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Announcement

There will be no lectures and class on 19th of May
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Matrix inversion
⇛ The last time we discussed the method of linear equations solving. The same meth-
ods can be used for matrix inversions! The columns of inverse matrix can be found
solving:

A−→x = êi, i = 1, 2, ..., n

⇛ In order to determine the inverse of a matrix A we need to choose a temprorary
matrix M such that:

H = I−MA

with the normalization condition:

∥H∥ = max
1¬i¬n

n∑
j=1

|hij | < 1

where I is a unit matrix.
⇛ Next we Neumann expand the (MA)−1 matrix:

(MA)−1 = (I− H)−1 = I+ H+ H2 + ....

⇛ The inverse matrix we get from the equation:

A−1 = A−1M−1M = (MA)−1M
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Matrix inversion, basic method

⇛ For the (i, j) element of the matrix (MA)−1 we have:

(MA)−1ij = δij + hij +
n∑
i1=1

hii1hi1j +
n∑
i1=1

n∑
i2=1

hii1hi1i2hi2j + ...

⇛ The algorithm: We choose freely a probability matrix P = (pij) with the conditions:

pi,j ­ 0, pij = 0⇔ hij = 0, pi,0 = 1−
n∑
j=1

pij > 0

⇛ We construct a random walk for the state set {0, 1, 2, 3..., n}:
1. In the initial moment (t = 0) we start in the state i0 = i.

2. If in the moment t the point is in the it state, then in the time t+ 1 he will be in
state it+1 with the probability pit,tt+1 .

3. We stop the walk if we end up in the state 0.
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Matrix inversion, basic method
⇛ For the observed trajectory γk = (i, i1, .., jk, 0) we assign the value of:

X(γk) =
hii1hi1i2 ...hik−1ik δikj

pii1pi1i2 ...pik−1ik pik0

⇛ The mean is the of all observed X(γk) is an unbiased estimator of the (MA)−1ij .

.
Prove:
..

.

• The probability of observing the γk trajectory:

P (γk) = pii1pi1i2 ...pik−1ikpik0

• Form this point we follow the prove of the previous lecture (Neumann-Ulan) and
prove that:

E{X(γk)} = (MA)−1

⇛ A different estimator for the (MA)−1ij element is the Wasow estimator:

X∗(γk) =
k∑
m=0

hii1hi1i2 ...him−1im
pii1pi1i2 ...pim−1im

δimj
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Matrix inversion, dual method
⇛ On the set of states {0, 1, 2, ..., n} we set a binned p.d.f.

q1, q2, ..., qn such that qi > 0, i = 1, 2, 3...n and
n∑
i=1

qi = 1.

⇛ Then choose arbitrary the probability matrix P (usual restrictions apply):

• The initial point we choose with the probability qi.

• If in the moment t the point is in the it state, then in the time t+ 1 he will be in
state it+1 with the probability pit,tt+1 .

• The walk ends when we reach 0 state.

• For the trajectory we assign a matrix:

Y (γk) =
hi1ihi2i1 ...hikik−1
pi1ipi2i1 ...pikik−1

1
qi0pik0

eiki0 ∈ Rn × Rn

⇛ The mean of Y (γ) is an unbiased estimator of the (MA)−1 matrix.
⇛ The Wasow estimator reads:

Y ∗ =
k∑
m=0

hi1ihi2i1 ...himim−1
pi1ipi2i1 ...pimim−1

eimi0 ∈ Rn × Rn
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Partial differential equations, intro

⇛ Let’s say we are want to describe a point that walks on the R axis:

• At the beginning (t = 0) the particle is at x = 0

• If in the t the particle is in the x then in the time t+ 1 it walks to x+ 1 with the
known probability p and to the point x− 1 with the probability q = 1− p.
• The moves are independent.

⇛ So let’s try to described the motion of the particle.
⇛ The solution is clearly a probabilistic problem. Let ν(x, t) be a probability that at
time t particle is in position x. We get the following equation:

ν(x, t+ 1) = pν(x− 1, t) + qν(x+ 1, t)

with the initial conditions:

ν(0, 0) = 1, ν(x, 0) = 0 if x ̸= 0.

⇛ The above functions describes the whole system (every (t, x) point).

Marcin Chrząszcz (Universität Zürich) Matrix inversion and Partial Differential Equation Solving 7/20...

7/20



.

Partial differential equations, intro
⇛ Now in differential equation language we would say that the particle walks in steps of∆x in times: k∆t, k = 1, 2, 3....:

ν(x, t +∆t) = pν(x−∆x, t) + qν(x +∆x, t).

⇛ To solve this equation we need to expand the ν(x, t) funciton in the Taylor series:

ν(x, t) +
∂ν(x, t)

∂t
∆t = pν(x, t)− p

∂ν(x, t)

∂x
∆x +

1

2
p
∂2ν(x, t)

∂x2
(∆x)2

+qν(x, t) + q
∂ν(x, t)

∂x
∆x +

1

2
q
∂2ν(x, t)

∂x2
(∆x)2

⇛ From which we get:

∂ν(x, t)

∂t
∆t = −(p− q)

∂ν(x, t)

∂x
∆x +

1

2

∂2ν(x, t)

∂x2
(∆x)2

⇛ Now We divide the equation by∆t and take the∆t→ 0:

(p− q)
∆x

∆t
→ 2c,

(∆x)2

∆t
→ 2D,

⇛ We get the Fokker-Planck equation for the diffusion with current:

∂ν(x, t)

∂t
= −2c

∂ν(x, t)

∂x
+D

∂2ν(x, t)

∂x2

⇛ TheD is the diffusion coefficient, c is the speed of current. For c = 0 it is a symmetric distribution.
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Laplace equation, Dirichlet boundary conditions
⇛ The aforementioned example shows the way to solve the partial differential equa-
tion using Markov Chain MC.
⇛ We will see how different classes of partial differential equations can be approxi-
mated with a Markov Chain MC, whose expectation value is the solution of the equation.
⇛ The Laplace equation:

∂2u

∂x21
+
∂2u

∂x22
+ ...+

∂2u

∂x2k
= 0

The u(x1, x2, ..., xk) function that is a solution of above equation we call harmonic
function. If one knows the values of the harmonic function on the edges Γ(D) of the
D domain one can solve the equation.

.
The Dirichlet boundary conditions:
..

.

Find the values of u(x1, x2, ..., xk) inside the D domain knowing the values of the
edge are given with a function:

u(x1, x2, ..., xk) = f(x1, x2, ..., xk) ∈ Γ(D)

⇛ Now I am lazy so I put k = 2 but it’s the same for all k!
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Laplace equation, Dirichlet boundary conditions

⇛ We will put the Dirichlet boundary condition as a
discrete condition:

• The domain D we put a lattice with distance h.

• Some points we treat as inside (denoted with circles).
Their form a set denoted D∗.

• The other points we consider as the boundary points
and they form a set Γ(D).

⇛ We express the second derivatives with the discrete form:

u(x+h)−u(x)
h

− u(x)−u(x−h)
h

h
=
u(x+ h)− 2u(x) + u(x− h)

h2

⇛ Now we choose the units so h = 1.
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Laplace equation, Dirichlet boundary conditions
.
The Dirichlet condition in the discrete form:
..

.

Find the u∗ function which obeys the differential equation:

U∗(x, y) =
1
4
[u∗(x− 1, y) + u∗(x+ 1, y) + u∗(x, y − 1) + u∗(x, y + 1)]

in all points (x, y) ∈ D∗ with the condition:

u∗(x, y) = f∗(x, y), (x, y) ∈ Γ(D∗)

where f∗(x, y) is the discrete equivalent of f(x, y) function.

⇛ We consider a random walk over the lattice D∗ ∪ Γ(D∗).
• In the t = 0 we are in some point (ξ, η) ∈ D∗)
• If at the t the particle is in (x, y) then at t+ 1 it can go with equal probability to

any of the four neighbour lattices: (x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1).
• If the particle at some moment gets to the edge Γ(D∗ then the walk is

terminated.

• For the particle trajectory we assign the value of: ν(ξ, η) = f∗(x, y), where
(x, y) ∈ Γ(D∗).
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Laplace equation, Dirichlet boundary conditions
⇛ Let pξ,η(x, y) be the probability of particle walk that starting in (ξ, η) to end the
walk in (x, y).
⇛ The possibilities:

1. The point (ξ, η) ∈ Γ(D∗). Then:

pξ,η(x, y) =

{
1, (x, y) = ξ, η)
0, (x, y) ̸= ξ, η)

(1)

2. The point (ξ, η) ∈ D∗:

pξ,η(x, y) =
1
4
[pξ−1,η(x, y) + pξ+1,η(x, y) + pξ,η−1(x, y) + pξ,η+1(x, y)] (2)

this is because to get to (x, y) the particle has to walk through one of the neighbours:
(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1).
⇛ The expected value of the ν(ξ, η) is given by equation:

E(ξ, η) =
∑

(x,y)∈Γ∗
pξ,η(x, y)f

∗(x, y) (3)

where the summing is over all boundary points
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Laplace equation, Dirichlet boundary conditions
⇛ Now multiplying the 2 by f∗(x, y) and summing over all edge points (x, y):

E(ξ, η) =
1
4
[E(ξ − 1, η) + E(ξ + 1, η) + E(ξ, η − 1) + E(ξ, η + 1)]

⇛ Putting now 1 to 3 one gets:

E(x, y) = f∗(x, y), (ξ, η) ∈ Γ(D∗)

⇛ Now the expected value solves identical equation as our u∗(x, y) function. From
this we conclude:

E(x, y) = u∗(x, y)

⇛ The algorithm:

• We put a particle in (x, y).

• We observe it’s walk up to the moment when it’s on the edge Γ(D∗).

• We calculate the value of f∗ function in the point where the particle stops.

• Repeat the walk N times taking the average afterwards.

.
Important:
..
.One can show the the error does not depend on the dimensions!
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Example
Let function u(x, y) be a solution of Laplace equation in the square: 0 ¬ x, y ¬ 4 with
the boundary conditions:

u(x, 0) = 0, u(4, y) = y, u(x, 4) = x, x(0, y) = 0

⇛ Find the u(2, 2)!
⇛ The exact solution: u(x, y) = xy/4 so u(2, 2) = 1.

• We transform the continues problem to a discrete one
with h = 1.

• Perform a random walk starting from (2, 2) which
ends on the edge assigning as a result the
appropriative values of the edge conditions as an
outcome.

⇛ E9.1 Implement the above example and find u(2, 2).
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Parabolic equation

⇛ We are looking for a function u(x1, x2, ..., xk, t), which inside the D ⊂ Rk obeys
the parabolic equation:

∂2u

∂x21
+
∂2u

∂x22
+ ...+

∂2u

∂x2k
= c
∂u

∂t

with the boundary conditions:

u(x1, x2, ..., xk, t) = g(x1, x2, ..., xk, t), (x1, x2, x3, ..., xk) ∈ Γ(D)

and with the initial conditions:

u(x1, x2, ..., xk, 0) = h(x1, x2, ..., xk, t), (x1, x2, x3, ..., xk) ∈ D

⇛ In the general case the boundary conditions might have also the derivatives.
⇛ We will find the solution to the above problem using random walk starting from
1-dim case and then generalize it for n-dim.
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Parabolic equation, 1-dim
⇛ We are looking for a function u(x, t), which satisfies the equation:

∂2u

∂x2
= c
∂u

∂t

with the boundary conditions:

u(0, t) = f1(t), u(a, t) = f2(t)

and with the initial conditions:

u(x, 0) = g(x).

⇛ The above equation can be seen as describing the temperature of a line with time.
We know the initial temperature in different points and we know that the temperature
on the end points is know.
⇛ The above problem can be discreteized:

x = kh, h =
a

n
, k = 1, 2, ...n t = jl, j = 0, 1, 2, 3..., l = const

⇛ The differential equation:

u(x+ h, t− l)− 2u(x, t− l) + u(x− h, t− l
h2

) = c
u(x, t)− u(x, t− l)

l

Marcin Chrząszcz (Universität Zürich) Matrix inversion and Partial Differential Equation Solving 16/20...

16/20



.

Parabolic equation, 1-dim
⇛ The steps we choose such that: ch2 = 2l.
⇛ Then we obtain the equation:

u(x, t) =
1
2
u(x+ h, t− l) + 1

2
u(x− h, t− l)

⇛ The value of function u in the point x and t can be evaluated with the arithmetic
mean form points: x+h and x−h in the previous time step.⇛ The algorithm estimating
the function in the time τ and point ξ:

• The particle we put in the point ξ and a ”weight” equal τ .

• If in a given time step t particle is at x then with 50 : 50 chances it can go to
x− h or x+ h and time t− l.
• The particle ends the walk in two situations:

◦ If it reaches the x = 0 or x = a. In this case we assign to a given
trajectory a value of f1(t) or f2(t), where t is the actuall ”weight”.
◦ If the ”weight” of the particle is equal zero. in this case we assign as a

value of the trajectory the g(x), where x is the actual position of the
particle.
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Parabolic equation, 1-dim
⇛ Repeat the above procedure N times. The expected value of a function u in (ξ, τ)
point is the mean of observed values.
.
Digression:
..

.
The 1-dim calse can be treated as a 2-dim (x, t), where the area is unbounded in the
t dimension. The walk is terminated after maximum τ/l steps.
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Parabolic equation, 1-dim
⇛ Repeat the above procedure N times. The expected value of a function u in (ξ, τ)
point is the mean of observed values.
.
Digresion:
..

.
The 1-dim calse can be treated as a 2-dim (x, t), where the area is unbounded in the
t dimension. The walk is terminated after maximum τ/l steps.
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Parabolic equation, n-dim generalization

⇛ We still choose the k and l values accordingly to:

ch2

l
= 2k

where k is the number of space dimensions.
⇛ We get:

u(x1, x2, ..., xk) =
1
2k
{u(x1 + h, x2, .., xk, t− l)− u(x1 − h, x2, .., xk, t− l)

+...+ u(x1, x2, .., xk + h, t− l) + u(x1, x2, .., xk − h, t− l)}

⇛ The k dimension problem we can solve in he same way as 1dim.
⇛ In each point we have 2k possibility to move(left-right) in each of the dimensions.
The probability has to be 1

2k .
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Backup
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