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Announcement

There will be no lectures and class on 19th of May
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Trivial example
⇛ Lets start with a TRIVIAL example: we want to calculate S = A+B.
We can rewrite it in:

S = p
A

p
+ (1− p) B

1− p

and one can interpret the sum as expected value of:

W =

Ap with propability pA
1−p with propability 1− p

⇛ The algorithm:
• We generate a random variable W and calculate:

Ŝ =
1
N

N∑
i=1

Wi

⇛ The Ŝ is an unbias estimator of S.
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Trivial example2
• Lets say we have a linear equation system:

X = pY + (1− p)A
Y = qX + (1− q)B

• We know A,B, p, q; X and Y are meant to be determined.
• Algorithm:

1. We choose first element of the first equation with probability p and
second with probability 1− p.

2. I we choose the second one, the outcome of this MCMC is W = A.
3. If we choose the first we go to second equation and choose the first

element with probability q and the second with 1− q.
4. We we choose the second one, the outcome of this MCMC is W = B.
5. If we choose the first we go to the first equation back again.
6. We repeat the procedure.

• We can estimate the solution of this system:

X̂ =
1
N

∑
i=1

Wi σ̂X =
1√
N − 1

√√√√ 1
N

N∑
i=1

W 2i − X̂2
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Random walk

⇛ We are in the point x and we walk accordingly to the following rules:

• From point x we walk with probability p to point y or with 1− p to a.
• From point y we walk with probability q to point x and with 1−Q to b.

• The walks ends when you end up in a or b.

• You get a ”reward” A if you end up in point a and B if you end up in b.

• X is expected ”reward” when you start the walk from x, Y when you start from y.

⇛ The algorithm above is so-called random walk on the set {a, x, y, b}
⇛ The described walked can solve the linear equation system that we discussed above.
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Markov Chain MC

• Consider a finite (or Countable set) possible states: S1, S2, ...

• The Xt is the state of the system in the time t

• We are looking at discrete time steps: 1, 2, 3, ...

• The conditional probability is defined as:

P (Xt = Sj |Xt−1 = Sj−1, ..., X1 = S1)

• The Markov chain is then if the probability depends only on previous step.

P (Xt = Sj |Xt−1 = Sj−1, ..., X1 = S1) = P (Xt = Sj |Xt−1 = Sj−1)

• For this reason MCMC is also knows as drunk sailor walk.

• Very powerful method. Used to solve linear eq. systems, invert matrix, solve
differential equations, etc.

• Also used in physics problems: Brown motions, diffusion, etc.
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Linear equations system
⇛ Lets start from a linear equation system:

A−→x =
−→
b , detA ̸= 0,

where A = (aij , i, j = 1, 2, ..., n -matrix,
−→
b = (b1, b2, ..., bn)-vector,−→x = (x1, x2, ..., xn) - vector of unknowns.

⇛ The solution we mark as −→x 0 = (x01, x02, ..., x0n)
⇛ The above system can be transformed into the iterative representation:

−→x = −→a + H−→x

where H is a matrix, −→a is a vector.
⇛ We assume that the matrix norm:

∥H∥ = max
1¬i¬n

n∑
j=1

|hhij | < 1

⇛ We can always change transform every system to the iteration form: A = V−W.

(V−W)−→x =
−→
b 7→ −→x = V−1

−→
b + V−1W−→x
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Linear equations system

⇛ Now we further modify the equation system:

−→x = −→a + H−→x ⇒ (I− H)−→x = −→a

where I = δij - unit matrix, δij is the Kronecker delta.
⇛ What one can do is to represent the solution in terns of Neumann series:

−→x 0 = (I− H)−1−→a = −→a + H−→a + H2−→a + H3−→a + ...

⇛ So for the ith component we have:

x0i = ai +
n∑
j=1

hijaj +
n∑
j1=1

n∑
j2=1

hij1hj1j2aj2

+...+
n∑
j1=1

...

n∑
jn=1

hij1 ...hjn−1jnajn

⇛ We will construct a probabilistic interpretation using MCMC and then we show that
the expected value is equal to the above formula.
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Neumann-Ulam method

• To do so we add to our matrix an additional column of the matrix:

hi,0 = 1−
n∑
j=1

hij > 0

• The system has states: {0, 1, 2..., n}
• State at t time is denoted as it(it = 0, 1, 2, ..., n; t = 0, 1, ....)

• We make a random walk accordingly to to the following rules:

◦ At the beginning of the walk (t = 0) we are at i0.
◦ In the t moment we are in the it position then in t+ 1 time stamp we

move to state it+1 with the probability hitit+1 .
◦ We stop walking if we are in state 0.

• The path γ = (i0, i1, i2, ..., ik, 0) is called trajectory.

• For each trajectory we assign a number:

X(γ) = X(i0, i1, i2, ..., ik, 0) =
aik
hik0

Marcin Chrząszcz (Universität Zürich) Solving linear equation systems with Markov Chain MC 9/21...

9/21



.

Neumann-Ulam method

⇛ The X(γ) variable is a random variable from: {a1/h1,0, a2/h2,0, ..., an/hn,0}.
The probability that X(γ) = aj/hj,0 is equal to the probability that the last non zero
state of the γ trajectory is j.
⇛ The expected value of the X(γ) trajectory if the trajectory begins from i0 = s is:

E{X(γ)|i0 = s} =
∞∑
k=0

∑
{γk}

X(γ)P (γ)

where γk is a trajectory of length k, which starts in i0 = s and P (γ) is the probability
of occurrence of this trajectory. ⇛ Yes you guest it lets do Taylor expansion:

E{X(γ)|i0 = s} =
∑
γ0

X(γ)P (γ) +
∑
γ1

X(γ)P (γ) + ...+
∑
γk

X(γ)P (γ)

⇛ Now let’s examine the elements of the above series.
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Neumann-Ulam method

{γ0}: One trajectory: γ0 = (i0 = s|0), P (γ0) = hs,0 and X(γ0) = as/hs,0. So:∑
γ0

X(γ)P (γ) =
as
hs,0
hs,0 = as

{γ1}: Trajectories: γ1 = (i0 = s, i1|0), i1 ̸= 0, P (γ1) = P (s, i1, 0) = hs,i1hi1,0 and
X(γ1) = ai1/hi1,0. So:∑

γ1

X(γ)P (γ) =
n∑
i1=1

ai1
hi1,0
hs,i1hi1,0 =

n∑
i=1

hs,i1ai1

{γ2}: Trajectories: γ2 = (i0 = s, i1, i2|0), i1, i2 ̸= 0,
P (γ2) = P (s, i1, i2, 0) = hs,i1hi1,i2hi1,0 and X(γ2) = ai2/hi2,0. So:∑

γ2

X(γ)P (γ) =
n∑
i1=1

n∑
i2=1

ai2
hi2,0
hs,i1hi1,i2hi2,0 =

n∑
i1=1

n∑
i2=1

hs,i1hi1,i2ai2

⇛ etc...
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Neumann-Ulam method

⇛ After summing up:

E{X(γ)|i0 = s} = as +
n∑
i1=1

hs,i1ai1 +
n∑
i1=1

n∑
i2=1

hs,i1hi1,i2ai2 + ....

+
n∑
i1=1

n∑
i2=1

...

n∑
ik=1

hs,i1hi1,i2 ...hik−1,ikaik + ...

⇛ If you compare this expression with the Neumann series we will they are the same
so:

x0i = E{X(γ)|i0 = i}

.
To sum up:
..

.

We have proven that solving a linear system can be represented by an expectation
value of the random variable X(γ). The error is computed using standard deviation
equation.
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Neumann-Ulam method

• For example lets try to solve this equation system:

−→x =

 1.5−1.0
0.7

+
 0.2 0.3 0.10.4 0.3 0.2
0.3 0.1 0.1

−→x
• The solution is −→x 0 = (2.154303, 0.237389, 1.522255).

• The propability matrix hij has the
shape:
i/j 1 2 3 0
1 0.2 0.3 0.1 0.4
2 0.4 0.3 0.2 0.1
3 0.3 0.1 0.1 0.5

• An example solution:
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Neumann-Ulam dual method
• The problem with Neumann-Ulam method is that you need to
repeat it for each of the coordinates of the −→x 0 vector.
• The dual method calculates the whole −→x 0 vector.
• The algorithm:
◦ On the indexes: {0, 1, ..., n} we set a probability distribution:
q1, q2, ..., qn, qi > 0 and

∑n
i=1 qi = 1.

◦ The starting point we select from qi distribution.
◦ If in t time we are in it state then with probability p(it+1|it) = hit+1,it

in t+ 1 we will be in state it+1. For it+1 = 0 we define the probability:
h0,it = 1−

∑n
j=1 hj,it . Here we also assume that hj,it > 0.

◦ NOTE: there the matrix is transposed compared to previous method:
HT .
◦ Again we end our walk when we are at state 0.
◦ For the trajectory: γ = (i0, i1, ..., ik, 0), we assign the vector:

−→
Y (γ) =

ai0
qi0p(0|ik)

êik ∈ R
n

• The solution will be : −→x 0 = 1
N

∑−→
Y (γ)
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Neumann-Ulam dual method, proof
⇛ If Yi(γ) is the i-th component of the

−→
Y (γ) vector. One needs to show:

E{Yi(γ)} = x0j

⇛ From definition:

Yj(i1, ..., ik, 0) =

{
aik

qi0p(0|ik)
ik = j

0 ik ̸= j

⇛ The expected value:

E{Yj(γ)} =
∑

trajectories

aj
qi0p(0|ik)

P (i1, i2, ..., ik, 0),

where P (i1, i2, ..., ik, 0) is the probability of this trajectory occurring.
⇛ But by our definition the probability:

P (i0, i1, ..., ik−1, j, 0) = q0hi1,i0 ...hk,ik−1p(0|j)

⇛ In the end we get:

E(Yj(γ)) =
∞∑
k=0

n∑
ik−1=1

...

n∑
i1=1

n∑
i0=1

hj,ik−1hj,ik−1 ...hi2,i1hi1,i0ai0
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Neumann-Ulam dual method
• Let’s try to solve the equation system:

−→x =

 1.5−1.0
0.7

+
 0.2 0.3 0.10.4 0.3 0.2
0.1 0.1 0.1

−→x
• The solution is: −→x 0 = (2.0, 0.0, 1.0).
• Let’s put the initial probability as constant:

q1 = q2 = q3 =
1
3

• The propability matrix hij has the
shape:
i/j 1 2 3 4
1 0.2 0.4 0.1 0.3
2 0.3 0.3 0.1 0.3
3 0.1 0.2 0.1 0.6

• An example solution:
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Generalization
⇛ Up to now we assumed that each of the matrix elements hi,j ­ 0.
Now if this is not true:
⇛ We take a probability matrix P = pij such that:

pij ­ 0 pij = 0⇔ hij = 0, pi,0 = 1−
∑
j

p(i, j) > 0.

⇛ To solve the system we construct a Markov Chain with the P
matrix as probabilities of transitions.
⇛ The probability of a trajectory is equal (i0 = i):

P (γk) = pi,i1pi1,i2 ...pik,0

⇛ The trajectory we assign the number:

X(γk) = νi,i1νi1,i2 ..., νik−1,ik
aik
pik,0

where

νi,j =

{
hij/pij , pij ̸= 0
1 pij = 0
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Generalization, proof
⇛ For a X(γ) trajectory the expected value is:

E{X(γk)} =
∞∑
k=0

∑
γk

X(γk)P{X(γk)}

⇛ The probability is given by the formula:

P{X(γk)} = P{X(γk) = νi,i1νi1,i2 ..., νik−1,ik
aik
pik,0
}

= pi,i1 ..., pik−1,ikpik,0

⇛ However:

X(γk)P{X(γk)} = hi,i1hi1,i2 ...hik−1,ikaik

so: ∑
γk

X(γk)P{X(γk)} =
∑
i1=1

...
∑
ik=1

hi,i1hi1,i2 ...hik−1,ikaik
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Generalization, the algorithm

⇛ We set the P matrix in a arbitrary way.
⇛ If in the t moment the point is in the it state, then with the
probability pit,it+1 he can go to it+1 state.
⇛ We stop the walk once we reach 0.
⇛ For the given trajectory we assign the value: X(γk)
⇛ We repeat the procedure N times and take the mean and RMS.
⇛ We repeat this also for every of the −→x 0 vector components.
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Wasow method
⇛ The main problem with the Neumann-Ulam methods is the fact that each time we
estimate only one of the part of the taylor expansion.
⇛ W.Wasow (1956) was smarter:
• For the trajectory: γ(i0, i1, ..., ik, 0) we look trajectories:

(i0), (i0, i1), (i0, i1, ..., ik)

and for each we associate a number:

(i0, i1, i2, ..., im), 0 ¬ m ¬ k

we assign a number:

νi0,i1νi1,i2 ...νim−1,imaim

⇛ For the trajectory we define:

X∗(γ) =
k∑
m=0

νi1,i2 ...νim−1,imaim

⇛ One can proof that:

E{X∗(γ)|i0 = i} = x0i
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Homework

⇛ E8.(1,2,3) Please solve the linear equation system from slide 16
using Wasow, Neumann-Ulam, dual Neumann-Ulam methods.
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Backup
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