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Announcement

There will be no lectures and class on 19" of May
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Matrix inversion
= The last time we discussed the method of linear equations solving. The same meth-

ods can be used for matrix inversions! The columns of inverse matrix can be found
solving:

. )
Axr =¢é, 1=1,2,...n

= In order to determine the inverse of a matrix A we need to choose a temprorary
matrix M such that:

H=1-MA

with the normalization condition:

IH| = max > |hi| <1
Jj=1

1<ign 4

where | is a unit matrix.
= Next we Neumann expand the (MA) ™" matrix:

MA) ' =(1—H) " =1+H+H + ...
= The inverse matrix we get from the equation:

A'=A"'"M'M=(MA)'M
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Matrix inversion, basic method

= For the (i, ;) element of the matrix (M A)™" we have:

(MA);jl =05 + hij + Z hii hiy i + Z Z hiiy Riyiohigg + ...

i1=1 i1=11i9=1

= The algorithm: We choose freely a probability matrix P = (p;;) with the conditions:
pii 20, pij =0 hij =0, pz‘,0=1—zpz‘j >0
j=1

= We construct a random walk for the state set {0,1,2,3...,n}:
1. In the initial moment (¢ = 0) we start in the state ig = 1.

2. If in the moment ¢ the point is in the 4; state, then in the time ¢t + 1 he will be in
state i1+1 with the probability pi, ¢, ;.

3. We stop the walk if we end up in the state 0.

Marcin Chrzaszcz (Universitét Ziirich) Matrix inversion and Partial Differential Equation Solving



Matrix inversion, basic method

= For the observed trajectory vi = (4,41, .., jx, 0) we assign the value of:

Piiy iy i "'hik—ﬂ'k 5’%]'

X)) = ——————————
PiiqPirig---Pig_1ip Pir0

= The mean is the of all observed X () is an unbiased estimator of the (MA):J1

Prove:

The probability of observing the v, trajectory:

P(yw) = Piiq Piqig - -Pig_ 15 Pig0

Form this point we follow the prove of the previous lecture (Neumann-Ulan) and
prove that:

E{X ()} = (MA)™!

= A different estimator for the (MA);].1 element is the Wasow estimator:

k
X*(’Yk) _ Z 1701112 m—1 (simj

PiiyPivioPipy_1im

oo ()
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Matrix inversion, dual method
= On the set of states {0, 1,2,...,n} we set a binned p.d.f.

n
q1,q2, ---, qn such that ¢; > 0, i =1,2,3...n and Zqi =1.
i=1
= Then choose arbitrary the probability matrix P (usual restrictions apply):
® The initial point we choose with the probability g;.

® [f in the moment ¢ the point is in the 4; state, then in the time ¢t + 1 he will be in
state 4;11 with the probability pi, ¢, ;.

The walk ends when we reach 0 state.

For the trajectory we assign a matrix:

Pigiligiy . Ripig_ 1
Y () = 1ifligiy kik—1 eirio € R* x R
PiyiPigiy -+-Pigir_1 dioPiy0

= The mean of Y (v) is an unbiased estimator of the (M A)~"' matrix.
= The Wasow estimator reads:

k
v — Z hi1ihi2i1'"himim—1 eif i E R™ x R™

PiyiDigiy --Pimim_1

m=0
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Partial differential equations, intro

= Let's say we are want to describe a point that walks on the R axis:
® At the beginning (¢t = 0) the particle is at = 0

® [f in the ¢ the particle is in the x then in the time ¢ 4+ 1 it walks to = + 1 with the
known probability p and to the point © — 1 with the probability ¢ =1 — p.

® The moves are independent.

= So let’s try to described the motion of the particle.
= The solution is clearly a probabilistic problem. Let v(x,t) be a probability that at
time ¢ particle is in position z. We get the following equation:

v(z,t +1) =pv(z—1,t) + qu(z + 1,t)
with the initial conditions:
v(0,0)=1, v(z,0)=0 if z #0.

= The above functions describes the whole system (every (¢, z) point).

Marcin Chrzaszcz (Universitét Ziirich) Matrix inversion and Partial Differential Equation Solving



S

Partial differential equations, intro

= Now in differential equation language we would say that the particle walks in steps of Az in times: kAt, k = 1,2,3....:

v(z,t+ At) = pv(z — Az, t) + qu(z + Az, t).
= To solve this equation we need to expand the v (x, t) funciton in the Taylor series:

1 8%u(w,t)

(@) + Ov(x,t) At (2, ) ov(x,t) Aw 4+ a )2
v(z, _— =pv(z,t) —p—Azx x
ot P P o 2 ox2
tqu(e ) + Bu(x,t)A N 1 8%v(x,t) (B2)?
viz, — Ax -_—q— T
¢ o 27 92
= From which we get:
Ov(x,t) ov(x,t) 1 8%v(z, t) 2
——— S At=—(p—q)———Azx+ ————(Azx
e r—a)— oz (A%
= Now We divide the equation by At and take the At — O:
( )Aa: s (Az)? )
- — T 4C, band 3
pP—aq At
=> We get the Fokker-Planck equation for the diffusion with current:
Av(x, t v(x,t 92 (x,t
v(@,t) _, ov(et) 0%, t)
ot ox dx2

= The D is the diffusion coefficient, c is the speed of current. For ¢ = 0 it is a symmetric distribution.
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Laplace equation, Dirichlet boundary conditions

= The aforementioned example shows the way to solve the partial differential equa-
tion using Markov Chain MC.
= We will see how different classes of partial differential equations can be approxi-
mated with a Markov Chain MC, whose expectation value is the solution of the equation.
= The Laplace equation:

0%u  9*u Pu 0

3_1’% + 8_:75% + ...+ 8_56’,% =
The u(z1, 2, ..., xk) function that is a solution of above equation we call harmonic
function. If one knows the values of the harmonic function on the edges I'(D) of the
D domain one can solve the equation.

The Dirichlet boundary conditions:

Find the values of u(z1, z2, ..., k) inside the D domain knowing the values of the
edge are given with a function:

u(x1,x2, ..., xk) = f(z1,T2,...,x) € T(D)

= Now | am lazy so | put k = 2 but it's the same for all k!
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Laplace equation, Dirichlet boundary conditions

= We will put the Dirichlet boundary condition as a y
discrete condition:

® The domain D we put a lattice with distance h.

® Some points we treat as inside (denoted with circles).

R e NEVAS)

Their form a set denoted D*. ( D
® The other points we consider as the boundary points W
and they form a set I'(D). ( L
/\
X e

= We express the second derivatives with the discrete form:

u(w“ﬁ_u(w) = u(w)_z(z_h) _u(x+h) —2u(x) +u(x—h)

h h?

= Now we choose the units so h = 1.
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Laplace equation, Dirichlet boundary conditions

The Dirichlet condition in the discrete form:

Find the u™ function which obeys the differential equation:

U*(z,y) = i [W'(z—-1,9) +u (z+1,y) +u(z,y— 1) +u’(z,y+ 1)]

in all points (z,y) € D* with the condition:

u*(z,y) = f*(z,9), (z,y) € (D7)

where f*(z,y) is the discrete equivalent of f(x,y) function.

= We consider a random walk over the lattice D* UT'(D™).
® In the t = 0 we are in some point (§,n) € D*)

® |f at the ¢ the particle is in (x,y) then at ¢ 4+ 1 it can go with equal probability to
any of the four neighbour lattices: (z — 1,y), (z + 1,v), (z,y — 1), (z,y + 1).

® |f the particle at some moment gets to the edge I'(D* then the walk is
terminated.

® For the particle trajectory we assign the value of: v(§,n) = f*(x,y), where
(z,y) € (D).
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Laplace equation, Dirichlet boundary conditions

= Let p¢ n(x,y) be the probability of particle walk that starting in (£,7) to end the
walk in (z,v).
= The possibilities:

1. The point (§,7n) € T'(D*). Then:

pg,n(l’,y) = {

2. The point (§,n) € D*:
1
Pen(T,y) = 1 [Pe—1,7(2,y) + Pet1,9(®, Y) + Pen—1(2,y) + peyr1(z,y)] ()

this is because to get to (z, y) the particle has to walk through one of the neighbours:

(z - Ly). (z+1Ly) (2,y - 1), (z,y +1).
= The expected value of the v(&, n) is given by equation:

BEm =Y pen(@y)f () @)

(z,y)eT*

where the summing is over all boundary points
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Laplace equation, Dirichlet boundary conditions
= Now multiplying the 2 by f*(z,y) and summing over all edge points (z,y):

B(&m) = LUB(E ~ Ln) + B¢ + Ln) + E(€.n— 1) + E(€.n+ 1)
= Putting now 1 to 3 one gets:

E(x,y) = f"(z,y), (&n) € T(D7)
= Now the expected value solves identical equation as our u*(z,y) function. From
this we conclude:
E(z,y) = u"(z,y)
= The algorithm:
® We put a particle in (z,y).
® We observe it's walk up to the moment when it's on the edge I'(D").

® We calculate the value of f* function in the point where the particle stops.

Repeat the walk IV times taking the average afterwards.

Important:

One can show the the error does not depend on the dimensions!
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Example

Let function u(z, y) be a solution of Laplace equation in the square: 0 < =,y < 4 with
the boundary conditions:
u(z,0) =0, u(4,y) =y, u(x,4) ==z 0,y =0
= Find the u(2,2)!
= The exact solution: u(z,y) = zy/4 so u(2,2) = 1.

y
L A sl

® We transform the continues problem to a discrete one 4

with h = 1. 3
® Perform a random walk starting from (2, 2) which

ends on the edge assigning as a result the sk

appropriative values of the edge conditions as an

outcome. IE: b

= E9.1 Implement the above example and find u(2, 2).
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Parabolic equation

= We are looking for a function u(z1, z2, ..., xk, t), which inside the D C R* obeys
the parabolic equation:

32u+82u+ +&—c@
0z2  0x2 7 Oz ot

with the boundary conditions:
u(z1, z2, ..., Tk, t) = g(x1, T2, ..., TR, ), (21, T2,23,...,2x) € T(D)
and with the initial conditions:
u(x1,x2, ..., Tk, 0) = h(x1, 22, ..., Tk, t), (T1,%2,23,....,2%) € D
= In the general case the boundary conditions might have also the derivatives.

= We will find the solution to the above problem using random walk starting from

1-dim case and then generalize it for n-dim.
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Parabolic equation, 1-dim

= We are looking for a function u(z, t), which satisfies the equation:

&*u ou

922~ “ot
with the boundary conditions:
u(0,t) = f1(t), u(a,t) = f2(t)

and with the initial conditions:

u(z,0) = g().

= The above equation can be seen as describing the temperature of a line with time.
We know the initial temperature in different points and we know that the temperature
on the end points is know.

= The above problem can be discreteized:

x=kh, h= % k=1,2,.n t=jl, j=0,1,23.., | = const

= The differential equation:

u(x + h,t — 1) — 2u(z,t — 1) + u(x — h,t —1 u(z,t) —u(z,t —1)
E Y I
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Parabolic equation, 1-dim

= The steps we choose such that: ch? = 2.
= Then we obtain the equation:

u(z,t) = %u(m—l—h,t—l)—i— %u(x—h,t—l)

= The value of function w in the point  and ¢ can be evaluated with the arithmetic
mean form points: £+h and x—h in the previous time step. = The algorithm estimating
the function in the time 7 and point &:

® The particle we put in the point £ and a "weight” equal 7.
® [f in a given time step ¢ particle is at « then with 50 : 50 chances it can go to
x—horx+handtimet —I.

® The particle ends the walk in two situations:

o If it reaches the z = 0 or z = a. In this case we assign to a given
trajectory a value of f1(t) or fa(t), where t is the actuall "weight”.

o If the "weight” of the particle is equal zero. in this case we assign as a
value of the trajectory the g(x), where z is the actual position of the
particle.
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Parabolic equation, 1-dim

= Repeat the above procedure N times. The expected value of a function u in (£, 7)
point is the mean of observed values.

Digression:

The 1-dim calse can be treated as a 2-dim (z, t), where the area is unbounded in the
t dimension. The walk is terminated after maximum 7/I steps.

21
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Parabolic equation, n-dim generalization

= We still choose the k and [ values accordingly to:
e _
=

where k is the number of space dimensions.
= We get:

2k

u(x1, 2, .y Tp) = %{u(xl + h,x2, .. xp,t — 1) —u(x1 — h,z2, .., 2k, t — 1)
+..tu(zi, z2, .,k + bt — 1) +u(xr, 2, ..,z — byt — 1)}

= The k dimension problem we can solve in he same way as 1dim.
= In each point we have 2k possibility to move(left-right) in each of the dimensions.
The probability has to be 5.
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Backup
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