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.

Markov Chain MC
• Consider a finite possible states: S1, S2, ...
• And the time steps of time, labelled as 1, 2, ...
• At time t the state is denoted Xt.
• The conditional probability is defined as:

P (Xt = Sj |Xt−1 = Sj−1, ..., X1 = S1)

• The Markov chain is then if the probability depends only on
previous step.
P (Xt = Sj |Xt−1 = Sj−1, ..., X1 = S1) = P (Xt = Sj |Xt−1 = Sj−1)

• For this reason this reason MCMC is also knows as drunk sailor
walk.
• Very powerful method. Used to solve linear eq. systems, invert

matrix, solve differential equations, etc.
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Linear Equations
• Lets say we have a linear equation system:

X = pY + (1− p)A
Y = qX + (1− q)B

• We know A,B, p, q; X and Y are meant to be determined.
• Algorithm:

1. We choose first element of the first equation with probability p and
second with probability 1− p.

2. We we choose the second one, the outcome of this MCMC is W = A.
3. If we choose the first we go to second equation and choose the first

element with probability q and the second with 1− q.
4. We we choose the second one, the outcome of this MCMC is W = B.
5. If we choose the first we go to the first equation back again.
6. We repeat the procedure.
• We can estimate the solution of this system:

X̂ =
1
N

∑
i=1

Wi σ̂X =
1√
N − 1

√√√√ 1
N

N∑
i=1

W 2i − X̂2
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Neumann-Ulam method
• Let’s try apply the basic MCMC method to solve a simple linear

equation system:

A−→x =
−→
b

• The above system can be (always, see linear algebra lecture)
translated into system:

−→x = −→a +H−→x

• For this method we assume that the norm of the matrix is:

∥H∥ = max
1¬i¬n

n∑
j=1

|hij | < 1

• Which we can write in a form:
(1−H)−→x = −→a
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Neumann-Ulam method

• The solution would be then:
−→x 0 = (1−H)−1−→a

• We can Taylor expend this:
−→x 0 = (1−H)−1−→a = −→a +H−→a +H2−→a +H3−→a + ....

• For the i-th component of the −→x vector:

xi0 = ai+
n∑
j=1

hijaj1+
n∑
j1=1

n∑
j2=1

hij1hij2aj2+
n∑
j1=1

n∑
j2=1

n∑
j3=1

hij1hij2hij3aj3+...

• One can construct probabilistic behaviour of a system that follows
the path of equation above.
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Neumann-Ulam method

• To do so we add to our matrix an additional column of the matrix:

hi,0 = 1−
n∑
j=1

hij > 0

• The system has states: {0, 1, 2..., n}
• State at t time is denoted as it.
• We make a random walk accordingly to to the following rules:
◦ At the begging of the walk (t = 0) we are at i0.
◦ In the t moment we are in the it position then in t+ 1 time stamp we

move to state it+1 with the probability hitit+1 .
◦ We stop walking if we are in state 0.

• The path X(γ) = (i0, i1, i2, ..., ik, 0) is called trajectory.
• It can be proven that x0i = E{X(γ)|i0 = j}.
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Neumann-Ulam method, Lecture3/Markov

• For example lets try to solve this equation system:

−→x =

 1.5−1.0
0.7

+
 0.2 0.3 0.10.4 0.3 0.2
0.3 0.1 0.1

−→x
• The solution is −→x 0 = (2.154303, 0.237389, 1.522255).

• The propability matrix hij has the
shape:
i/j 1 2 3 4
1 0.2 0.3 0.1 0.4
2 0.4 0.3 0.2 0.1
3 0.3 0.1 0.1 0.5

• An example solution:
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Neumann-Ulam dual method
• The problem with Neumann-Ulam method is that you need to

repeat it for each of the coordinates of the −→x 0 vector.
• The dual method calculates the whole −→x 0 vector.
• The algorithm:
◦ On the indexes: {0, 1, ..., n} we set a probability distribution:
q1, q2, ..., qn, qi > 0 and

∑
i = 1

nqi = 1.
◦ The starting point we select from qi distribution.
◦ If in t time we are in it state then with probability p(it+1|it) = hit+1,it

in t+ 1 we will be in state i1. For it+1 = 0 we define the probability:
h0,it = 1−

∑n
j=1 hj,it . Here we also assume that hj,it > 0.

◦ NOTE: there the matrix is transposed compared to previous method:
HT .
◦ Again we end our walk when we are at state 0.
◦ For the trajectory: γ = (i0, i1, ..., ik, 0), we assign the vector:

−→
Y (γ) =

ai0
qi0p(0|ik)

êik ∈ R
n

• The solution will be : −→x 0 = 1
N

∑−→
Y (γ)
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Neumann-Ulam dual method, Lecture3/Markov2
• Let’s try to solve the equation system:

−→x =

 1.5−1.0
0.7

+
 0.2 0.3 0.10.4 0.3 0.2
0.1 0.1 0.1

−→x
• The solution is: −→x 0 = (2.0, 0.0, 1.0).
• Let’s put the initial probability as constant:

q1 = q2 = q3 =
1
3

• The propability matrix hij has the
shape:
i/j 1 2 3 4
1 0.2 0.4 0.1 0.3
2 0.3 0.3 0.1 0.3
3 0.1 0.2 0.1 0.6

• An example solution:
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Look elsewhere effect, Lecture3/LEE

• Look elsewhere effect addresses the following problem:
◦ Imagine you observed a 3σ deviation in one of the observable that you

measured.
◦ Before you get excited one needs to understand if given the fact that

you had so many measurements this might happen!

• Example: Let’s say we have measured 50 observables. What is the
probability to observed 1 that is 3σ away from theory prediction?
• Let’s simulate 50 Gaussian distribution centred at 0 and width of 1.

We count how simulations where at least one of the 50 numbers
have the absolute value > 3.
• More complicated example: what if you observed 3 in a row 2σ

fluctuations among 50 measurements?
• This kind of studies are the best solvable by MC simulations.
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Travelling Salesman Problem

• Salesman starting from his base has to visit n− 1 other locations
and return to base headquarters. The problem is to find the
shortest way.
• For large n the problem can’t be solver by brutal force as the

complexity of the problem is (n− 1)!
• There exist simplified numerical solutions assuming factorizations.

Unfortunately even those require anonymous computing power.
• Can MC help? YES :)
• The minimum distance l has to depend on 2 factors: P the area of

the city the Salesman is travelling and the density of places he
wants to visit:

n

P
• Form this we can assume:

l ∼ P a( n
P
)b = P a−bnb.
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Traveling Salesman Problem
• From dimension analysis:

a− b = 1
2
.

• To get l we need square root of area.
• From this it’s obvious:

l ∼ P a( n
P
)b = P 0.5na−0.5.

• Now we can multiply the area by alpha factor that keeps the
density constant then:

l ∼ α0.5α6a− 0.5 = αa

• In this case the distance between the clients will not change, but
the number of clients will increase by α so:

l ∼ α

• In the end we get: a = 1
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Traveling Salesman Problem

• In total:

l ∼ k(nP )0.5

• Of course the k depends on the shape of the area and locations of
client. However for large n the k starts loosing the dependency. It’s
an asymptotically free estimator.
• To use the above formula we need to somehow calculate k.
• How to estimate this? Well make a TOY MC: take a square put

uniformly n points. Then we can calculate l. Then it’s trivial:
k = l(nP )−0.5
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Traveling Salesman Problem

• This kind of MC experiment might require large CPU power and
time. The adventage is that once we solve the problem we can use
the obtained k for other cases (it’s universal constant!).
• It turns out that:

k ∼ 3
4

• Ok, but in this case we can calculate l but not the actual shortest
way! Why the hell we did this exercise?!
• Turns out that for most of the problems we are looking for the

solution that is close to smallest l not the exact minimum.
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War Games

• S. Andersoon 1966 simulated for Swedish government how would a
tank battle look like.
• Each of the sides has 15 tanks. that they allocate on the battle field.
• The battle is done in time steps.
• Each tank has 5 states:
◦ OK
◦ Tank can only shoot
◦ Tank can only move
◦ Tank is destroyed
◦ Temporary states

• This models made possible to check different fighting strategies.
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Q & A
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Backup
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