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Course Plan

We will have 6 hours of Monte Carlo (MC) lectures. The lectures will be
devoted:

1 h: Mathematical introduction to MC methods.

1 h: MC integration methods.

2 h: Random numbers generators.

0.5 h: Cool applications of MC methods.
1.5h: Hands-on tutorial with MC methods.

The hands-on tutorial will consist of program templates in which we
will implement couple of algorithms that were explained in the lecture.
= All examples shown in this course are available in the github
repository:

https://github.com/mchrzasz/EMPP_MC

There will be an indication (in this color) on the adequate slide for
each of the macro.
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Definitions
= Basic definition:

Monte Carlo method is any technique that uses random numbers to solve a given

mathematical problem.

— Random number: For the purpose of this course we need to assume that we know
what it is, although the formal definition is highly non-trivial.
= My favourite definition (Halton 1970): more complicated, but more accurate.

"Representing the solution of a problem as a parameter of a hypothetical population,
and using a random sequence of numbers to construct a sample of the population,
from which statistical estimates of the parameter can be obtained.”

To put this definition in mathematical language:
Let F' be a solution of a given mathematical problem. The estimate of the result F*

F=f{ri,re,rs,..,tn};...),
where {r1,r2, 3, ...,7n} are random numbers.

The problem we are solving doesn’t need to be stochastic!

— One could wonder why are we trying to add all the stochastic properties to a deterministic

problem. Those are the properties that allow to use all well known statistic theorems.
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History of MC methods

® G. Compte de Buffon (1777) - First documented usage of random numbers for
integral computation (Buffon thrown niddle on the table with parrarel line; we will
do a modern version of this exercise).

® Marquis de Laplace (1886) - Used the Buffon niddle to determine the value of 7
number.

® Lord Kelvin (1901) - Thanks to drawing randomly numbered cards he managed he
managed to calculate some integrals in kinematic gas theorem.

® W.S. Gosse (better knows as Student) (1908) - Used similar way as Lord Kelvin to
get random numbers to prove t-Student distribution.

® Enrico Fermi (1930) - First mechanical device (FERMIAC) for random number
generations. Solved neutron transport equations in the nuclear plants.

® S. Ulam, R. Feynman, J. von Neumann et. al. - First massive usage of random
numbers. Most applications were in Manhattan project to calculate neutron
scattering and absorption.
In Los Alamos the name Monte Carlo was created as kryptonim of this kind of
calculations.
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Euler number determination, Lecturel /Euler number

= As mentioned before MC methods can be used to solve problems that do not
have stochastic nature! All the integrals calculated in Los Alamos during the
Manhattan project are nowadays solvable without any MC methods.

— Let’s give a trivial example of solving a non stochastic problem: calculating Euler
number e. We know that e = 2.7182818.... = To calculate the é we will use the
following algorithm:

® We generate a random number in range (0, 1) (in stat. 2/(0, 1)) until the number
we generate is smaller then the previous one, aka we get the following sequence:

T < T2 < ... < Tp—1>Tnp

® We store the number n. We repeat this experiment N times and calculate the
arithmetic average of n. The obtained value is an statistical estimator of e:

N
= Yom
e = — g €.
N
i=1

N é é—e
100 2.760000 0.041718
= Numerical example: 10000  2.725000 0.006718 s this ~ v/N?
1000000 2.718891  0.000609
100000000 2.718328  0.000046
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Let’s test the v/ N, Lecturel /Euler_number

= In the last example we measured the Euler number using different
number of pseudo-experiments.

— We compared the obtained value to the true and observed roughly
a V/N dependence on the difference between the true value and the
obtained one.

— Could we test this? YES! Lets put our experimentalist hat on!

— From the begging of studies they tooth us to get the error you
need to repeat the measurements.

The algorithm:

Previous time we measured Euler number using IV events, where

N € (100, 1000, 10000, 100000). Now lets repeat this measurement
ny times (of course each time we use new generated numbers). From
the distribution of é — e we could say something about the
uncertainty of our estimator for given V.
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Let’s test the v/ N, Lecturel /Euler_number

— Could we test this? YES! Lets put our experimentalist hat on!
— From the begging of studies they tooth us to get the error you
need to repeat the measurements.

e with 100 toys e with 1000 toy:
e

Mean 0001281 0002683
Sigma 008671+ 0.00222

Mean  0.0002005: 0.0009638
Sigma 002789 + 0.00081

e witl

00073
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Let’s test the v/ N, Lecturel /Euler_number

— Could we test this? YES! Lets put our experimentalist hat on!
— From the begging of studies they tooth us to get the error you
need to repeat the measurements.

Graph

X2/ ndf 6.053/3
po 0.8548 +0.01181
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Monte Carlo and integration
— All MC calculations are equivalent to preforming an integration.
=2 Assumptions: r; random numbers from ¢/(0, 1). The MC result:

F =F(ri,r2,...rn)

is unbias estimator of an integral:

1 1
I:/ / F(z1,22,...,xn)dx1,dT2...,dTs
0 0

aka the expected value of the I integral is:

E(F)=1.

= This mathematical identity is the most useful property of the MC methods. It is a

link between mathematical analysis and statistic world. Now we can use the best of
the both world!

If we want to calculate the integral in different range then (0, 1) we just scale the the
previous result:

1 o o 1\
N S0 = B = 2 | s
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Uncertainty from Monte Carlo methods

= In practice we do not have N — oo so we will never know the exact result of an
integral :(

—— Let’s use the statistical world and estimate the uncertainty of an integral in this
case :)

— A variance of a MC integral:

vih =gt -} = {4 /abe(w)dw— '

n

% To calculate V(IA) one needs to know the value of I!

= In practice V(1) is calculated via estimator:

V()=

(), () = 23 [re) - 23 s

i=1 i=1

n—1

S

= MC estimator of standard deviation: & = 4/ V(f)
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Buffon needle - m number calculus

= Buffon needle (Buffon 1777, Laplace 1886): We are throwing a needle (of length [)
on to a surface covered with parallel lines width distance L. If a thrown needle
touches a line we count a hit, else miss. Knowing the number of hits and misses one
can calculate the m number.

Experiment: Theory:
= x - angle between needle and horizontal line,
x € U(0, ). = the probability density function
(p.d.f.) for x:

Py p(z) = %

= p(z) probability to hit a line for a given x value:

n - number of hits
N number of hits and misses,
aka number of tries.

l
p(z) = 7| cosal

= Total hit probability:

P = Elpo) = [ pa)ptots = 2
Now one can calculate P fromMC: P = = N2, p_ A = f = 2Nt
N 7L nL
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Buffon needle - Simplest Carlo method
Monte Carlo type "heads or tails”
Let's use the summery of p(z) function nad take 0 < = < 3.
= Algorithm:

Generate 2 dim. distribution: Mishit

(z,y) - U0, g) x U(0,1) and

<p(z): hit,
4 {> p(x): miss.

Let's define weight function: w(z,y) = O(p(z) — y),
where ©(z) is the step function.

— pdfio(z,y) = pl)g(y) = 2 -1

= Integrated probability:

N
2l N—oco 2 1 n
P =B = [tz = 2 A== p— S vl =
. 5 oA 1 n n
Standard deviation for P: 6 = = (1 N)
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Buffon needle, Lecturel /Heads_tails

= Lets make this toy experiment and calculate the ™ number.
— We can simulate the central position (y) of an needle between (—L, L)
fromU(—L,L).

Symmetry:

Please note the symmetry of the problem, if the position of the needle would
be > L then we can shift the needle by any number of L's.

— New we simulate the angle (¢) with a flat distribution from (0, 7). <— The
maximum and minimum ¥ position of the needle are:

Ymax = Y + | COS¢|Z
Ymin = Y — | COS¢|Z
— Now we check if the needle touches any of the lines: y = L, y =0 or
y = —L. If yes we count the events.
N 7 - o ()
10000 3.12317 —0.01842 0.03047
100000 3.14707  0.00547  0.00979

1000000 3.13682 —0.00477 0.00307

10000000 3.14096 —0.00063  0.00097 12/
21
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Central Limit Theorem, Lecturel /CLT

Large independent random numbers assembly has always Gaussian distribution no

matter from what distribution they were generated from as far as they have finite
variances and expected values and the assembly is sufficiently large.

hist
hist
- Enties 1000000
0.025W Mean 0.5002
L RMS 0.2886
0.02]—
0.015—
0.01—
0.005—
L L_J/(’ 11 | LT Il | | |
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Crude Monte Carlo method of integration
= Crude Monte Carlo method of integration is based on Central Limit Theorem (CLT):

%;f@:i) 2o [ s = )

= The standard deviation can be calculated:

~ )
— — JIE(+2) - B2
7= (2 ()
= From LNT we have:
/2 N
pP= /w(m)p(z)dm = /0 (Z cosx)%dx =TT N 2 w(x;)

= Important comparison between "Hit and mishit” and Crude MC methods. One can
analytically calculate:

~ Crude ~ Hit and mishit
o <o

= Crude MC is always better then "Hit and mishit” method. We will prove this on an
example (can be proven analytically as well).

Introduction to Monte Carlo methods
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Crude MC vs "Hit and mishit”, Lecturel /Crude_vs HT

= We can repeat a toy MC studies as we did in the Euler needle case.
— In this example we want to calculate fg“ cos zdx

HT_100

HT_100

HT_1000

Entries
Mean
RMS
X2/t
Constant
Mean

sigma

1000
09983

007424

2334126
83.87+334
0.9978 +0.0024
007276 £ 0.00176

Sigma

0,02344 +0.00071
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C_100

Eries o0

6o~ Mean 1
Rvis 00401

sof- X/ ndt 4333/37
Consant 56,05 £225
Vean 100120002

wof Sma___ 004761 2000120

3F-

2of

10f-

, L L L
L S € S N
€_1000

o Ees o0
Vean 09997
Rvis 001496

60~ %2 I ndf 365140
Consant 58192242

sof- Mean 09999400005
Sigma__0.01467 + 000040

wf

3f-

2f

10f-

L L
o5 o T T T
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Crude MC vs "Hit and mishit”, Lecturel /Crude_vs HT

= We can repeat a toy MC studies as we did in the Euler needle case.
— In this example we want to calculate fg“ cos zdx

HT_10000 C_10000
HT.
o
sof-
sof-
X7/ ndf. 64.76 /60
E Constant w36+ 160
40) Mean 1£00 S0 1£00
Soma___ 0006633 : 0000193 s 000022
oF aof-
of-
20f-
2f
10f
10F
e 1 A K 57
HT_100000 C_100000
HT_1(
aof-
sof-
BE X% I ndt 525157 X2/ ndt 2967138
Constant 0: 14 sof Constant ssavs 221
30 Mean 1£00 Mean
S o007a  ocoooro Sima___ 0001559 : 0000039
sf aof-
2f b
1sF-
20f
10f-
10F
SE
L | | L L L
T 0955 T 0% Tor 75 TS T T005 ToT
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Crude MC vs "Hit and mishit”, Lecturel /Crude vs HT

= We can repeat a toy MC studies as we did in the Euler needle case.
— In this example we want to calculate f(;r/Q cos xdx

Graph Graph
X* 1/ ndf 1164/3 X2 ndf 3597/3
PO 0.7295 + 0.01005 0.05— Y 0.4753 + 0.006143

= One clearly sees that both methods follow 1/v/N dependence and
that the Crude MC is always better then the "Hit and mishit”.

= Please note that for the "Hit and mishit” we are suing 2 times more
random numbers than for the Crude method so in terms of timing the
Crude MC is also much faster.
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Classical methods of variance reduction

= In Monte Carlo methods the statistical uncertainty is defined as:

1
U:\/—N\/V(f)

= Obvious conclusion:

® To reduce the uncertainty one needs to increase N.
= Slow convergence. In order to reduce the error by factor of 10 one needs to
simulate factor of 100 more points!

= How ever the other handle (V' (f)) can be changed! — Lot’s of theoretical effort
goes into reducing this factor.
= We will discuss four classical methods of variance reduction:

1. Stratified sampling.
2. Importance sampling.

3. Control variates.

4. Antithetic variates.
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Stratified sampling

= The most intuitive method of variance reduction. The idea behind it is to divide
the function in different ranges and to use the Riemann integral property:

I:/Olf(u)du:/Oaf(u)du—i—/alf(u)du, 0<a<l.

= The reason for this method is that in smaller ranges the integration function is
more flat. And it's trivial to see that the more flatter you get the smaller uncertainty.
= A constant function would have zero uncertainty!

General schematic:

Let's take our integration domain and divide it in smaller domains. In the 4" domain

with the volume w; we simulate n; points from uniform distribution. We sum the
function values in each of the simulated points for each of the domain. Finally we
sum them with weights proportional to w; and anti-proportional to ;.
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Stratified sampling - mathematical details

Let's define our integrals and domains:

k
I:/f(x)dx, Q:Uwi
2 i=1

The integral over ;" domain:

k
Ij:/ f(z)dz, :>I:ZL'

wj

= p; uniform distribution in the w; domain: dp; = 4

wj

= The integral is calculated based on crude MC method. The estimator is equal:

wj o
L= Z £(3)
Now the total integral is just a sum:
k k n;
S A3 S
Jj=1 j=1 Y i=1
2 k w} IS k w? .
Variance: V(I) = > 7, n—]V](f) and it's estimator: V/(I) = >, n—]Vj(f)
J J

18
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Importance sampling
= If the function is changing rapidly in its domain one needs to use a more elegant
method: make the function more stable.
= The solution is from first course of mathematical analysis: change the integration
variable :)
dG(zx)
dx

flz)de — %dG(w), where g(x) =

Schematic:

Generate the distribution from G(z) instead of .

f(=)
g(z)”
We calculate the expected value E(w) and its variance Ve (w) for the whole
sample.

For each generate point calculate the weight: w(z) =

® |f g(x) is choose correctly the resulting variance can be much smaller.
® There are some mathematical requirements:
o g(x) needs to be non-negative and analytically integrable on its
domain.
o G(z) invertible or there should be a direct generator of g distributio
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Importance sampling - Example

= Let's take our good old 7 determination example.

= Let’s take here for simplicity: L = [.

® |et’s take a trivial linear weight function: P
4 2 E —9(x)
g(z) = (1 - Zx) " Wi
. . . E —p(

e It's invertible analytically: G(z) = 2z(1 — £) o8-

® The weight function: :

w(w):lﬂ:z cosx oo
g(z) 41-2z/w o

® Now the new standard deviation is smaller:

i 041
s _— \/N

® |mportance sampling has advantages:

o Big improvements of variance reduction.

o The only method that can cope with singularities.
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Wrap up

= To sum up:
® We discussed basic mathematical properties of MC methods.

® We shown that besides the stochastic nature of MC they can be used to
determine totally non stochastic quantities.

® We demonstrated there is a perfect isomorphism between MC method and
integration.

® We learned how co calculate integrals and estimate the uncertainties.

® Finally we discussed several classical methods of variance reduction.
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Backup
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Control variates

= Control variates uses an other nice property of Riemann integral:

/ @m—/u w+/¢@m

® g(x) needs to be analytically integrable.

® The uncertainty comes only from the integral: [[f(z) — g(z)]dz

® Obviously: V(f — g) — 129,
= Advantages:

® Quite stable, immune to the singularities.

® g(x) doesn’t need to be invertible analytically.
= Disadvantage:

e Useful only if you know [ g(z)dx
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Antithetic variates

= In MC methods usually one uses the independent random variables. The Antithetic
variates method on purpose uses a set of correlated variables (negative correlation is
the important property):

® |et f and f/ will be functions of x on the same domain.
® The variance: V(f + f1) =V (f) + V(1) +2Cov(f, f1).
e |f Cou(f, f1) < 0 then you can reduce the variance.

= Advantages:

® If you can pick up f and f/ so that they have negative correlation one can
significantly reduce the variance!

= Disadvantages:
® There are no general methods to produce such a negative correlations.
® Hard to generalize this for multidimensional case.

® You can't generate events from f(z) with this method.
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