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Random and pseudorandom numbers
.
John von Neumann:
..

.

”Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number — there are
only methods to produce random numbers, and a strict arithmetic
procedure of course is not such a method.”

⇛ Random number: a given value that is taken by a random variable
↠ by definition cannot be predicted.
⇛ Sources of truly random numbers:
• Mechanical
• Physical
⇛ Disadvantages of physical generators:
• To slow for typical applications, especially the mechanical ones!
• Not stable; small changes in boundary conditions might lead to

completely different results!
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Random numbers - history remark

⇛ In the past there were books with random numbers:

⇛ It’s obvious that they didn’t become very popular ;)
⇛ This methods are comming back!
↠ Storage device are getting more cheap and bigger (CD, DVD).
↠ 1995: G. Marsaglia, 650MB of random numbers, ”White and Black
Noise”.
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Pseudorandom numbers

.

.

Commercially available physical generators of random numbers are usually based on
electronic noise. This kind of generators do not pass simple statistical tests! Before
you use them check they statistical properties.

⇛ Pseudorandom numbers- numbers generated accordingly to strict mathematical
formula.
⇛ Strictly speaking they are non random numbers, how ever they have all the
statistical properties of random numbers.
⇛ How ever modern generators are so good that no one can distinguish the pseudo
random numbers generated by then from true random numbers.
⇛ Mathematical methods of producing pseudorandom numbers:

• Good statistical properties of generated numbers.

• Easy to use and fast!

• Reproducible!

⇛ Because of those properties the truelly random numbers are not used in practice
any more!
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Middle square generator; von Neumann

⇛ The first mathematical generator (middle square) was proposed by
von Neumann (1964).

↬ Formula:
....
Xn = ⌊X2n−1 · 10−m⌋ − ⌊X2n−1 · 10−3m⌋ · 102m

↬ where X0 is a constant (seed), ⌊·⌋ is the cut-off of a number to
integer.
⇛ Example:
Let’s put m = 2 and X0 = 2045:

↬ X20 = 04︸︷︷︸
rej

1820 25︸︷︷︸
rej

⇒ X1 = 1820

↬ X21 = 03︸︷︷︸
rej

3124 00︸︷︷︸
rej

⇒ X1 = 3124

↬ Simple generator but unfortunately quite bad generator. Firstly the
sequences are very short and strongly dependent on the X0 number.
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Middle square generator; von Neumann

⇛ This was a first generator written and it’s a good example how to
not write generators.
⇛ It’s highly non stable!

⇛ E 4.1 Write the von Neumann Middle square generator.
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General schematic
⇛ Typical MC generator layout:
• We choose initial constants: X0, X1, ... Xk−1.
• The k number if calculated based on the previous ones:

Xk = f(X0, ..., Xk−1),

⇛ Typically one generates 0/1 which are then converted towards double
precision numbers with U(0, 1).
⇛ Generator period (P, l integer numbers): P is the period:

∃l,P : Xi = Xi+j·P ∀j∈I+ ∀i>l
⇛ In post of the cases the period can be calculated analytically, although this
is sometimes not trivial.
⇛ There is a recommendation about the period of a generator. For N
numbers we usually require:

N ≪ P

⇛ In practice: N < P 2/3 is oki ;)
⇛ For example a generator ”Mersenne Twister” (Matsumoto, Nishimura,
1998): P ∼ 106000.
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Linear generators

⇛ General equation:

....
Xn = (a1Xn−1 + a2Xn−2 + ...+ akXn−k + c) mod m,

↬ where ai, c,m are parameters of a generator(integer numbers).
↬ Generator initialization ⇄ setting those parameters.
⇛ Very old generators. (often used in Pascal, or first C versions):

k = 1 : Xn = (aXn−1 + c) modm,

c =

{
= 0,multiplicative geneator

̸= 0,mix geneator
⇛ The period can be achieved by tuning the seed parameters
(multiplicative) :

Pmax =

{
2L−2; for m = 2L

m− 1; for m = prime number

Marcin Chrząszcz (Universität Zürich) Random number generators 8/21...

8/21



.

Linear generators

⇛ Some simple linear generators and their periods:

a c m Name/author
216 + 3 0 231 RANDU
22 · 237 + 1 0 235 Zielinski (1966)
69069 1 232 Marsaglia (1972)
16807 0 231 − 1 Park, Miller (1980)
40692 0 231 − 249 L’ Ecuyer (1988)

68909602460261 0 248 Fishman (1990)

⇛ m - prime number→ better statistical properties. ⇛ There are some quid lines
how to choose the parameters to make the period larger.
.

.
The periods of 232 ∼ 4 · 109 are not good enough for modern applications!
Remember that in practice N ≪ P 2/3!

⇛ Simple linear generators do not pass newer statistical tests!
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Linear generators
⇛ Marsaglia (1995) generators:

1. Xn = (1176Xn−1 + 1476Xn−2 + 1776Xn−3) mod m, m = 232 − 5
2. Xn = 213(Xn1 +Xn2 +Xn3) mod m, m = 232 − 5
3. Xn = (1995Xn1 + 1998Xn2 + 2001Xn3)modm, m = 235849

4. Xn = 219(Xn1 +Xn2 +Xn3)modm, m = 2321629

⇛ P = m3 − 1 ⇛ They got surprisingly good statistical properties! ⇛ The main
disadvantage is that multidimensional distributions look very suspicious:

Ui = Xi/m, i = 1, 2...⇒ Ui(0, 1)
(U1, U2, ..., Uk), (U2, U3, ..., Uk+1), ...(U1, U2, ..., Uk), (Uk+1, Uk+2, ..., U2k), ...

are being located on a resurfaces in a hiper-cube [0, 1]]k.
⇛ Using Fourier analysis one can find the distances between the hiper-surfaces.
⇛ Generalization for multiple dimensions:

....
Xn = A

−→
Xn−1 mod m,

⇛ E4.2 Code all 4 Marsaglia generators.
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Shift register generator
⇛ General equation:

....
bn = (a1Xn−1 + a2Xn−2 + ...+ akXn−k + c) mod 2,

where ai ⊂ ({0, 1})
⇛ Super fast and easy to implement due to: (a+ b) mod 2 = a xor b

a b a xor b
0 0 0
1 0 1
0 1 1
1 1 0

⇛ Maximal period is 2k − 1.
⇛ Example (Tausworths generator):
ap = aq = 1, other ai = 0 and p > q. Then: bn = bn−p xor bn−q
⇛ How to get numbers from bits (for example):
Ui =

∑L
j=1 2

−jbis+j , s < L.
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Fibonacci generator

⇛ In 1202 Fibonacci with Leonardo in Piza:

fn = fn−2 + fn−1, n ⩾ 2

⇛ Based on this first generator was created (Taussky and Todd, 1956):

Xn = (Xn−2 +Xn−1) mod m, n ⩾ 2

This generator isn’t so good in terms of statistics tests.
⇛ Generalization:

Xn = (Xn−r ⊙Xn−s) mod m, n ⩾ r, s ⩾ 1⊙
Pmax Stat. properties

+,− (2r − 1)2L−1 good
x (2r − 1)2L−13 very good
xor (2r − 1) poor

Marcin Chrząszcz (Universität Zürich) Random number generators 12/21...

12/21



.

MZT
⇛ Popular generator MZT, better known as RANMAR (Marsaglia, Zaman, Tsang, 1990):
• Very universal! Will give the same results on all computers that have integer

numbers with ⩾ 16 bit and floating with ⩽ 24 bits.
⇛ It’s effectivelly a combination of two generators:

• The Fibonacci:

F (97, 33, •)↣ Vn ∈ [0, 1)

where

x • y =
{
x− y, x ⩾ y
x− y + 1, x < y

• The initialization is done by setting Vi ,i = 1, ..., 97 numbers.
• They are initialized by bits: V1 = 0.b1b2...b24, V2 = 0.b25...b48,...
• The series bn is generated via two generators:{

yn = (yn−3 · yn−2 · yn−1)mod179
zn = (53zn−1 + 1)mod169

}
⇒ bn
{
0, (yn · zn)mod64 < 32
1, (yn · zn)mod64 ⩾ 32

}
• Initialization: provide 4 numbers 4: y1, y2, y3 ∈ 1, ...178, z1 ∈ 0, ..., 168
• Period P = 2120
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MZT

⇛ The second generator cn ∈ (0, 1):

cn = cn−1 ◦ (7654321/16777216), n ⩾ 2, c1 = 362436/16777216,

where:

c ◦ d =
{
c− d, c ⩾ d
c− d+ (16777213/16777216), c < d

}
, c, d ∈ [0, 1)

⇛ Period: P = 2144 ⇛ The full MZT generator is calculated:

Un = Vn • cn

• Period P = 2144 ∼ 1043

⇛ It fulfils all know statistical test! ⇛ E4.3 Code the Fibonacci generator ⇛ A4.1
Code the RANMAR generator.
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Multiply with carry, generator

⇛ We start from:

bn = (a1Xn−1 + a2Xn−2 + ...+ akXn−k + c) mod m,

where a1, .., ak ∈ N are constant parameters.
⇛ The c parameters is calculated foe each step:

c = ⌊(a1Xn−1 + a2Xn−2 + ...+ akXn−k + c)/m⌋,

⇛ Initialization: a1, .., ak, c.
⇛ Advantages:

• Fast and easy to implement.

• Large period.

• Good statistical properties.

• First proposed by Marsaglia.
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Multiply with carry, generator, example
⇛ MWC1:

c ◦ d =
{
Xn = (18000Xn−1 + cx)mod216

Yn = (30903Yn−1 + cy)mod216

}
16− bit digits

⇒ Zn = bXn1 ...b
Xn
16 b

Yn
1 ...b

Yn
16 32− bit digits

⇛ Period: 260 ∼ 1018
⇛ MWC2:

Xn = (12013Xn−8 + 1066Xn−7 + 1215Xn−6 + 1492Xn−5 + 1776Xn−4

+1812Xn−3 + 1860Xn−2 + 1941Xn−1 + cX) mod 2
16

Yn = (9272Yn−8 + 7777Yn−7 + 6666Yn−6 + 5555Yn−5 + 4444Yn−4

+3333Yn−3 + 2222Yn−2 + 1111Yn−1 + cY ) mod 2
16

⇒ Zn = bXn1 ...b
Xn
16 b

Yn
1 ...b

Yn
16 32− bit digits

⇛ Period: 2250 ∼ 1075

⇛ E4.4 Code the MWC1 and MWC2.
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Subtract with borrow, generator

⇛ Created again by Marsaglia (1991):

Xn = (Xn−r ⊖Xn−s) mod m, r, s ∈ N,

where :

x⊖ y =
{
x− y − c+m, c = 1, when x− y − c < 0
x− y − c, c = 0, when x− y − c  0

⇛ Initialization: X1, ..., Xn−r and c = 0.
⇛ Fast and easy :)
⇛ Fails some of the basic statistics tests.
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Non linear generators
⇛ The natural solutions to problems of linear generators are the non-linear
generators (second part of 1980s).
⇛ Eichenauera i Lehna (1986):

Xn = (aX−1n1 + b) mod m,

⇛ Eichenauera-Hermanna (1993)

Xn = [a(n+ n0) + b]−1 mod m,

⇛ L. Blum, M. Blum, Shub (1986):

Xn = X2n−1 mod m,

↣ Very popular in cryptography.
⇛ Pros and cons:

• They all pass all statistical tests.

• Much slower then linear generators.
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RANLUX generator

⇛ All described generators are based on some mathematical algorithms and
recursion. The typical scheme is of constructing a MC generator:

• Think of a formula that takes some initial values.

• Generate large number of random numbers and put them through
statistical tests.

• If the test are positive we accept the the generator.

⇛ Now let’s think: why the hell numbers obtained that way are showing some
random number properties?

There is no science behind it, it’s pure luck!
⇛ M.Luscher (1993) hep-lat/9309020
⇛ Generator RANLUX based on Kolomogorow entropy and Lyapunov
exponent. Effectively we are building inside the generator the chaos theory.
⇛ RANLUX and Mersenne Twister (TRandom1, TRandom3) are the 2 most
powerful generators in the world that passed every known statistical test.
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Chaos theory in a nut shell

⇛ We know that the solution of classical systems is
described by trajectory in phase spaces. Now the
problem with this picture starts to be when arround
one point in this phase space we are getting more
and more trajectories that are drifting a part later
on.
⇛ The Lyapunov exponent tells us how a two
solutions drift apart with time:

|δX(t)| ≈ eλt|δX0|

⇛ Kolomogorow entropy:

hK =
∫
P

λdµ
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Wrap up

⇛ Things to remember:

• Computer cannot produce random numbers, only pseudorandom
numbers.

• We use pseudorandon numbers as random numbers if they are
statistically acting the same as random numbers.

• Linear generators are not commonly used nowadays.

• State of the art generators are the ones based on Kolomogorows theorem.
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Backup
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