vanished because 
�	 2� ωp 

dθ = 0,
ωθ 0 

i.e., there is no net pressure gradient around the loop. 

The integrals are easily evaluated: 
� 2�	 2�

1 
cos θ sin θ dθ = sin2 θ = 0 

20	 0 

and �	 2� 

sin2 θ dθ = α. 
0 

112




Then, after dividing by 2α, the momentum equation is 

dq g�T3 
= −�q + (28)

dt 2 
where we have written dq/dt instead of ωq/ωt since ωq/ωθ = 0. 

We see that the motion is driven by the horizontal temperature difference, 
2T3. 

11.2.2 Temperature equation 

We now seek an equation for changes in the temperature T . The full tem

perature equation for convection is 

ωT ψ+ ψu �T = τ� 2T 
ωt 

· 

where τ is the heat diffusivity. 

We approximate the temperature equation by considering only cross-sectional 
averages within the loop: 

ωT q ωT 
+ = K(TE − T ) (29)

ωt a ωθ 

Here we have made the following assumptions: 

• RHS assumes that heat is transferred through the walls at rate 
K(Texternal − Tinternal). 

Conduction round the loop is negligible (i.e., no �2T ).• 

q γT is the product of averages, not (as it should be) the average of a • a γπ 
product; i.e., q is taken to be uncorrelated to ωT/ωθ. 

Recall that we parameterized the internal temperature with two time-dependent 
variables, T2(t) and T3(t). We also have the external temperature TE varying 
linearly with height. Specifically: 

TE = T0 + T1 cos θ 

T − T0 = T2 cos θ + T3 sin θ 
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Subtracting the second from the first, 

TE − T = (T1 − T2) cos θ − T3 sin θ. 

Substitute this into the temperature equation (29): 

dT2 dT3 q q 
cos θ + sin θ − T2 sin θ + T3 cos θ = K(T1 − T2) cos θ − KT3 sin θ. 

dt dt a a 
Here the partial derivatives of T have become total derivatives since T2 and 
T3 vary only with time. 

Since the temperature equation must hold for all θ, we may separate sin θ 
terms and cos θ terms to obtain 

sin θ : 
dT3 

dt 
− 
qT2 

a 
= −KT3 

cos θ : 
dT2 

dt 
+ 
qT3 

a 
= K(T1 − T2) 

These two equations, together with the momentum equation (28), are the 
three o.d.e.’s that govern the dynamics. 

We proceed to simplify by defining 

T4(t) = T1 − T2(t), 

which is the difference between internal and external temperatures at the top 
and bottom—loosely speaking, the extent to which the system departs from 
a “conductive equilibrium.” Substitution yields 

dT3 qT1 qT4 

dt 
= −KT3 + 

a 
− 

a 

dT4 qT3 
= −KT4 + 

dt a 

11.3 Dimensionless equations 

Define the nondimensional variables 
q g�T3 g�T4

X = , Y = , Z = 
aK 2a�K 2a�K 
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� 

Here 

X = dimensionless velocity 

Y = dimensionless temperature difference between up and down currents 

Z = dimensionless departure from conductive equilibrium 

Finally, define the dimensionless time 

t∗ = tK. 

Drop the prime on t to obtain 

dX 
dt 

= −P X + P Y 

dY 
dt 

= −Y + rX − XZ 

dZ 
dt 

= −Z + XY 

where the dimensionless parameters r and P are 

g�T1 
r = = “Rayleigh number” 

2a�K 

P = = “Prandtl number” 
K 

These three equations are essentially the same as Lorenz’s celebrated system, 
but with one difference. Lorenz’s system contained a factor b in the last 
equation: 

dZ 
= −bZ + XY 

dt 
The parameter b is related to the horizontal wavenumber of the convective 
motions. 

11.4 Stability 

We proceed to find the fixed points and evaluate their stability. For now, we 
remain with the loop equations (b = 1). 

115 



�


�
�
�
�
�


�


�
�
�
�
�
�


�
�
�
�
�
�


The fixed points, or steady solutions, occur where 

Ẋ = Ẏ = Ż = 0. 

An obvious fixed point is 

X� = Y � = Z� = 0, 

which corresponds, respectively, to a fluid at rest, pure conduction, and a 
temperature distribution consistent with conductive equilibrium. 

sgn(Y ) implies that hot fluid rises and cold fluid falls. 

� 

Another steady solution is 

X� = Y � = ±
�
r − 1 

Z� = r − 1 

This solution corresponds to flow around the loop at constant speed; the ±
signs arise because the circulation can be in either sense. That sgn(X) = 

Note that the second (convective) solution exists only for r > 1. Thus we 
see that, effectively, r = Ra/Rac, i.e., the convective instability occurs when 
Ra > Rac. 

As usual, we determine the stability of the steady-state solutions by deter
mining the sign of the eigenvalues of the Jacobian. 

Let ⎪
 ⎪

⎛ 
X� 

θ� = Y � 
X


θψ =
 Y ⎞ ,
⎛
 ⎞


Z Z� 

Then the Jacobian matrix is 
⎭
 ⎣


ωθ̇i 

ωθj 

−P +P 0 
r − Z� −1 −X� 

X� −1 
=
 ⎤


Y �π� 

The eigenvalues ε are found by equating the following determinant to zero:


−(ε + P ) P 0 
r − Z� −(ε + 1) −X� 

Y � X� −(ε + 1) 
= 0
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For the steady state without circulation (X� = Y � = Z� = 0), we have 

= 0.

−(ε + P ) P 0 

r −(ε + 1) 0 
00
 −(ε + 1)


This yields 
−(ε + P )(ε + 1)2 + rP (ε + 1) = 0 

or 
ε2(ε + 1)
 + ε(P + 1) − P (r − 1)
 = 0.


There are three roots: 

ε1 = −1 

ε2,3 = 
−(P + 1) 

2 
± 

�
2P P 1( + 1) + 4 ( ) −r 
2


As usual, 

Re{ε1, ε2, and ε3} < 0 =∞ stable 

Re{ε1, ε2, or ε3} > 0 =∞ unstable 

Therefore X� = Y � = Z� = 0 is 

stable for 0 < r < 1 

unstable for r > 1 

We now calculate the stability of the second fixed point, X� = ±
�
r − 1, 

Y � = ±
�
r − 1, Z� = r − 1. 

The eigenvalues ε are now the solution of 

= 0, S
= ±
�
r − 1.


−(ε + P ) P 0 
1 −(ε + 1) −S 

S −(ε + 1) S


(Explicitly, 

−(ε + p)(ε + 1)2 − P s2 − S2(ε + P ) + P (ε + 1) 

(ε + 1)[ε2 + ε(P + 1)] + εS2 + 2P S2 

= 

= 

0 

0.) 

117 



The characteristic equation is cubic: 

ε3 + ε2(P + 2) + ε(P + r) + 2P (r − 1) = 0 

This equation is of the form 

ε3 + Aε2 + Bε + C = 0 (30) 

where A, B, and C are all real and positive. 

Such an equation has either 

• 3 real roots; or 

• 1 real root and 2 complex conjugate roots, e.g., 

or 

3 real roots 1 real and 2 complex conjugates 

Rearranging equation (30), 

ε (ε2 + B) = −Aε2 − C < 0. 
� ⎜� � � ⎜� � 
positive real negative real 

Consequently any real ε < 0, and we need only consider the complex roots 
(since only they may yield Re{ε} > 0). 

Let ε1 be the (negative) real root, and let 

ε2,3 = � ± iλ. 

Then 
(ε − ε1)(ε − � − iλ)(ε − � + iλ) = 0 

and 

A = −(ε1 + 2�)


B = 2�ε1 + �2 + λ2


C = −ε1(�
2 + λ2)
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A little trick: 
C − AB = 2� 

�
(ε1 + �)2 + λ2

� 
. 

� ⎜� � 
positive real 

Since � is the real part of both complex roots, we have 

sgn(Re{ε2,3}) = sgn(�) = sgn(C − AB). 

Thus instability occurs for C − AB > 0, or 

2P (r − 1) − (P + 2)(P + r) > 0, . 

Rearranging, 
r(2P − P − 2) > 2P + P (P + 2) 

and we find that instability occurs for 

P (P + 4) 
r > rc = . 

P − 2 

This condition, which exists only for P > 2, gives the critical value of r for 
which steady circulation becomes unstable. 

Loosely speaking, this is analogous to a transition to turbulence. 

Summary: The rest state, X� = Y � = Z� = 0, is 

stable for 0 < r < 1 

unstable for r > 1. 

The convective state (steady circulation), X� = Y � = ±
�
r − 1, 

Z� = r − 1, is 

stable for 1 < r < rc 

unstable for r > rc. 

What happens for r > rc? 

Before addressing that interesting question, we first look at contraction of 
volumes in phase space. 
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11.5 Dissipation 

We now study the “full” equations, with the parameter b, such that 

Ż = −bZ + XY, b > 0. 

The rate of volume contraction is given by the Lie derivative 

1 dV � ωθ̇i 
= , i = 1, 2, 3, θ1 = X,θ2 = Y, θ3 = Z. 

V dt ωθii 

For the Lorenz equations, 

ω Ẋ ω Ẏ ω Ż 
ωX 

+ 
ωY 

+ 
ωZ 

= −P − 1 − b. 

Thus 
dV 

= −(P + 1 + b)V 
dt 

which may be solved to yield 

V (t) = V (0)e−(P +1+b)t . 

The system is clearly dissipative, since P > 0 and b > 0. 

The most common choice of parameters is that chosen by Lorenz 

P = 10 

b = 8/3 (corresponding to the first wavenumber to go unstable). 

For these parameters, 
41 
3V (t) = V (0)e− t . 

Thus after 1 time unit, volumes are reduced by a factor of e− 41 � 10−6 . The3 

system is therefore highly dissipative. 

11.6 Numerical solutions 

For the full Lorenz system, instability of the convective state occurs for 

P (P + 3 + b)
r > rc = 

P − 1 − b 
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For P=10, b=8/3, one has 
rc = 24.74. 

In the following examples, r = 28. 

Time series of the phase-space variables are shown in 

Tritton, Fig 24.2, p. 397 

•	X(t) represents variation of velocity round the loop. 

–	 Oscillations around each fixed point X+
� and X� represent variation −

in speed but the same direction. 

–	 Change in sign represents change in direction. 

•	Y (t) represents the temperature difference between up and downggoing 
currents. Intuitively, we expect some correlation between X(t) and Y (t). 

•	Z(t) represents the departure from conductive equilibrium. Intuitively, 
we may expect that pronounced maxima of Z (i.e., overheating) would 
foreshadow a change in sign of X and Y , i.e., a destabilization of the 
sense of rotation. 

Projection in the Z-Y plane, showing oscillations about the unstable convec
tive fixed points, and flips after maxima of Z: 

BPV, Fig. VI.12 

A 3-D perspective, the famous “butterfly:” 

BPV, Fig. VI.14 

Note the system is symmetric, being invariant under the transformation X ∗ 
−X, Y ∗ −Y , Z ∗ Z.


A slice (i.e., a Poincaré section) through the plane Z = r − 1, which contains

the convective fixed points:


BPV, Fig. VI.15
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•	 The trajectories lie on roughly straight lines, indicating the attractor 
dimension d 2.◦ 

•	 These are really closely packed sheets, with (as we shall see) a fractal 
dimension of 2.06. 

d 2 results from the strong dissipation. • ◦ 

Since d 2, we can construct, as did Lorenz, the first return map ◦ 

zk+1 = f(zk), 

where zk is the kth maximum of Z(t). The result is 

BPV, Fig. VI.16 

(These points intersect the plane XY −bZ = 0, which corresponds to Ż = 0.) 

The first-return map shows that the dynamics can be approximated by a 1-D 
map. It also reveals the stability properties of the fixed point Z = r − 1: 

BPV, Fig. VI.17 

Finally, sensitivity to initial conditions is documented by 

BPV, Fig. VI.18 

11.7 Conclusion 

The Lorenz model shows us that the apparent unpredictability of turbulent 
fluid dynamics is deterministic. Why? 

Lorenz’s system is much simpler than the Navier-Stokes equations, but it is 
essentially contained within them. 

Because the simpler system exhibits deterministic chaos, surely the Navier-
Stokes equations contain sufficient complexity to do so also. 
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Thus any doubt concerning the deterministic foundation of turbulence, such 
as assuming that turbulence represents a failure of deterministic equations, 
is now removed. 

A striking conclusion is that only a few (here, three) degrees of freedom are 
required to exhibit this complexity. Previous explanations of transitions to 
turbulence (e.g., Landau) had invoked a successive introduction of a large 
number of degrees of freedom. 
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12 Hénon attractor 

The chaotic phenomena of the Lorenz equations may be exhibited by even 
simpler systems. 

We now consider a discrete-time, 2-D mapping of the plane into itself. The 
points in R2 are considered to be the the Poincaré section of a flow in higher 
dimensions, say, R3 . 

The restriction that d > 2 for a strange attractor does not apply, because 
maps generate discrete points; thus the flow is not restricted by continuity 
(i.e., lines of points need not be parallel). 

12.1 The Hénon map 

The discrete time, 2-D mapping of Hénon is 

Xk+1 = Yk + 1 − �Xk 
2 

Yk+1 = λXk 

• � controls the nonlinearity. 

• λ controls the dissipation. 

Pictorially, we may consider a set of initial conditions given by an ellipse: 

X 

Y 
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Now bend the elllipse, but preserve the area inside it (we shall soon quantify 
area preservation): 

X’ 

Y’ 

Map T1 : X ∗ = X 

Y ∗ = 1 − �X2 + Y 

Next, contract in the x-direction ( λ < 1)| | 

X ’’ 

Y’’ 

Map T2 : X ∗∗ = λX ∗ 

Y ∗∗ = Y ∗ 

Finally, reorient along the x axis (i.e. flip across the diagonal).


Map T3 : X ∗∗∗ = Y ∗∗ 

Y ∗∗∗ = X ∗∗ X ’’’ 

Y’’’ 

The composite of these maps is 

T = T3 ∝ T2 ∝ T1. 

We readily find that T is the Hénon map: 

X ∗∗∗ = 1 − �X2 + Y 

Y ∗∗∗ = λX 
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12.2 Dissipation 

The rate of dissipation may be quantified directly from the mapping via the 
Jacobian. 

We write the map as 

Xk+1 = f(Xk, Yk) 

Yk+1 = g(Xk, Yk) 

Infinitesimal changes in mapped quantities as a function of infinitesimal 
changes in inputs follow 

ωf ωf 
df = dXk + dYk

ωXk ωYk 

We may approximate, to first order, the increment ΓXk+1 due to small in
crements (ΓXk, ΓYk) as 

ωf ωf 
ΓXk+1 ΓXk + ΓYk◦ 

ωXk ωYk 

When (ΓXk, ΓYk) are perturbations about a point (x0, y0), we have, to first 
order, 

⎡ � ⎡

(x0, y0) 

� ⎡ �

ΓXk

∗
∗ 
fXk 

gXk 
(x0, y0) 

∗ 
Yk 

ΓXk+1 (x0, y0) f=
 .
∗ 
Yk 

ΓYk+1 (x0, y0) ΓYkg


Rewrite simply as 
⎡ � ⎡ � ⎡ �
∗Γx
 b
 Γx
a 

= .
∗Γy
 c d Γy


Geometrically, this system describes the transformation of a rectangular area 
determined by the vertex (Γx, Γy) to a parallelogram as follows: 

y y ( Δ x,’ Δ y’)
(b,d)Δ y 

( Δ x , Δ y)
Δ y 

(a,c)Δ x 

Δ x x 
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Here we have taken account of transformations like 

(Γx, 0) (aΓx, cΓx)∗ 

(0, Γy) (bΓy, dΓy)∗ 

If the original rectangle has unit area (i.e., ΓxΓy = 1), then the area of the 
parallelogram is given by the magnitude of the cross product of (a, c) and 
(b, d), or, in general, the Jacobian determinant 

J =

a b

c d


=


ωXk+1 ωXk+1 

ωXk ωYk 

ωYk+1 ωYk+1 

ωXk ωYk (x0,y0) 

Therefore 

|J | > 1 =∞ dilation 

|J | < 1 =∞ contraction 

For the Hénon map, 

J
=

−2�Xk 1 
λ 0


= −λ


Thus areas are multipled at each iteration by λ .| |

After k iterations of the map, an initial area a0 becomes 

ak = a0 λ
k .| | 

12.3 Numerical simulations 

Hénon chose � = 1.4, λ = 0.3. The dissipation is thus considerably less than 
the factor of 10−6 in the Lorenz model. 

An illustration of the attractor is given by 

BPV, Figure VI.19 
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Numerical simulations show the basin of attraction to be quite complex. 

Sensitivity to initial conditions is confirmed by 

BPV, Figure VI.20 

The weak dissipation allows one to see the fractal structure induced by the 
repetitive folding 

BPV, Figure VI.21 

Note the apparent scale-invariance: at each magnification of scale, we see 
that the upper line is composed of 3 separate lines. 

The fractal dimension D = 1.26. (We shall soon discuss how this is com
puted.) 

The action of the Hénon map near the attractor is evident in the deformation 
of a small circle of initial conditions: 

BPV, Figure VI.22 

At the scale of the attractor we can see the combined effects of stretching and 
folding: 

BPV, Figure VI.23 
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13 Experimental attractors 

In this brief lecture we show examples of strange attractors found in experi
ments. 

13.1 Rayleigh-Bénard convection 

BPV, Figure VI.25 

Two dynamical variables, (ΓT ) and (ΓT )∗, represent time-dependent thermal 
gradients measured measured by the refraction of light, inside the convecting 
system. 

A 3-D phase space is defined by the coordinates 

(ΓT ), (Γ̇T ), and (ΓT )∗. 

The Poincaré section in the plane (ΓT ), (Γ̇T ) is obtained by strobing the 
system at the dominant frequency of the fluctuations of one of the dynamical 
variables. 

Like the Hénon attractor, the points are arranged in a “complex but well-
defined structure” (BPV, p. 137). 

13.2 Belousov-Zhabotinsky reaction 

See Strogatz, Section 8.3. 

The B-Z reaction is a particularly well studied chemical reaction that is of 
interest for 

• dynamics, because it is oscillatory; and 

• pattern formation and nonlinear waves. 
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An example of the pattern formation is


Strogatz, Plate 1, Section 8.3


For us the dynamical aspects are of greater interest. This chemical reaction, 
like many others, can be envisioned as a flux of reactants into a reactor, and 
a flux of products out of the reactor: 

reactants 

reactor 

products 

Nonlinearities arise from chemical reactions like 

A + B ∗ C 

which yield terms like 
dC 

= AB 
dt 

The control parameter is typically the reactant flux.


The dynamical variable X(t) measures the concentration of a particular chem

ical species within the reactor.


Phase portraits are obtained in the 3-D phase space formed by 

X(t), X(t + φ), X(t + 2φ). 

The periodic regime (limit cycle) is evident in the 2-D projection given by 

BPV, Figure VI.26


The chaotic regime is evident in the 2-D projection given by


BPV, Figure VI.27
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A Poincaré section reveals evidence of strong dissipation, as seen in a plot of 
intersections with a plane perpendicular to X(t), X(t + φ): 

BPV, Figure VI.28


The straightness of the line is insignificant, but its thinness indicates strong 
dissipation. 

Due to dissipation, a nice 1-D first-return map can be formed by plotting 
Xk+1 vs. Xk, where Xk is the kth observation of X(t): 

BPV, Figure VI.29a


That all the points essentially lie on a simple curve implies deterministic 
order in the system. 

Attraction is demonstrated by inducing a small perturbation and then ob

serving the re-establishment of the first return map: 

BPV, Figure VI.29b


Sensitivity to initial conditions is observedby plotting the distribution of 
points that results after passage close to the same point: 

BPV, Figure VI.30


Stretching and folding may also be observed. Plotting the data with a differ

ent choice of φ : 

BPV, Figure VI.31


Nine different slices through the system reveal stretching (from 9 to 1) and 
folding (between 2 and 8): 

BPV, Figure VI.32
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14 Fractals 

We now proceed to quantify the “strangeness” of strange attractors. There 
are two processes of interest, each associated with a measurable quantity: 

• sensitivity to initial conditions, quantified by Lyaponov exponents. 

• repetitive folding of attractors, quantified by the fractal dimension. 

Now we consider fractals, and defer Lyaponov exponents to the next lecture. 

We shall see that the fractal dimension can be associated with the effective 
number of degrees of freedom that are “excited” by the dynamics, e.g., 

• the number of independent variables; 

• the number of oscillatory modes; or 

• the number of peaks in the power spectrum 

14.1 Definition 

Consider an attractor A formed by a set of points in a p-dimensional space: 

etc 

ε 

We contain each point within a (hyper)-cube of linear dimension π. 

Let N(π) = smallest number of cubes of size π needed to cover A. 

Then if 
N(π) = Cπ−D , as π ∗ 0, C = const. 

then D is called the fractal (or Hausdorf ) dimension. 
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Solve for D (in the limit π ∗ 0): 

ln N(π) − ln C 
D = . 

ln(1/π) 

Since ln C/ ln(1/π) ∗ 0 as π ∗ 0, we obtain the formal definition 

ln N(π)
D = lim . 

ν�0 ln(1/π) 

14.2 Examples 

Suppose A is a line segment of length L: 

L 

Then the “boxes” that cover A are just line segments of length π, and it is 
obvious that 

N(π) = Lπ−1 = D = 1.∞ 

Next suppose A is a surface or area S. Then 

N(π) = Sπ−2 = D = 2.∞ 

But we have yet to learn anything from D.


Consider instead the Cantor set. Start with a unit line segment:


0 1 

The successively remove the middle third: 

0 1/3 2/3 1 

1/9 2/9 

etc etc 
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� � 

Note that the structure is scale-invariant: from far away, you see the middle 
1/3 missing; closer up, you see a different middle 1/3 missing. 

The effect is visually similar to that seen in the Lorenz, Hénon, and Rössler 
attractors. 

The fractal dimension of the Cantor set is easily calculated from the definition 
of D: 

� 
1
� 

Obviously, N π = = 2 
3 
1 

Then N π = = 4 
9 

� 
1 
� 

N = 8 . . . 
27 

Thus � 
1 
� 

N = 2m . 
3m 

Taking π = 1/3 and using the definition of D, 

ln 2m ln 2 
D = lim = 0.63 

m�� ln 3m ln 3 
◦ 

14.3 Correlation dimension � 

We proceed now to an alternative procedure for the calculation of the fractal 
dimension, which offers additional (physical) insight. 

Rather than calculating the fractal dimension via its definition, we calculate 
the correlation dimension �. 

We shall show that � ∼ D. But first we define it. 

14.3.1 Definition 

Consider a set of points distributed on a plane. 
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Let N(r) = number of points located inside a circle of radius r. 

Assume the points are uniformly distributed on a curve like 

r 

For r sufficiently small compared to the curvature of the curve, we have 

N(r) ≥ r 

or 
N(r) ≥ r � , � = 1. 

Now assume the points are uniformly distributed along a surface in two di
mensions: 

r 

Now 
= � = 2.N(r) ≥ r 2 ∞ 

Next, reconsider the Cantor set: 

r 

We expect that N(r) will grow more slowly than r.


Indeed, calculations show that � 0.63 = D, just as before.
◦ 
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� 

14.3.2 Computation 

Our implicit definition of � is clearly generalized by considering 

• an attractor in a p-dimensional space, and 

• N(r) = number of points in a p-dimensional hypersphere of radius r. 

For a time series x(t), we reconstruct a p-dimensional phase space with the 
coordinates 

x(t), x(t + φ), x(t + 2φ), . . . x(t + (p − 1)φ) = ψx(t). 

Suppose there are m points on the attractor. We quantify the spatial corre
lation of these points by defining 

1 
C(r) = lim 

m2 
(number of pairs i, j for which |ψxi − ψxj| < r) . 

m�� 

More formally, 

m m
1 �� 

C(r) = lim H(r − ψxi − ψxj ) 
m�� m2 

i j 

| |

where 
1 x > 0 

H(x) = 
0 else. 

The summation is performed by centering hyperspheres on each of the m 
points. 

In practice, one embeds the signal x(t) in a phase space of dimension p, for 

p = 2, 3, 4, 5, . . . 

p is called the embedding dimension. 

For each p, we calculate C(r). Then, assuming 

C(r) = r � 
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we plot log C vs. log r and estimating the slope �:


Consider the example of white noise. Then x(t) is a series of uncorrelated 
random numbers, and we expect 

C(r) ≥ rp, p = embedding dimension. 

Graphically, one expect a series of plots like 

log r 

Here 
�(p) = p, 

a consequence of the fact that white noise has as many degrees of freedom 
(i.e., independent “modes”) as there are data points. 

Consider instead X(t) = periodic function, i.e., a limit cycle, with only one 
fundamental frequency. 

Then the attractor looks like 

slope = ν 

log r 

log C(r) 

log C(r) 

p= 4 532 

p=2 p=3 
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Provided that r is sufficiently smaller than the curvature of the limit cycle, 
we expect 

C(r) ≥ r 1 , for p = 2, 3, 4, . . . 

Graphically, we obtain 

log r 

log C(r) 

p= 2 3 4 5 

and therefore 
�(p) = 1, independent of p. 

We conclude that � measures something related to the “number of degrees 
of freedom” needed to parameterize an attractor. 

Specifically, suppose a dynamical regime has n oscillatory modes. The at-
tractor is then a torus T n, and we expect 

C(r) ≥ r n . 

Thus 
p ∼ n =∞ C(r) ≥ rp 

and 
p > n =∞ C(r) ≥ r n , independent of p. 

Conclusion: If, for embedding dimensions p √ p0, � is independent of p, 
then � is the number of degrees of freedom excited by the system. 

This conclusion provides for an appealing conjecture: since white noise gives 

�(p) = p,


� independent of p (and reasonably small) implies that the signal is deter
ministic, and characterizable by �� variables. 
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(There are some practical limitations: 

• r must be small compared to the attractor size. 

• r and m must be large enough for reasonable statistics.) 

14.4 Relationship of � to D 

(Grassberger and Procaccia, Physica 9D, 183 (1983)) 

The correlation dimension is not strictly the same as the fractal dimension, 
however it can be. We now derive their mathematical relation. 

Suppose we cover an attractor A with N(r) hypercubes of size r. 

If the points are uniformly distributed on A, the probability that a point falls 
into the ith hypercube is 

pi = 1/N(r). 

By definition, for an attractor containing m points, 
m m �

1 �� 1 x > 0 
C(r) = lim H(r − ψxi − ψxj ), H(x) = 

2m�� m
i j 

| |
0 else 

C(r) measures the number of pairs of points within a distance r of each other. 
In a box of size r, there are on average mpi points, all within the range r. 
Therefore, within a factor of O(1) (i.e., ignoring box boundaries and factors of two arising 

from counting pairs twice), 
N(r) 

C(r)
1 

2 

� 
(mpi)

2 ◦ 
m

i=1 

N(r) 
� 

2 = pi 
i=1 

Then, using angle brackets to represent mean quantities, we have, from 
Schwartz’s inequality, 

1 
C(r) = N(r) ⇒pi 

2 ≡ √ N(r) ⇒pi≡ 2 = 
N(r) 

. 
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If the attractor has fractal dimension D, then 

N(r) ≥ r−D , r ∗ 0. 

The definition of the correlation dimension �, on the other hand, gives 

C(r) ≥ r � . 

Substituting these relations into both sides of the inequality, we find 

� D r √ r 

Thus as r ∗ 0, we see that 
� ∼ D 

The equality is obtained when p2 2 .⇒ i ≡ = ⇒pi≡

Thus � < D results from non-uniformity of points on the attractor. 
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15 Lyapunov exponents 

Whereas fractals quantify the geometry of strange attractors, Lyaponov ex
ponents quantify the sensitivity to initial conditions that is, in effect, their 
most salient feature. 

In this lecture we point broadly sketch some of the mathematical issues con
cerning Lyaponov exponents. We also briefly describe how they are com

puted. We then conclude with a description of a simple model that shows 
how both fractals and Lyaponov exponents manifest themselves in a simple 
model. 

15.1 Diverging trajectories 

Lyapunov exponents measure the rate of divergence of trajectories on an 
attractor. 

Consider a flow θψ(t) in phase space, given by 

dθ 
= Fψ (θψ)

dt 

If instead of initiating the flow at θψ(0), it is initiated at θψ(0)+π(0), sensitivity 
to initial conditions would produce a divergent trajectory: 

φ(0) φ( 
ε(0) 

ε( t) 

t) 

Here ψπ grows with time. To the first order, | | 

d(θψ + ψπ) 
Fψ (θψ) + M(t) ψπ 

dt 
◦ 

141 



�
�
�
�


�


�


where

ωFi

Mij(t) = .

ωθj πτ(t) 

We thus find that 
dψπ 

= M(t) ψπ. (31)
dt 

Consider the example of the Lorenz model. The Jacobian M is given by 
⎭
 ⎣


−P P 0 
−Z(t) + rM(t) =
 ⎤ .−1 −X(t) 

X(t) −bY (t)


We cannot solve for ψπ because of the unknown time dependence of M(t). 
However one may numerically solve for θψ(t), and thus ψπ(t), to obtain (for

mally) 
ψπ(t) = L(t) ψπ(0). 

15.2 Example 1: M independent of time 

Consider a simple 3-D example in which M is time-independent. 

Assume additionally that the phase space coordinates correspond to M ’s 
eigenvectors. 

Then M is diagonal and 
⎭
 ⎣

e�1t 0 0 
0 �2tL(t) =
 0
e
 ⎤


0 0 e�3t 

where the �i are the eigenvalues of M . (Recall that if ρβ̇ = Mρβ, then ρβ(t) = eMtρβ(0), 

where, in the coordinate system of the eigenvectors, eMt = L(t).) 

As t increases, the eigenvalue with the largest real part dominates the flow 
ψπ(t). 

To express this formally, let L� be the conjugate (Hermitian) transpose of L, 
i.e. 

L�
ij = Lji. 
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� � � 

Also let 
Tr(L) = diagonal sum = 

� 
Lij. 

i=j 

Then 
Tr[L�(t)L(t)] = e(�1+�1)t (�2+�2)t (�3+�3)t+ e
 + e


Define 
1 

� � 

� = lim ln Tr[L�(t)L(t)] 
t�� 2t 

� is the largest Lyapunov exponent. Its sign is crucial: 

� < 0 = π(t) decays exponentially ∞ 

� > 0 = π(t) grows exponentially. ∞ 

15.3 Example 2: Time-dependent eigenvalues 

Now suppose that M(t) varies with time in such a way that only its eigen

values, but not its eigenvectors, vary. 

Let ⎭ ⎣
X(t) 

θψ = � Y (t) ⎤ 

Z(t) 

and consider small displacements νX(t), νY (t), νZ(t) in the reference frame 
of the eigenvectors. 

Then, analogous to equation (31), and again assuming that phase space co

ordinates correspond to M ’s eigenvectors, 
⎭ 
νẊ(t) 

⎣ ⎭ 
A[θ(t)] 0 0 

⎣⎭ 
νX(t) 

⎣ 

� νẎ (t) ⎤ = � 0 B[θ(t)] 0 ⎤� νY (t) ⎤ . 
νŻ(t) 0 0 C[θ(t)] νZ(t) 

Here A,B,C are the time-dependent eigenvalues (assumed to be real). 

The solution for νX(t) is 
⎡� t � 

νX(t) = νX(0) exp dt∗A[θ(t∗)] 
0 
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Rearranging and dividing by t,


t1
 νX(t)
 1
 ∗ ∗=

t


ln

νX(0)
 t 0 

dt
A[θ(t
)]


The RHS represents the time-average of the eigenvalue A. We assume that 
for sufficiently long times this average is equivalent to an average of A for all 
possible flows θ evaluated at the same time. 

In other words, we assume that the flow is ergodic. 

We denote this average by angle brackets: 

⇒A≡ = θ-average of A[θ(t)] 

= time-average of A[θ(t)] 

t1
 ∗ ∗A[θ(t
lim dt )]
=

0t�� t 

1 
= lim ln 

t�� t 
νX(t)

νX(0)


⇒A≡ is one of the three Lyapunov exponents for θ(t). 

More sophisticated analyses show that the theory sketched above applies to 
the general case in which both eigenvectors and eigenvalues vary with time. 

15.4 Numerical evaluation 

Lyaponov exponents are almost always evaluated numerically. 

The most obvious method is the one used in the problem sets: For some ψπ(0), 
numerically evaluate ψπ(t), and then find � such that 

|ψπ(t)| ◦ |ψπ(0)|e �t . 

This corresponds to the definition of A≡ above. ⇒
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A better method avoids saturation at the size of the attractor by successively 
averaging small changes over the same trajectory: 

ε(0) 

φ(0) 
φ( τ) 

φ( 2τ) 

ε(2τ) 
ε(τ) 

Here ψπ is renormalized at each step such that 

ψπ(φ) = ψπ(0)e ε1φ 

ψπ(2φ) = 
ψπ(φ) 

e ε2φ 

|ψπ(φ)| 
The largest Lyaponov exponent is given by the long-time average: 

n n 
1 � 1 � 

� = lim ρi = lim ln ψπ(iφ)
n�� n 

i=1 
n�� nφ 

i 

| | 

Experimental data poses greater challenges, because generally we have only 
a single time series X(t). 

One way is to compare two intervals on X(t), say 

[t1, t2] and [t1
∗ , t2

∗ ], 

where X(t) is nearly the same on both intervals.


Then the comparison of X(t) beyond t2 and t2
∗ may yield the largest Lyaponov


exponent.


Another way is to reconstruct phase space by, say, the method of delays. 
Then all trajectories that pass near a certain point may be compared to see 
the rate at which they diverge. 
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15.5 Lyaponov exponents and attractors in 3-D 

Consider an attractor in a 3-D phase space. There are 3 Lyaponov exponents. 

Their signs depend on the type of attractor: 

Type 
Fixed point 
Limit cycle 
Torus T 2 

Strange attractor 

Signs of Lyapunov exponents 
(−, −, −) 
(−, −, 0) 
(−, 0, 0) 
(−, 0, +) 

If the attractor is a fixed point, all three exponents are negative. 

If it is a limit cycle with one frequency, only two are negative, and the third 
is zero. The zero-exponent corresponds to the direction of flow—which can 
neither be expanding nor contracting. 

Of the other cases in the table below, the most interesting is that of a strange 
attractor: 

•	 The largest exponent is, by definition, positive. 

•	 There must also be a zero-exponent corresponding to the flow direction. 

•	 The smallest exponent must be negative—and of greater magnitude than 
the largest, since volumes must be contracting. 
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15.6 Smale’s horseshoe attractor 

We have seen that 

• Lyaponov exponents measure “stretching.” 

• Fractal dimensions measure “folding.” 

Smale’s horseshoe attractor exemplifies both, and allows easy quantification. 

Start with a rectangle: 

A B 

DC 

Stretch by a factor of 2; squash by a factor of 1/(2σ), σ > 1: 

C’

A’ B’

D’ 

Now fold like a horseshoe and put back in ABCD: 

1/2η 

1/2η 

A B 

DC 

Now iterate the process. Stretch and squash: 
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Fold and place back in ABCD:


1/(2η)2 

A B 

DC 

Each dimension is successively scaled by its own multiplier, called a Lyaponov 
number: 

�1 = 2 (x − stretch) 
1 

�2 = (y − squash) 
2σ 

Area contraction is given by 

�1�2 = 1/σ. 

The Lyapunov exponents are 

�1 = ln �1 

�2 = ln �2 

Note also that vertical cuts through the attractor appear as the early itera

tions of a Cantor set. 

To obtain the fractal dimension, we use the definition 

ln N(π)
D = lim . 

ν�0 ln(1/π) 

Taking the initial box height to be unity, the π,N pairs for the number N of 
segments of length π required to cover the attractor is 
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π 
1 

1/(2σ) 
1/(2σ)2 

. . . 
1/(2σ)m 

N 
1 
2 
4 
. . . 
2m 

Therefore the dimension D of the Cantor set is 

ln 2 
D = . 

ln 2σ 

The dimension D∗ of the attractor in the plane ABCD is 

ln 2 
D∗ = 1 + ,

ln 2σ 

where we have neglected the “bend” in the horseshoe (i.e., we’ve assumed 
the box’s width is much greater than its height. 

Note that, 
as σ ∗ 1, D∗ ∗ 2, 

because iterates nearly fill the plane. Conversely, 

as σ ∗ →, D∗ ∗ 1, 

meaning that the attractor is nearly squashed to a simple line. 
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16 Period doubling route to chaos 

We now study the “routes” or “scenarios” towards chaos.


We ask: How does the transition from periodic to strange attractor occur?


The question is analogous to the study of phase transitions: How does a solid

become a melt; or a liquid become a gas?


We shall see that, just as in the study of phase transitions, there are universal

ways in which systems become chaotic.


There are three universal routes:


• Period doubling 

• Intermittency 

• Quasiperiodicity 

We shall focus the majority of our attention on period doubling. 

16.1 Instability of a limit cycle 

To analyze how a periodic regime may lose its stability, consider the Poincaré 
section: 

x0 

x1 

x2 

The periodic regime is linearly unstable if 

|ψx1 − ψx0| < |ψx2 − ψx1| < . . . 
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or 
|νψx1| < |νψx2| < . . . 

Recall that, to first order, a Poincaré map T in the neighborhood of ψx0 is 
described by the Floquet matrix 

ωTi
Mij = . 

ωXj 

In a periodic regime, 
ψx(t + φ) = ψx(t). 

But the mapping T sends 

ψx0 + νψx ∗ ψx0 + Mνψx. 

Thus stability depends on the 2 (possibly complex) eigenvalues �i of M . 

If �i > 1, the fixed point is unstable. | | 

There are three ways in which �i > 1:| | 

λi 

λiRe 

Im 

+1−1 

1. � = 1 + π, π real, π > 0. νψx is amplified is in the same direction:


x1
x2 x3 

x4 

This transition is associated with Type 1 intermittency. 

2. � = −(1 + π). νψx is amplified in alternating directions: 

x3 x1
x0 x2 

This transition is associated with period doubling. 
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3. � = � ± iλ = (1 + π)e±iε . |νψx| is amplified, νψx is rotated: 

x0 

1 

2 

34 

γγγ 

This transition is associated with quasiperiodicity. 

In each of these cases, nonlinear effects eventually cause the instability to

saturate.


Let’s look more closely at the second case, � ◦ −1.


Just before the transition, � = −(1 − π), π > 0.


Assume the Poincaré section goes through x = −0. Then an initial pertur

bation x0 is damped with alternating sign:


x1 
x3 0 x2 x0 

Now vary the control parameter such that � = −1. The iterations no longer 
converge: 

x1 
0 x0 

x3 
x2 

We see that a new cycle has appeared with period twice that of the original 
cycle through x = 0. 

This is a period doubling bifurcation. 

16.2 Logistic map 

We now focus on the simplest possible system that exhibits period doubling. 
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In essence, we set aside n-dimensional (n √ 3) trajectories and focus only on 
the Poincaré section and the eigenvector whose eigenvalue crosses (−1). 

Thus we look at discrete intervals T, 2T, 3T, . . . and study the iterates of a 
transformation on an axis. 

We therefore study first return maps 

xk+1 = f(xk) 

and shall argue that these maps are highly relevant to n-dimensional flows. 

For clarity, we adopt a biological interpretation. 

Imagine an island with an insect population that breeds in summer and leaves 
egges that hatch the following summer. 

Let xj = ratio of actual population in jth summer to some reference popula
tion. 

Assume that next summer’s population is determined by this summer’s pop
ulation according to 

2 xj+1 = rxj − sxj . 

The term rxj+1 represents natural growth; if r > 1 the population grows 
(exponentially) by a factor r each year. 

The term sxj 
2 represents a reduction of natural growth due to crowding and 

competition for resources. 

Now rescale xj ∗ (r/s)xj. Then 

2 xj+1 = rxj − rx j . 

Set r = 4µ: 
xj+1 = 4µxj(1 − xj). 

This is called the logistic map. 
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16.3 Fixed points and stability 

We seek the long-term dependence of xj on the control parameter µ. Re

markably, we shall see that µ plays a role not unlike that of the Rayleigh 
number in thermal convection. 

So that 0 < xj < 1, we consider the range 

0 < µ < 1. 

Recall that we have already discussed the graphical interpretation of such 
maps. Below is a sketch for µ = 0.7: 

x k+
1
= x k 

f(x0) = 

x0 x1 

x1 

1 

1 

x 

f(x) 

f(x) 

1−1/(4µ)0 

The fixed points solve 

x� = f(x�) = 4µx�(1 − x�), 

which yields 
1 

x� = 0 and x� = 1 − 
4µ
, 

where the second fixed point exists only for µ > 1/4. 

Recall that stability requires 

|f ∗(x�)| < 1 =∞ |4µ(1 − 2x�)| < 1. 
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The stability condition for x� = 0 is therefore 

µ < 1/4. 

The non-trivial fixed point, x� = 1 − 1/(4µ), is stable for 

1/4 < µ < 3/4. 

The long-time behavior of the insect population x for 0 < µ < 3/4 then looks 
like 

16.4 Period doubling bifurcations 

What happens for µ > 3/4? 

At µ = 3/4, x� = 1 − 1/(4µ) is marginally stable. Just beyond this point, 
the period of the asymptotic iterates doubles: 

x1 x2 x 
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Let’s examine this transition more closely. First, look 
at both f(x) and f 2(x) = f

�
f(x)

� 
just before the 

transition, at µ = 0.7. 

•	 Since f(x) is symmetric about x = 1/2, so is

f 2(x).


•	 If x� is a fixed point of f(x), x� is also a fixed

point of f 2(x).


We shall see that period doubling depends on the 
relationship of the slope of f 2(x�) to the slope of 
f(x�). 

Feigenbaum, Fig. 2. 

The two slopes are related by the chain rule. By definition, 

x1 = f(x0), x2 = f(x1) = x2 = f 2(x0).∞ 

Using the chain rule, 

f 2∗(x0) = 
d 
f
�
f(x)

��
� 

dx x0 

= f ∗(x0) f
∗�f(x0)

� 

= f ∗(x0) f
∗(x1) 

Thus, in general, 

fn∗(x0) = f ∗(x0) f
∗(x1) . . . f

∗(xn−1).	 (32) 

Now, suppose x0 = x�, a fixed point of f . Then 

x1 = x0 = x� 

and 
f 2∗(x�) = f ∗(x�) f ∗(x�) = |f ∗(x�)| 2 . 
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For the example of µ < 3/4,


|f ∗(x�)| < 1 =∞ |f 2∗(x�)| < 1.


Moreover, if we start at x0 = 1/2, the extremum of f , then equation (32) 
shows that 

f ∗(1/2) = 0 =∞ f 2
∗
(1/2) = 0 

= x = 1/2 is an extremum of f 2 .∞ 

Equation (32) also shows us that f 2 has an extremum at the x0 that iterates, 
under f , to x = 1/2. These inverses of x = 1/2 are indicated on the figure 
for µ = 0.7. 

What happens at the transition, where µ = 3/4? 

At µ = 3/4, 

f ∗(x�) = −1 =∞ f 2(x�) = 1. 

Therefore f 2(x�) is tangent to the identity map. 

Feigenbaum, Fig. 3, µ = 0.75. 

Just after the transition, where µ > 3/4, the peaks of f 2 

increase, the minimum decreases, and 

|f ∗(x�)| > 1 =∞ |f 2∗(x�)| > 1. 

f 2 develops 2 new fixed points, x�1 and x�2, such that 

x1
� = f(x2

�), x2
� = f(x�1).


We thus find a cycle of period 2. The cycle is stable because


|f 2∗(x�1)| < 1 and |f 2∗(x�2)| < 1.


Feigenbaum, Fig. 4, µ = 0.785. 
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Importantly, the slopes at the fixed points of f 2 are equal: 

f 2∗(x�1) = f 2∗(x�2).


This results trivially from equation (32), since the period-2 oscillation gives


f 2∗(x1
�) = f ∗(x�1) f

∗(x2
�) = f ∗(x�2) f

∗(x1
�) = f 2∗(x�2).


In general, if x�1, x2
�, . . . , x�n is a cycle of period n, such that 

f(x�rx�+1 = 

x�1 

r ), r = 1, 2, . . . , n − 1


f(x�

x� = fn(x�

n

nis a fixed point of f : 

r

(x�

(x�

r 

r

r

and
 )
=


then each x�

and the slopes f n

r

), r = 1, 2, . . . , n


∗ ) are all equal:


�(xn

This slope equality is a crucial observation: 

•	 Just as the sole fixed point x� of f(x) gives rise to 2 stable fixed points 
x�1 and x2

� of f 2(x) as µ increases past µ = 3/4, both x�1 and x2
� give rise 

to 2 stable fixed points of f 4(x) = f 2
�
f 2(x)

� 
as µ increases still further. 

•	 The period doubling bifurcation derives from the equality of the fixed 
points—because each fixed point goes unstable for the same µ. 

We thus perceive a sequence of bifurcations at increasing values of µ. 

At µ = µ1 = 3/4, there is a transition to a cycle of period 21 . 

Eventually, µ = µ̄1, where the 21-cycle is superstable, i.e., 

f 2∗(x1
�) = f 2∗(x�2) = 0. 

At µ = µ2, the 2-cycle bifurcates to a 22 = 4 cycle, and is superstable at 
µ = µ̄2. 
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We thus perceive the sequence 

µ1 < µ̄1 < µ2 < µ̄2 < µ3 < . . . 

where 

•	µn = value of µ at transition to a cycle of period 2n . 

•	 µ̄n = value of µ where 2n cycle is superstable. 
Note that one of the superstable fixed points is always at x = 1/2. 

µ = µ̄1, superstable 2-cycle 

(Feigenbaum, Fig. 5). 

µ = µ2, transition to period 4 

(Feigenbaum, Fig. 6). 
µ = µ̄2, superstable 4-cycle 

(Feigenbaum, Fig. 7). 

Note that in the case µ = µ̄2, we consider the fundamental function to be f2, 
and its doubling to be f 4 = f 2(f 2). 

In general, we are concerned with the functional compositions 

f 2n+1 
= f 2n �

f 2n � 
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� 

�

Cycles of period 2n+1 are always born from the instability of the fixed points 
of cycles of period 2n . 

Period doubling occurs ad infinitum. 

16.5 Scaling and universality 

The period-doubling bifurcations obey a precise scaling law. 

Define 

µ = value of µ when the iterates become aperiodic 

= 0.892486 . . . (obtained numerically, for the logistic map). 

There is geometric convergence: 

µ� − µn ≥ ν−n for large n. 

That is, each increment in µ from one doubling to the next is reduced in size 
by a factor of 1/ν, such that 

νn = 
µn+1 − µn ∗ ν for large n. 
µn+2 − µn+1 

The truly amazing result, however, is not the scaling law itself, but that 

ν = 4.669 . . . 

is universal, valid for any unimodal map with quadratic maximum. 

“Unimodal” simply means that the map goes up and then down. 

The quadratic nature of the maximum means that in a Taylor expansion of 
f(x) about xmax, i.e., 

π2 

f(xmax + π) = f(xmax) + πf ∗(xmax) + f ∗∗(xmax) + . . . 
2 

the leading order nonlinearity is quadratic, i.e., 

f ∗∗(xmax) = 0. 
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(There is also a relatively technical requirement that the Schwartzian derivative of f must be 

negative over the entire interval (Schuster)) 

This is an example of universality: if qualitative properties are present to 
enable periodic doubling, then quantitative properties are predetermined. 

Thus we expect that any system—fluids, populations, oscillators, etc.— whose 
dynamics can be approximated by a unimodal map would undergo period 
doubling bifurcations in the same quantitative manner. 

How may we understand the foundations of this universal behavior? 

Recall that 

the 2n-cycle generated by f 2
n 

is superstable at µ = µ̄n;• 

• superstable fixed points always include x = 1/2; and 

• all fixed points have the same slope. 

Therefore an understanding f 2
n 

near its extremum at x = 1/2 will suffice to 
understand the period-doubling cascade. 

To see how this works, consider fµ̄1 (x) and fµ̄
2 
2 
(x) (top of Figures 5 and 7). 

The parabolic curve within the dashed (red) square, for fµ̄
2 
2 
(x) looks just like 

fµ̄1 (x), after 

• reflection through x = 1/2, y = 1/2; and 

• magnification such that the squares are equal size. 

The superposition of the first 5 such functions 
(f, f 2, f 4, f 8, f 16) rapidly converges to a single func
tion. 

Feigenbaum, Figure 8. 
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µ1 µ1 µ2 µ2 

d1 

d2 

1/2 

1 

µ 

x 

Thus as n increases, a progressively smaller and smaller region near f ’s max
imum becomes relevant—so only the order of the maximum matters. 

The composition of doubled functions therefore has a “stable fixed point” in the space of functions, 

in the infinite period-doubling limit. 

The scale reduction is based only on the functional composition 

f 2n+1 
= f 2n �

f 2n � 

which is the same scale factor for each n (n large). 

This scale factor converges to a constant. What is it? 

The bifurcation diagram looks like 

Define dn = distance from x = 1/2 to nearest value of x that appears in the 
superstable 2n cycle (for µ = µ̄n). 

From one doubling to the next, this separation is reduced by the same scale 
factor: 

dn 

dn+1 
◦ −�. 

The negative sign arises because the adjacent fixed point is alternately greater 
than and less than x = 1/2. 

We shall see that � is also universal: 

� = 2.502 . . . 
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16.6 Universal limit of iterated rescaled f ’s 

How may we describe the rescaling by the factor �? 

For µ = µ̄n, dn is the 2n−1 iterate of x = 1/2, i.e., 

dn = fµ̄
2
n

n−1 
(1/2) − 1/2. 

For simplicity, shift the x axis so that x = 1/2 ∗ x = 0. Then 

dn = fµ̄
2
n

n−1 
(0). 

The observation that, for n � 1, 

dn 
= lim (−�)ndn+1 ∈ rn converges. 

dn+1 
◦ −� ∞ 

n�� 

Stated differently, 

lim (−�)nf 2n 
(0) must exist. µ̄n+1n�� 

Our superposition of successive plots of f 2
n 

suggests that this result may be 
generalized to the whole interval. 

Thus a rescaling of the x-axis describes convergence to the limiting function 
⎡ � 

g1(x) = lim (−�)nf 2n x
.µ̄n+1n�� (−�)n 

Here the nth interated function has its argument rescaled by 1/(−�)n and 
its value magnified by (−�)n . 

The rescaling of the x-axis shows explicitly that only the behavior of fµ̄
2
n

n 

+1 

near x = 0 is important. 

Thus g1 should be universal for all f ’s with quadratic maximum. 

• Figure 5 (top), at µ̄1, is g1 for n = 0. 

• Figure 7 (top), at µ̄2, when rescaled by �, is g1 for n = 1. 
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• g1 for n large looks like (Feigenbaum, Figure 9) 

The function g1 is the universal limit of interated and rescaled f ’s. Moreover, 
the location of the elements of the doubled cycles (the circulation squares) is 
itself universal. 

16.7 Doubling operator 

We generalize g1 by introducing a family of functions 
⎡ � 

gi = lim (−�)nfµ
2
n

n 

+i 

x
, i = 0, 1, . . . (33)¯

n��	 (−�)n 

Note that 
⎡ � 

gi−1 =	 lim (−�)nf¯
2n x


n�� µn+i−1 (−�)n


(−�)(−�)n−1f 2n−1+1 

⎡ 
1 x 

� 

= lim µ̄n−1+in��	 (−�) (−�)n−1 

Set m = n − 1. Then 

f 2n−1+1 
= f 2m+1 

= f 2m �
f 2m � 
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�


�
 � 

�
 �� 

�
 �� 

�


�
 �� 

and

⎟ 
⎨⎨⎨⎠


⎩ 
⎨⎨⎨⎦
⎡


1
 1 x

gi−1 = lim 

m�� 
(−�)(−�)mf 2m 

µ̄m+i 
(−�)mf 2m 

µ̄m+i(−�)m (−�) (−�)m 
⎜�

⎨⎨⎨⎧

⎨⎨⎨⎫ 

gi( 
−

x
� ) 

⎡

x 

= −�gi gi −� 

We thus define the doubling operator T such that 
⎡


x 
gi−1(x) = T gi(x) = −�gi gi −� 

Taking the limit i ∗ →, we also define 

g(x) lim gi(x)∈ 
i�� 

⎡


= lim (−�)nf 2n x 
n�� µ̄� (−�)n 

We therefore conclude that g is a fixed point of T : 
⎡


x 
g(x) = T g(x) = −�g g . (34) −� 

g(x) is the limit, as n ∗ →, of rescaled f 2
n 
, evaluated for µ�. 

Whereas g is a fixed point of T , Tgi, where i is finite, interates away from g. 

Thus g is an unstable fixed point of T . 

16.8 Computation of � 

To determine �, first write 

g(0) = −�g [g(0)] . 

We must set a scale, and therefore set 

g(0) = 1 =∞ g(1) = −1/�. 
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� 

There is no general theory that can solve equation (34) for g. 

We can however obtain a unique solution for � by specifying the nature 
(order) of g’s maximum (at zero) and requiring that g(x) be smooth. 

We thus assume a quadratic maximum, and use the short power law expansion 

g(x) = 1 + bx2 . 

Then, from equation (34), 
� 

bx2 � 

g(x) = 1 + bx2 = −�g 1 + 
�2 

� � 
bx2 �2

� 

= −� 1 + b 1 + 
�2 

= −�(1 + b) − 
2b2 

x 2 + O(x 4) 

Equating terms, 

� = 
−1 

, � = −2b 
1 + b

which yields, 

−2 ±
�

12 
b = ◦ −1.366 (neg root for max at x = 0) 

4 

and therefore 
� 2.73,◦ 

which is within 10% of Feigenbaum’s � = 2.5028 . . ., obtained by using terms 
up to x14 . 

16.9 Linearized doubling operator 

We shall see that ν determines how quickly we move away from g under 
application of the doubling operator T . 

In essence, we shall calculate the eigenvalue that corresponds to instability 
of an unstable fixed point. 
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µ� 

�

µ� µ� 

Thus our first task will be to linearize the doubling operator T . ν will then 
turn out to be one of its eigenvalues. 

We seek to predict the scaling law 

µ̄n − µ̄� ≥ ν−n , 

now expressed in terms of µ̄i rather than µi. 

We first expand fµ̄(x) around fµ̄� (x): 

fµ̄(x) ◦ fµ̄� (x) + (µ̄ − µ̄�) νf(x), 

where the incremental change in function space is given by 

ωfµ̄(x)�
� 

νf(x) = � 
ωµ̄ �

µ̄� 

Now apply the doubling operator T to fµ̄ and linearize with respect to νf : 
⎡ � �� 

x

Tfµ̄ = −�fµ̄ fµ̄
 −�


⎡ � � � �� 
x x ◦ −� [fµ̄� + (µ̄ − µ̄�) νf ] ∝ f¯ −� 

+ (µ̄ − µ̄�) νf −� 

= Tfµ̄� + (µ̄ − µ̄�)Lfµ̄� 
νf + O(νf 2) 

where Lf is the linearized doubling operator defined by 
� ⎡ � �� � � ⎡ � ��� 

x x x 
Lf νf = −� f ∗ f νf + νf f . (35) −� −� −� 

The first term on the RHS derives from an expansion like g[f(x)+ �f(x)] � g[f(x)]+ g �[f(x)]�f(x). 

A second application of the doubling operator yields 

T 
�
T (fµ̄)

� 
= T 2fµ̄� + (µ̄ − µ̄ )LTfµ̄� 

Lfµ̄� 
νf + O

�
(νf)2

� 
. 

Therefore n applications of the doubling operator produce 

T nfµ̄ = T nfµ̄� + (µ̄ − µ̄ ) LT n−1f¯
Lf¯

νf + O
�
(νf)2

� 
. (36)� · · · 
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� 

� 

�

For µ̄ = µ̄ , we expect convergence to the fixed point g(x): 
⎡ � 

T nf¯ = (−�)nf 2n 

(−
x

�)n 
◦ g(x),µ� µ̄� 

n � 1. 

Substituting g(x) into equation (36) and assuming, similarly, that LTfµ̄� 
◦

Lg, 
T nfµ̄(x) ◦ g(x) + (µ̄ − µ̄�) Ln

g νf(x), n � 1. (37) 

We simplify by introducing the eigenfunctions θ� and eigenvalues �� of Lg: 

Lgθ� = �� θ� , � = 1, 2, . . . 

Write νf as a weighted sum of θ� : 

νf = c� θ� 

Thus n applications of the linear operator Lg may be written as 

Ln
g νf = �n

� c� θ� . 

Now assume that only one of �� is greater than one: 

�1 > 1, �� < 1 for � = 1. 

(This conjecture, part of the original theory, was later proven.) 

Thus for large n, �1 dominates the sum, yielding the approximation 

Ln
g νf ◦ �n 

1 c1θ1, n � 1. 

We can now simplify equation (36): 

T nfµ̄(x) = g(x) + (µ̄ − µ̄ ) νn a h(x), n � 1� · · · 

where 
ν = �1, a = c1, and h(x) = θ1. 

Now note that when x = 0 and µ̄ = µ̄n, 

T nf¯ (0) = g(0) + (¯ µ ) νn a h(0).µn µn − ¯� · · · 
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Recall that x = 0 is a fixed point of fµ̄
2
n

n 
(due to the x-shift). Therefore 

T nf¯ (0) = (−�)nf 2n 
(0) = 0.µn µ̄n 

Recall also that we have scaled g such that g(0) = 1. We thus obtain the 
Feigenbaum scaling law: 

lim (µ̄n − µ̄�) νn = 
a 
−
h

1

(0) 
= constant! 

n�� · 

16.10 Computation of ν 

Recall that ν is the eigenvalue that corresponds to the eigenfunction h(x). 

Then applying the linearized doubling operator (35) to h(x) yields 
� ⎡ � �� � � ⎡ � ��� 

x x x 
Lgh(x) = −� g∗ g h + h g −� −� −� 

= ν h(x).· 

Now approximate h(x) by h(0), the first term in a Taylor expansion about 
x = 0. 

Seting x = 0, we obtain 

−� {g∗ [g(0)] h(0) + h [g(0)]} = ν h(0).· 

Note that the approximation 

h(x) h(0) = h[g(0)] = h(1) h(0).◦ ∞ ◦ 

Thus h(0) cancels in each term and, recalling that g(0) = 1, 

−� [g∗(1) + 1] = ν. (38) 
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�

� 

To obtain g∗(1), differentiate g(x) twice: 
⎡ � �� 

g(x) = −�g g −x 

g∗(x) = −� 

� 

g∗ 
⎡ 

g 

�−
�

x 
�� 

· 
�−
� 
1
� 

g∗ 
�−
�

x 
�� 

� ⎡ � ��⎡ � ��2 ⎡ � �� � �� 
x 

g∗∗(x) = 
−1 

g∗∗ g g∗ 
−x 

+ g∗ g 
−x

g∗∗ 
−x 

� −� � � � 

Substitute x = 0. Note that 

g∗(0) = 0 and g∗∗(0) = 0 

because we have assumed a quadratic maximum at x = 0. Then 

g∗∗(0) = 
−1

[g∗(1)g∗∗(0)] . 

Therefore 
g∗(1) = −�. 

Substituting into equation (38), we obtain 

ν = �2 − � . 

This result derives from the crude approximation h(0) = h(1). Better approximations yield greater 

accuracy (Feigenbaum, 1979).) 

Recall that we previously estimated � 2.73. Substituting that above, we ◦
obtain 

ν 4.72,◦ 

which is within 1% of the exact value ν = 4.669 . . .. 

16.11 Comparison to experiments 

We have established the universality of � and ν: 
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reduced by α 

reduced by δ 

These quantitative results hold if a qualitative condition—the maximum of f 
must be locally quadratic—holds. 

At first glance this result may appear to pertain only to mathematical maps. 
However we have seen that more complicated systems can also behave as if 
they depend on only a few degrees of freedom. Due to dissipation, one may 
expect that a one-dimensional map is contained, so to speak, within them. 

The first experimental verification of this idea was due to Libchaber, in a 
Rayleigh-Bénard system. 

As the Rayleigh number increases beyond its critical value, a single convection 
roll develops an oscillatory wave: 

probe 

Ra=Ra c Ra>Ra c 

A probe of temperature X(t) is then oscillatory with frequency f1 and period 
1/f1. 

Successive increases of Ra then yield a sequence of period doubling bifurca
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tions at Rayleigh numbers 

Ra1 < Ra2 < Ra3 < . . . 

The experimental results are shown in 

BPV, Figure VIII.13a and VIII.13b .


Identifying Ra with the control parameter µ in Feigenbaum’s theory, Libcha
ber found 

ν 4.4◦ 

which is amazingly close to Feigenbaum’s prediction, ν = 4.669 . . .. 

Such is the power of scaling and universality! 
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17 Intermittency (and quasiperiodicity) 

In this lecture we discuss the other two generic routes to chaos, intermittency 
and quasiperiodicity. 

Almost all our remarks will be on intermittency; we close with a brief de

scription of quasiperiodicity. 

Definition: Intermittency is the occurrence of a signal that alternates ran

domly between regular (laminar) phases and relatively short irregular bursts. 

In the exercises we have already seen examples, particulary in the Lorenz 
model (where it was discovered, by Manneville and Pomeau). 

Examples: 

•	 The Lorenz model, near r = 166. 

Figure 1a,b Manneville and Pomeau (1980) 

•	 Rayleigh-Benard convection.


BPV, Figure IX.9


17.1 General characteristics of intermittency 

Let r = control parameter. The following summarizes the behavior with 
respect to r: 

•	 For r < ri, system displays stable oscillations (e.g., a limit cycle). 

•	 For r > ri (r − ri small), system in in the intermittent regime: stable 
oscillations are interrupted by fluctuations. 

•	 As r ∗ ri from above, the fluctuations become increasingly rare, and 
disappear for r < ri. 

•	 Only the average intermission time between fluctuations varies, not their 
amplitude nor their duration. 
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We seek theories for 

•	 Linear stability of the limit cycle and “relaminarization.” (i.e. return to 
stability after irregular bursts). 

•	 Scaling law for intermission times. 

•	 Scaling law for Lyaponov exponents. 

17.2 One-dimensional map 

We consider the instability of a Poincaré map due to the crossing of the unit 
circle at (+1) by an eigenvalue of the Floquet matrix. 

This corresponds to the specific case of Type I intermittency. 

Let u be the coordinate in the plane of the Poincaré section that points in 
the direction of the eigenvector whose eigenvalue � crosses +1. 

The lowest-order approximation of the 1-D map constructed along this line 
is 

u∗ = �(r)u.	 (39) 

Taking �(ri) = 1 at the intermittency threshold, we have 

u∗ = �(ri)u = u.	 (40) 

We consider this to be the leading term of a Taylor series expansion of u∗(u, r) 
in the neighborhood of u = 0 and r = ri. 

Expand to first order in (r − ri) and second order in u: 

ω2u
∗ωu
∗ ∗1
 ωu
2∗(u, r) u∗(0, ri) + u + (r − ri)+
u
 u
◦
 ·
 · 
ωu2ωu
 2
 ωr
0,ri 0,ri 0,ri 

Evaluating equation (39), we find that the first term vanishes: 

u∗(u = 0, r = ri) = 0. 
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From equation (40), we have 

ωu∗ 

ωu

= �(ri) = 1. 

0,ri 

Finally, rescale u such that 

1	 ω2u∗ 
= 1


2 ωu2 
0,ri 

and set 
π ≥ (r − ri). 

The model now reads 
u∗ = u + π + u 2 , 

where π is now the control parameter. 

Graphically, we have the following system: 

u’ 

•	 π < 0, i.e. r < ri. 

•	u− is stable fixed point. 

•	u+ is unstable. 

u− 0 u+ u 

u’ 

•	 π = 0, i.e. r = ri. 

u∗ is tangent to indentity map. •	
0 

•	u− = u+ = 0 is marginally stable. 

0	 u 
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u’ 

•	 π > 0, i.e. r > ri. 

•	 no fixed points. 

For π < 0, the iterations look like 

u’ 

•	u− is an attractor for initial conditions

u < u+.


•	 For initial conditions u > u+, the itera

tions diverge.


u− u+ u 

The situation changes for π > 0, i.e. r > ri: 

u’ 

•	 No fixed points. 

•	 Iterations beginning at u < 0 drift towards

u > 0.


The fixed points of u∗(u) represent stable oscillations of the continuous flow. 

Thus for u 0, the drift for π > 0 corresponds to a flow qualitatively similar ◦
to the stable oscillations near u = 0 for π < 0. 
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However, when π > 0, there is no fixed point, and thus no periodic solution.


The iterations eventually run away and become unstable—this is the inter

mittent burst of noise.


How does the laminar phase begin again, or “relaminarize”?


Qualitatively, the picture can look like


u 

u’ 

Note that the precise timing of the turbulent burst is unpredictable. 

The discontinuity is not inconsistent with the presumed continuity of the 
underlying equations of motion—this is a map, not a flow. 

Moreover the Lorenz map itself contains a discontinuity, corresponding to the 
location of the unstable fixed point. 

17.3 Average duration of laminar phase 

What can we say about the average duration of the laminar phases? 

Writing our theoretical model as a map indexed by k, we have 

uk+1 = uk + π + uk
2 . 
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For uk+1 uk, we can instead write the differential equation ◦ 

du 2 = π + u . 
dk 

The general solution of this o.d.e. is 

u(k) = π1/2 tan π1/2(k − k0) . 

Take k0 = 0, the step at which iterations traverse the narrowest part of the 
channel. 

We thus have 
u(k) = π1/2 tan π1/2k . 

We see that u(k) diverges when 

π1/2k = ± 
α 

or k = ± 
α
π−1/2 . 

2 2 

The divergence signifies a turbulent burst. 

When k � π−1/2 , uk+1 − uk is no longer small, and the differential approxi

mation of the difference equation is no longer valid. 

Thus: if φ = time (≥ number of iterations) needed to traverse the channel, 
then 

φ ≥ π−1/2 or φ ≥ (r − ri)
−1/2 . (41) 

Thus the laminar phase lasts increasingly long as the threshold r = ri is 
approached from above. 

17.4 Lyaponov number 

We can also predict a scaling law for the Lyaponov number.


Near the fixed point (u 0, π > 0), the increment νuk+1 due to an increment
◦ 
uk is, to first order, 

νuk+1 �1νuk◦ 
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where �1 is eigenvalue that passes through (+1). 

After N iterations, 

νuN �N �N−1�N−2 �1νu1.◦ · · · 

Suppose N the duration of the laminar phase. Then ◦ 

�N > 1 and �N−1 �N−2 �1 1.◦ ◦ · · · ◦ ◦ 

The Lyapunov number � is 

1 � �N 1 1 
� = 

N
�i ◦ 

N 
≥ 
N 

≥ 
φ 
≥

�
π. 

i 

where the last relation used equation (41). (Recall that ln � = Lyaponov exponent.) 

Results from the Lorenz model verify this prediction. The “intermittent 
channel” of the Lorenz map is seen in 

BPV, Figure IX.14 

and the associated π1/2 scaling of the Lyaponov number is seen in 

BPV, Figure IX.15 

Behavior qualitatively similar to that predicted by our model has been ob

served in the B-Z reaction: 

BPV, Figure IX.16–17 

179




17.5 Quasiperiodicity 

Finally, we make a few remarks about the third universal route to chaos, 
known as quasiperiodicity. 

Recall that there are 3 generic ways in which a limit cycle on a Poincaré map 
may become unstable: An eigenvalue � of the Floquet matrix (the Jacobian 
of the map) crosses the unit circle at 

•	 +1 (as in the example of intermittency above); 

•	−1 (as we saw in the introduction to period doubling); and 

� = � ± iλ, � > 1. This corresponds to the transition via quasiperiod•	
icity. 

| | 

As we have seen, the latter case results in the addition of a second oscillation. 

This is a Hopf bifurcation: the transformation of a limit cycle to a quasiperi
odic flow, or a torus T 2 . 

The route to chaos via quasiperiodicity describes how a torus T 2 (i.e., a 
quasiperiodic flow) can become a strange attractor. 

17.5.1 An historical note 

In 1944, the Russian physicist Landau proposed a theory for the transition 
from laminar flow to turbulence as the Reynolds number is increased. 

Briefly, he envisioned the following sequence of events as Re increases beyond 
Rec: 

•	 Laminar flow (constant velocity) becomes periodic with frequency f1 by 
a Hopf bifurcation. 

•	 Period flow∗quasiperiodic flow; i.e., another Hopf bifurcation. The sec
ond frequency f2 is incommensurate with f1. 
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•	 More incommensurate frequencies f3, f4, . . . , fr appear in succession (due 
to more Hopf bifurcations). 

•	 For r large, the spectrum appears continuous and the flow (on a torus 
T r) is aperiodic (i.e., turbulent). 

Recall that we have learned previously that, for dissipative flows, 

dimension of phase space > attractor dimension. 

Thus a consequence of Landau’s theory is that a system must have many 
degrees of freedom to become chaotic. 

We now know, however, from the work of Lorenz, that 

•	 3 degrees of freedom suffice to give rise to a chaotic flow; and 

•	 the chaos occurs on a strange attractor, which is distinct from a torus 
(since trajectories diverge on the strange attractor). 

17.5.2 Ruelle-Takens theory 

Lorenz’s observations were deduced theoretically by Ruelle and Takens in 
1971. 

The Ruelle-Takens theory is the quasiperiodic route to chaos. As a control 
parameter is varied, the following sequence of events can occur: 

•	 Laminar flow ∗ oscillation with frequency f1. 

•	 A second Hopf bifurcation adds a second (incommensurate) frequency 
f2. 

•	 A third Hopf bifurcation adds a third frequency f3. 

The torus T 3 can become unstable and be replaced by a strange attrac• 
tor. 
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The transition is demonstrated beautifully in terms of changing power spectra 
in the Rayleigh-Bénard experiment described by 

Libchaber et al., Figure 15


Libchaber, A., Fauve, S. and C. Laroche.1983. Two-parameter study of the routes to chaos. Physica 

D. 7: 73-84. 

Note that the Rayleigh number of the two spectra varies by less than 1%. 

Such a transition can also be seen in Poincaré sections, such as the Rayleigh-
Bénard experiment of 

BPV, Figures VII.20, VII.21
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