Random number generators

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich^{uzH}

Monte Carlo methods, 17 March, 2016

Random and pseudorandom numbers

John von Neumann:

"Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number — there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method."

- \Rightarrow Random number: a given value that is taken by a random variable
- \twoheadrightarrow by definition cannot be predicted.
- \Rightarrow Sources of truly random numbers:
- Mechanical
- Physical
- \Rightarrow Disadvantages of physical generators:
- To slow for typical applications, especially the mechanical ones!
- Not stable; small changes in boundary conditions might lead to completely different results!

Random numbers - history remark

 \Rightarrow In the past there were books with random numbers:

- \Rightarrow It's obvious that they didn't become very popular ;)
- \Rightarrow This methods are comming back!
- \twoheadrightarrow Storage device are getting more cheap and bigger (CD, DVD). \twoheadrightarrow 1995: G. Marsaglia, 650MB of random numbers, "White and Black Noise".

Pseudorandom numbers

Commercially available physical generators of random numbers are usually based on electronic noise. This kind of generators do not pass simple statistical tests! Before you use them check they statistical properties.

- \Rightarrow Pseudorandom numbers- numbers generated accordingly to strict mathematical formula.
- \Rightarrow Strictly speaking they are non random numbers, how ever they have all the statistical properties of random numbers.
- \Rightarrow How ever modern generators are so good that no one can distinguish the pseudo random numbers generated by then from true random numbers.
- \Rightarrow Mathematical methods of producing pseudorandom numbers:
- Good statistical properties of generated numbers.
- Easy to use and fast!
- Reproducible!

 \Rightarrow Because of those properties the truelly random numbers are not used in practice any more!

Middle square generator; von Neumann

 \Rightarrow The first mathematical generator (middle square) was proposed by von Neumann (1964).

$$\hookrightarrow \text{ Formula:} \qquad X_n = \lfloor X_{n-1}^2 \cdot 10^{-m} \rfloor - \lfloor X_{n-1}^2 \cdot 10^{-3m} \rfloor \cdot 10^{2m}$$

 \hookrightarrow where X_0 is a constant (seed), $\lfloor\cdot\rfloor$ is the cut-off of a number to integer.

$$\Rightarrow \text{ Example:}$$
Let's put $m = 2$ and $X_0 = 2045$:
 $\Rightarrow X_0^2 = \underbrace{04}_{\text{rej}} 1820 \underbrace{25}_{\text{rej}} \Rightarrow X_1 = 1820$
 $\Rightarrow X_1 = 3124$
 $\Rightarrow X_1 = 3124$

 \hookrightarrow Simple generator but unfortunately quite bad generator. Firstly the sequences are very short and strongly dependent on the X_0 number.

Middle square generator; von Neumann

 \Rightarrow This was a first generator written and it's a good example how to not write generators.

 \Rightarrow It's highly non stable!

```
mchrzasz-ThinkPad-W530% python gen.py 14714 4
21650.0
46872.0
219698.0
4826721.0
2329723538.0
5.42761170924e+14
2.94589685716e+25
8.67830820626e+46
7.53130325698e+89
Traceback (most recent call last):
  File "gen.py", line 29, in <module>
    sys.exit(main())
  File "gen.py", line 22, in main
    tmp=X0**2
OverflowError: (34, 'Numerical result out of range')
```

 \Rightarrow E 4.1 Write the von Neumann Middle square generator.

General schematic

- \Rightarrow Typical MC generator layout:
- We choose initial constants: X_0 , X_1 , ... X_{k-1} .
- The *k* number if calculated based on the previous ones:

$$X_k = f(X_0, ..., X_{k-1}),$$

 \Rightarrow Typically one generates 0/1 which are then converted towards double precision numbers with $\mathcal{U}(0,1).$

 \Rightarrow Generator period (*P*, *l* integer numbers): *P* is the period:

$$\exists_{l,P}: X_i = X_{i+j \cdot P} \ \forall_{j \in \mathbb{I}^+} \ \forall_{i > l}$$

 \Rightarrow In post of the cases the period can be calculated analytically, although this is sometimes not trivial.

 \Rightarrow There is a recommendation about the period of a generator. For N numbers we usually require:

$N \ll P$

⇒ In practice: $N < P^{2/3}$ is oki ;) ⇒ For example a generator "Mersenne Twister" (Matsumoto, Nishimura, 1998): $P \sim 10^{6000}$.

Linear generators

 \Rightarrow General equation:

$$X_n = (a_1 X_{n-1} + a_2 X_{n-2} + \ldots + a_k X_{n-k} + c) \mod m,$$

 \hookrightarrow where a_i, c, m are parameters of a generator (integer numbers). \hookrightarrow Generator initialization \rightleftharpoons setting those parameters. \Rightarrow Very old generators. (often used in Pascal, or first C versions): k = 1: $X_n = (aX_{n-1} + c) \mod m$, $c = \begin{cases} = 0, \text{multiplicative generator} \\ \neq 0, \text{mix generator} \end{cases}$ \Rightarrow The period can be achieved by tuning the seed parameters (multiplicative) : $P_{\max} = \begin{cases} 2^{L-2}; \text{ for } m = 2^L\\ m-1; \text{ for } m = \text{prime number} \end{cases}$

Linear generators

 \Rightarrow Some simple linear generators and their periods:

a	c	m	Name/author
$2^{1}6 + 3$	0	2^{31}	RANDU
$2^2 \cdot 23^7 + 1$	0	2^{35}	Zielinski (1966)
69069	1	2^{32}	Marsaglia (1972)
16807	0	$2^{31} - 1$	Park, Miller (1980)
40692	0	$2^{31} - 249$	L' Ecuyer (1988)
68909602460261	0	2^{48}	Fishman (1990)

 \Rightarrow *m* - prime number \rightarrow better statistical properties. \Rightarrow There are some quid lines how to choose the parameters to make the period larger.

The periods of $2^{32} \sim 4 \cdot 10^9$ are not good enough for modern applications! Remember that in practice $N \ll P^{2/3}!$

 \Rightarrow Simple linear generators do not pass newer statistical tests!

Linear generators

⇒ Marsaglia (1995) generators:

1.
$$X_n = (1176X_{n-1} + 1476X_{n-2} + 1776X_{n-3}) \mod m, \ m = 2^{32} - 5$$

2.
$$X_n = 2^{13}(X_{n1} + X_{n2} + X_{n3}) \mod m, \ m = 2^{32} - 5$$

3.
$$X_n = (1995X_{n1} + 1998X_{n2} + 2001X_{n3})modm, \ m = 2^{35}849$$

4.
$$X_n = 2^{19} (X_{n1} + X_{n2} + X_{n3}) modm, \ m = 2^{32} 1629$$

 $\Rightarrow P = m^3 - 1 \Rightarrow$ They got surprisingly good statistical properties! \Rightarrow The main disadvantage is that multidimensional distributions look very suspicious:

$$U_i = X_i/m, \ i = 1, 2... \Rightarrow U_i(0,1)$$
$$(U_1, U_2, ..., U_k), (U_2, U_3, ..., U_{k+1}), ... (U_1, U_2, ..., U_k), (U_{k+1}, U_{k+2}, ..., U_{2k}), ...$$

are being located on a resurfaces in a hiper-cube [0, 1]^k.

 \Rightarrow Using Fourier analysis one can find the distances between the hiper-surfaces.

 \Rightarrow Generalization for multiple dimensions:

$$X_n = \mathbf{A} \overrightarrow{X}_{n-1} \bmod m,$$

 \Rightarrow E4.2 Code all 4 Marsaglia generators.

Marcin Chrząszcz (Universität Zürich)

Shift register generator

 \Rightarrow General equation:

$$b_n = (a_1 X_{n-1} + a_2 X_{n-2} + \dots + a_k X_{n-k} + c) \mod 2,$$

where $a_i \subset (\{0,1\})$ \Rightarrow Super fast and easy to implement due to: $(a+b) \mod 2 = a \mod b$

а	Ь	a xor b
0	0	0
1	0	1
0	1	1
1	1	0

$$\Rightarrow \text{Maximal period is } 2^k - 1.$$

$$\Rightarrow \text{Example (Tausworths generator):}$$

$$a_p = a_q = 1, \text{ other } a_i = 0 \text{ and } p > q. \text{ Then: } b_n = b_{n-p} \text{ xor } b_{n-q}$$

$$\Rightarrow \text{ How to get numbers from bits (for example):}$$

$$U_i = \sum_{j=1}^{L} 2^{-j} b_{is+j}, s < L.$$

Fibonacci generator

 \Rightarrow In 1202 Fibonacci with Leonardo in Piza:

$$f_n = f_{n-2} + f_{n-1}, \ n \ge 2$$

 \Rightarrow Based on this first generator was created (Taussky and Todd, 1956):

$$X_n = (X_{n-2} + X_{n-1}) \mod m, \ n \ge 2$$

This generator isn't so good in terms of statistics tests. \Rightarrow Generalization:

$$X_n = (X_{n-r} \odot X_{n-s}) \mod m, \ n \ge r, \ s \ge 1$$

\odot	P_{max}	Stat. properties
+, -	$(2^r - 1)2^{L-1}$	good
$\ x$	$(2^r - 1)2^{L-13}$	very good
$\ xor$	$(2^r - 1)$	poor

MZT

- \Rightarrow Popular generator MZT, better known as RANMAR (Marsaglia, Zaman, Tsang, 1990):
- Very universal! Will give the same results on all computers that have integer numbers with $\geqslant 16$ bit and floating with $\leqslant 24$ bits.
- \Rightarrow It's effectively a combination of two generators:
- The Fibonacci:

$$F(97, 33, \bullet) \rightarrow V_n \in [0, 1)$$

where

$$x \bullet y = \begin{cases} x-y, & x \geqslant y \\ x-y+1, & x < y \end{cases}$$

- The initialization is done by setting V_i , i = 1, ..., 97 numbers.
- They are initialized by bits: $V_1 = 0.b_1b_2...b_{24}$, $V_2 = 0.b_{25}...b_{48}$,...
- The series b_n is generated via two generators:

$$\left\{ \begin{array}{l} y_n = (y_{n-3} \cdot y_{n-2} \cdot y_{n-1}) \mod 179 \\ z_n = (53z_{n-1} + 1) \mod 169 \end{array} \right\} \Rightarrow b_n \left\{ \begin{array}{l} 0, \quad (y_n \cdot z_n) \mod 64 < 32 \\ 1, \quad (y_n \cdot z_n) \mod 64 \ge 32 \end{array} \right.$$

- Initialization: provide 4 numbers 4: $y_1, y_2, y_3 \in 1, ...178$, $z_1 \in 0, ..., 168$
- Period $P = 2^{120}$

 \Rightarrow The second generator $c_n \in (0, 1)$:

 $c_n = c_{n-1} \circ (7654321/16777216), \quad n \ge 2, \ c_1 = 362436/16777216,$

where:

$$c \circ d = \left\{ \begin{array}{c} c - d, & c \ge d \\ c - d + (16777213/16777216), c < d \end{array} \right\}, c, d \in [0, 1)$$

 \Rightarrow Period: $P = 2^{144} \Rightarrow$ The full MZT generator is calculated:

 $U_n = V_n \bullet c_n$

• Period $P = 2^{144} \sim 10^{43}$

 \Rightarrow It fulfils all know statistical test! \Rightarrow E4.3 Code the Fibonacci generator \Rightarrow A4.1 Code the RANMAR generator.

Multiply with carry, generator

 \Rightarrow We start from:

$$b_n = (a_1 X_{n-1} + a_2 X_{n-2} + \ldots + a_k X_{n-k} + c) \mod m,$$

where $a_1, ..., a_k \in \mathbb{N}$ are constant parameters. \Rightarrow The c parameters is calculated foe each step:

$$c = \lfloor (a_1 X_{n-1} + a_2 X_{n-2} + \dots + a_k X_{n-k} + c) / m \rfloor,$$

- \Rightarrow Initialization: $a_1, ..., a_k, c$.
- \Rightarrow Advantages:
- Fast and easy to implement.
- Large period.
- Good statistical properties.
- First proposed by Marsaglia.

Multiply with carry, generator, example ⇒ MWC1:

$$c \circ d = \left\{ \begin{array}{l} X_n = (18000X_{n-1} + c_x) \mod 2^{16} \\ Y_n = (30903Y_{n-1} + c_y) \mod 2^{16} \end{array} \right\} \quad 16 - \text{bit digits}$$

$$\Rightarrow Z_n = b_1^{X_n} \dots b_{16}^{X_n} b_1^{Y_n} \dots b_{16}^{Y_n} \quad 32 - \text{bit digits}$$

⇒ Period: $2^{60} \sim 10^{18}$ ⇒ MWC2:

$$X_n = (12013X_{n-8} + 1066X_{n-7} + 1215X_{n-6} + 1492X_{n-5} + 1776_{Xn-4} + 1812X_{n-3} + 1860X_{n-2} + 1941X_{n-1} + c_X) \mod 2^{16}$$

 $Y_n = (9272Y_{n-8} + 7777Y_{n-7} + 6666Y_{n-6} + 5555Y_{n-5} + 4444Y_{n-4} + 3333Y_{n-3} + 2222Y_{n-2} + 1111Y_{n-1} + c_Y) \mod 2^{16}$

$$\Rightarrow Z_n = b_1^{X_n} \dots b_{16}^{X_n} b_1^{Y_n} \dots b_{16}^{Y_n} \quad 32 - \text{bit digits}$$

⇒ Period: $2^{250} \sim 10^{75}$ ⇒ E4.4 Code the MWC1 and MWC2.

Marcin Chrząszcz (Universität Zürich)

Subtract with borrow, generator

 \Rightarrow Created again by Marsaglia (1991):

$$X_n = (X_{n-r} \odot X_{n-s}) \bmod m, \ r, s \in \mathbb{N},$$

where :

$$x \ominus y = \begin{cases} x - y - c + m, \ c = 1, \text{ when } \mathbf{x} - \mathbf{y} - \mathbf{c} < 0\\ x - y - c, \ c = 0, \text{ when } \mathbf{x} - \mathbf{y} - \mathbf{c} \ge 0 \end{cases}$$

- \Rightarrow Initialization: $X_1, ..., X_{n-r}$ and c = 0.
- \Rightarrow Fast and easy :)
- \Rightarrow Fails some of the basic statistics tests.

Non linear generators

 \Rightarrow The natural solutions to problems of linear generators are the non-linear generators (second part of 1980s).

 \Rightarrow Eichenauera i Lehna (1986):

 $X_n = (aX_{n1}^{-1} + b) \bmod m,$

⇒ Eichenauera-Hermanna (1993)

$$X_n = [a(n+n_0)+b]^{-1} \bmod m,$$

 \Rightarrow L. Blum, M. Blum, Shub (1986):

$$X_n = X_{n-1}^2 \bmod m,$$

- \rightarrow Very popular in cryptography.
- \Rightarrow Pros and cons:
- They all pass all statistical tests.
- Much slower then linear generators.

RANLUX generator

 \Rightarrow All described generators are based on some mathematical algorithms and recursion. The typical scheme is of constructing a MC generator:

- Think of a formula that takes some initial values.
- Generate large number of random numbers and put them through statistical tests.
- If the test are positive we accept the the generator.

 \Rightarrow Now let's think: why the hell numbers obtained that way are showing some random number properties?

RANLUX generator

 \Rightarrow All described generators are based on some mathematical algorithms and recursion. The typical scheme is of constructing a MC generator:

- Think of a formula that takes some initial values.
- Generate large number of random numbers and put them through statistical tests.
- If the test are positive we accept the the generator.

 \Rightarrow Now let's think: why the hell numbers obtained that way are showing some random number properties? There is no science behind it, it's pure luck! \Rightarrow M.Luscher (1993) hep-lat/9309020

⇒ Generator RANLUX based on Kolomogorow entropy and Lyapunov exponent. Effectively we are building inside the generator the chaos theory.
 ⇒ RANLUX and Mersenne Twister (TRandom1, TRandom3) are the 2 most powerful generators in the world that passed every known statistical test.

Chaos theory in a nut shell

⇒ We know that the solution of classical systems is described by trajectory in phase spaces. Now the problem with this picture starts to be when arround one point in this phase space we are getting more and more trajectories that are drifting a part later on.

 \Rightarrow The Lyapunov exponent tells us how a two solutions drift apart with time:

$$|\delta X(t)| \approx e^{\lambda t} |\delta X_0|$$

 \Rightarrow Kolomogorow entropy:

$$h_K = \int_P \lambda d\mu$$

Wrap up

- \Rightarrow Things to remember:
- Computer cannot produce random numbers, only pseudorandom numbers.
- We use pseudorandon numbers as random numbers if they are statistically acting the same as random numbers.
- Linear generators are not commonly used nowadays.
- State of the art generators are the ones based on Kolomogorows theorem.

Backup

Marcin Chrząszcz (Universität Zürich)

Random number generators

²²/₂₁