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Random and pseudorandom numbers

John von Neumann:

"Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number — there are
only methods to produce random numbers, and a strict arithmetic
procedure of course is not such a method.”

= Random number: a given value that is taken by a random variable
—» by definition cannot be predicted.
= Sources of truly random numbers:

e Mechanical

e Physical

= Disadvantages of physical generators:

e To slow for typical applications, especially the mechanical ones!

e Not stable; small changes in boundary conditions might lead to

completely different results!
2/
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Random numbers - history remark

= In the past there were books with random numbers:

= It's obvious that they didn’t become very popular ;)

= This methods are comming back!

— Storage device are getting more cheap and bigger (CD, DVD).

— 1995: G. Marsaglia, 650MB of random numbers, "White and Black
Noise”.
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Pseudorandom numbers

= Pseudorandom numbers are numbers that are generated
accordingly to strict mathematical formula.

% Strictly speaking they are non random numbers, how ever they
have all the statistical properties of random numbers.

%~ Discussing those properties is a wide topic so let’s just say that
without knowing the formula they are generated by one cannot say if
those numbers are random or not.

= Mathematical methods of producing pseudorandom numbers:

e Good statistical properties of generated numbers.
e Easy to use and fast!
e Reproducible!

= Since mathematical pseudorandom genrators are dominantly:
pseudorandom — random.
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Middle square generator; von Neumann

= The first mathematical generator (middle square) was proposed by

von Neumann (1964).

9 Formula: X, = [X2_;-107™] — [ X2_, -107%™] . 10*™

% where X is a constant (seed), | -] is the cut-off of a number to

integer.
= Example:
Let's put m = 2 and X = 2045:
G X¢ = 04 1820 25
~~ ~~

rej rej
+ X2 = 03 3124 00,
rej rej

= X7 = 1820

= X; =3124

% Simple generator but unfortunately quite bad generator. Firstly the
sequences are very short and strongly dependent on the Xy number.
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Linear generators Lecture2/Linear_genl

= This was a first generator written and it's a good example how to
not write generators.
= It's highly non stable!

, in
, in main

Numerical result out of
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Linear generators
= General equation:
Xn = (a1 X1 +a2Xp—2+ ... + ax Xy— + ¢) mod m,

% where a;, ¢, m are parameters of a generator(integer numbers).
9~ Generator initialization = setting those parameters.
= Very old generators. (often used in Pascal, or first C versions):
k=1: X, = (aX,—1 + c) modm,
) = 0, multiplicativegeneator
‘= = (0, mixgeneator
= The period can be achieved by tuning the seed parameters:

2L=2. for m = 2L
Pmax = .
m — 1; for m = prime number
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Shift register generator

= General equation:
b, = (aan,1 + a9 Xp—o+ ... tapXn_r + C) mod 2,

where a; C ({0,1})
= Super fast and easy to implement due to: (¢ + b) mod 2 = a xor b

a|b|axorb
010 0
110 1
011 1
111 0

= Maximal period is 2F — 1.

= Example (Tausworths generator):

ap = ag =1, other a; = 0 and p > q. Then: b, = b, x0r b4
= How to get numbers from bits (for example):

U, = Zf:l 27jbis+j, s < L.

8/x
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Fibonacci generator

= In 1202 Fibonacci with Leonardo in Piza:
Jn="In—2+ fn-1, n 22
= Based on this first generator was created (Taussky and Todd, 1956):
Xn=Xn_2+Xpn_1) modm, n>2

This generator isn’t so good in terms of statistics tests.
= Generalization:

Xo=Xn—r 0Xy_s)modm, n>r, s>1

©) Pz Stat. properties
+,— | (2" —1)2l~1 good

r | (2n—1)2E-13 very good
xor (2r—-1) poor
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Multiply with carry, generator

= We start from:
by = (a1 X1 + a2 Xp—2+ ... + ax X —x + ¢) mod m,

where a1, ..,a, € N are constant parameters.
= The c parameters is calculated foe each step:

c= (1 Xpn-1+ a2 Xy o+ ... +apXn_+c)/ml,

= Initialization: ay, .., ax, c.
= Advantages:

Fast and easy to implement.

e Large period.

Good statistical properties.

e First proposed by Marsaglia.
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Subtract with borrow, generator

= Created again by Marsaglia (1991):
Xn=Xn_r©Xn_s) modm, r,s €N,
where :

5 r—y—c+m,c=1 whenx—y—c<0
x =
& r—y—c, c=0, whenx—y—c>0

= Initialization: X4, ..., X,,_, and ¢ = 0.
= Fast and easy :)
= Fails some of the basic statistics tests.
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Non linear generators

= The natural solutions to problems of linear generators are the non-linear
generators (second part of 1980s).
= Eichenauera i Lehna (1986):

X, = (aX,;" + b) mod m,
= Eichenauera-Hermanna (1993)
X, = [a(n+ng) + b " mod m,
= L. Blum, M. Blum, Shub (1986):
X, = X?_, mod m,

— Very popular in cryptography.
= Pros and cons:

® They all pass all statistical tests.

® Much slower then linear generators.
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RANLUX generator

= All described generators are based on some mathematical algorithms and
recursion. The typical scheme is of constructing a MC generator:

e Think of a formula that takes some initial values.

¢ Generate large number of random numbers and put them through
statistical tests.

e If the test are positive we accept the the generator.

= Now let’s think: why the hell numbers obtained that way are showing some
random number properties?
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RANLUX generator

= All described generators are based on some mathematical algorithms and
recursion. The typical scheme is of constructing a MC generator:

e Think of a formula that takes some initial values.

¢ Generate large number of random numbers and put them through
statistical tests.

e If the test are positive we accept the the generator.

= Now let’s think: why the hell numbers obtained that way are showing some
random number properties? There is no science behind it, it's pure luck!

= M.Luscher (1993) hep-lat/9309020

= Generator RANLUX based on Kolomogorow entropy and Lyapunov
exponent. Effectively we are building inside the generator the chaos theory.
= RANLUX and Mersenne Twister (TRandom1, TRandom3) are the 2 most
powerful generators in the world that passed every known statistical test.
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Chaos theory in a nut shell

= We know that the solution of classical systems is"" |
described by trajectory in phase spaces. Now the .| |
problem with this picture starts to be when arround
one point in this phase space we are getting more °*| |
and more trajectories that are drifting a part later |

on.
= The Lyapunov exponent tells us how a two 10 —
solutions drift apart with time: L A
1.0
|6X(t)| & e>‘t|5X0| 0‘55j
= Kolomogorow entropy: ]
04
hK — / )\dﬂ o.z:
P 00 T
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HEP simulation

= There is some ambiguity what particle physicist call MC. Normally those
are mathematical theorises but when we say MC we usually mean MC
simulation of a physics process. = There are plenty of things that need to
be simulated:

PP

t = —o0, incoming protons
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HEP simulation

= There is some ambiguity what particle physicist call MC. Normally those
are mathematical theorises but when we say MC we usually mean MC
simulation of a physics process. = There are plenty of things that need to
be simulated:

2y

partons from the protons radiate
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HEP simulation

= There is some ambiguity what particle physicist call MC. Normally those
are mathematical theorises but when we say MC we usually mean MC
simulation of a physics process. = There are plenty of things that need to
be simulated:

ps P

~+1

partons collide in
fundamental hard process
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HEP simulation

= There is some ambiguity what particle physicist call MC. Normally those
are mathematical theorises but when we say MC we usually mean MC
simulation of a physics process. = There are plenty of things that need to
be simulated:
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HEP simulation

= There is some ambiguity what particle physicist call MC. Normally those
are mathematical theorises but when we say MC we usually mean MC
simulation of a physics process. = There are plenty of things that need to
be simulated:

Final-state radiation
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HEP simulation

= There is some ambiguity what particle physicist call MC. Normally those
are mathematical theorises but when we say MC we usually mean MC
simulation of a physics process. = There are plenty of things that need to

be simulated:

P Hadrons

suoipey

. . Hadron:
Hadronization
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Detector simulation

= Things do not get simpler on the detector side simulation.
= Lots of effects need to be taken into account:

— Bremsstrahlung

— Interactions with different
detector materials

— Particle identification

— Showers

= Example of generators:
— FLUKA
— Geant

Marcin Chrzaszcz (Universitét Ziirich) Random number generators and application



Method of Moments

= Now real cool things!
= Let’s consider we want to study a rare decay: B & Kiuu. The decay is

described by the following PDF:

1 d°r 3 )
Td@dcost, Z(l —Fg)(1—cos”0;) + Fg/2+ Appcost,
1 d’r

= PDF by construction is normalized: f,ll T dq2dcos 6, -
!

Events /(0.1)

e Normally we do a likelihood fit and
we are done.

® There is a second way!

costhetal

Marcin Chrzaszcz (Universitét Ziirich) Random number generators and application



Method of Moments

= Let’s calculate the integrals:

1 2
1 d°T’ 2
/1 I' dg2d cos 6, cosb 3B

1 2
1 a&r .1 2Fy
I *r . g, — - L2 H
/1qu2dcos6’l s =5t g

= So we can get our parameters that we searched for by doing a
integration. So now what?
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Method of Moments

= Let’s calculate the integrals:

1 2
1 d°T’ 2
/1 I' dg2d cos 6, cosb 3B

1 2
1 a&r .1 2Fy
I *r . g, — - L2 H
/1qu2dcos6’l s =5t g

= So we can get our parameters that we searched for by doing a
integration. So now what?

= Well nature is the best random number generator so let's take the data
and treat and calculate the integral estimates:

1 2 N
1 d<T 2 1
/,1 I dg?d cos 6, oSt = g ArB N;COS e
1 2 N
1 dr ., 1 2Fg 1
= %" o9 =4 ZH ol
_/_1qu2dcosé’l cos” by = £+ o= = 5 205" by
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Method of Moments

= So what did we do?
® We have just estimated a parameters of interests without using any fit!!
= Pros and cones of method of moments:

® Are very immune to bias.

Do not suffer from boundary problems.

Require less statistic to work then likelihood fit.

They always have a Gaussian error.

Estimator has a larger uncertainty.
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Method of Moments, uncertainty estimator
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Other application of MC - testing your analysis

= Probably the biggest application of MC methods in HEP are validations of
your experimental methodology. The procedure is as follows:

e Define your analysis methodology: selection, efficiency corrections,
parameters you want to measure.

® Simulate an assembly of simulation events for different values of
parameters you want to measure.

® Do the analysis on this pseudo data.

e See if you are getting back what you have simulated.
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Testing your analysis, Lecture2/Test_met

= Probably the biggest application of MC methods in HEP are validations of
your experimental methodology. The procedure is as follows:

e Define your analysis methodology: selection, efficiency corrections,
parameters you want to measure.

e Simulate an assembly of simulation events for different values of
parameters you want to measure.

® Do the analysis on this pseudo data.

e See if you are getting back what you have simulated.

mean estimator, true value=2.0

140

o0

100—
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Wrap up

= Things to remember:

e Computer cannot produce random numbers, only pseudorandom
numbers.

® We use pseudorandon numbers as random numbers if they are
statistically acting the same as random numbers.

® Linear generators are not commonly used nowadays.

e State of the art generators are the ones based on Kolomogorows theorem.

e MC methods used to simulate physics process, detector response and
validating the estimators.

23
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