
Kern- und
Teilchenphysik II
Exercise Sheet 1

HS 16
Prof. Nicola Serra,

Dr. Annapaola De Cosa

Dr. Marcin Chrzaszcz
http://www.physik.uzh.ch/de/lehre/PHY213/FS2017.
html

Issued: 21.09.2016
Due: 28.09.2016 16:00

Exercise 0: Conservation laws (3 Pts.)

To install a virtual Linux machine on Linux, MacOS and Windows, follow these steps:

a) Follow this link http://www.physik.uzh.ch/data/mchrzasz/Teaching/MC2016/, download the
zip file “VM_MC2016.zip" and unzip the folder.

b) Follow this link https://www.virtualbox.org/wiki/Downloads and download virtualbox (se-
lect “VirtualBox 5.1.6 for OS X hosts").

c) Install virtualbox, following the instructions of the installer.

d) Open virtualbox and press the “New" button to start the installation of a new virtual machine.

e) Start the installation following the suggestions of the installer, then when required select “use
an existing virtual hard disk file" and press "choose a virtual hard disk".

 http://www.physik.uzh.ch/de/lehre/PHY213/FS2017.html
 http://www.physik.uzh.ch/de/lehre/PHY213/FS2017.html
http://www.physik.uzh.ch/data/mchrzasz/Teaching/MC2016/
https://www.virtualbox.org/wiki/Downloads


f) Browse to the “VM_MC2016" folder and select “Ubuntu 64-bit.vmdk". Then press “Create".
Note: please keep nonetheless all the other images present in the folder.

g) If the installation go smooth, you should end up with a correctly installed virtual machine present
in virtualbox main menu.

h) Once accessed to the virtual machine, these are the needed username and password:

username: excellent student
password: student

Exercise 1: Floating point representation (3 Pts.)



Let us label the numbers in decimal representation with a subscript ‘10’, in binary representation with
a subscript ‘2’, in hexadecimal representation with a subscript ‘16’.

a) Convert the following integer decimal numbers in hexadecimal and binary representations: 1210,
5310, 12310, 43110. (0.75 Pt.)

b) Convert the following binary and hexadecimal integer numbers in decimal representation: 100112,
11012, A216, 1AD16. (0.75 Pt.)

c) In binary16, a number is represented using 16 digits in the following way:

In some detail:

- The first bit represent the sign: 0↔ + and 1↔ −.
- The exponent is represented with 5 bits. Thus it can be an integer number from 0 to
31. The values 0 (i.e. 00000) and 31 (i.e. 11111) are reserved for special numbers (NaN,
infinity, subnormal numbers). We are thus left with values from 1 to 30. By convention,
the exponent of the floating number is the number represented by these 5 digits minus a
bias, in this case 15 (example: if we want to store 2−3, the exponent is −3 and thus we
should store −3 + 15 = 1210 = 011002 in that slot). In this way we can store exponents
from −14 (stored as 000012 = 110) to +15 (stored as 111102 = 3010).

- The remaining 10 bits are left for the mantissa. By convention (with the exception of
subnormal numbers), the first significant digit (the one before the dot) is always 1 and is
not stored. Thus, if the mantissa stored is 1000000000, one should read it as 1.1002 = 1.510.

Try to convert into binary16 the following decimal floating numbers: 0.312510, −43110. (0.5 Pt.)

d) With respect to the results of the problem (c), convert to hexadecimal representation the two
bytes representing your floating number and discuss the difference in the storage of your float
between big endian and little endian. (0.5 Pt.)

e) Discuss in some detail why, using a machine working with half precision (i.e. binary16), one
would get the following results:

INPUT A: INPUT B: INPUT C:
float a ,b, c; float a; float a, b, c;
a = 2050; a = 2050; a = 2050;
b = 1; for (int i=0; i<10; i++) b = 0;
c = a+b; a = a+1; for (int i=0; i<10; i++)

b = b+1;
OUTPUT A: OUTPUT B: c = a+b;
c = 2050; a = 2050;

OUTPUT C:
c = 2060;



Write down the binary representation of relevant intermediary results. (0.5 Pts.)

SOLUTION:

a) The answers are:

Decimal: Hexadecimal: Binary:
12 C 1100
53 35 110101
123 7B 1111011
431 1AF 110101111

A simple algorithm to convert an integer N from decimal to hexadecimal is the following:

1. set i = 1.

2. Compute hi = Nmod 16, i.e. the remainder of the integer (Euclidean) division N ÷ 16.

3. Use the hexadecimal “dictionary" to convert hi:
h: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
hex: 0 1 2 3 4 5 6 7 8 9 A B C D E F

4. Replace N → (N − hi)/16, set i = i + 1 and go back to step 2 until N = 0.

5. The number in hexadecimal representation is: hnhn−1 · · ·h2h1

This algorithm is actually valid for every base change.

Let us apply the algorithm above.

N = 12:

i = 1;
h1 = 12mod 16 = 12→ C ;
N → (N − 12)/16 = 0;
end : 1210 = C16

N = 53:

i = 1 i = 2
h1 = 53mod 16 = 5→ 5 ; h2 = 3mod 16 = 3→ 3
N → (N − 5)/16 = 3; N → (N − 3)/16 = 0;

end : 5310 = 3516

N = 123:

i = 1 i = 2
h1 = 123mod 16 = 11→ B ; h2 = 7mod 16 = 7→ 7
N → (N − 11)/16 = 7; N → (N − 7)/16 = 0;

end : 12310 = 7B16



N = 431:

i = 1 i = 2 i = 3
h1 = 431mod 16 = 15→ F ; h2 = 26mod 16 = 10→ A h3 = 1mod 16 = 1→ 1
N → (N − 11)/16 = 26; N → (N − 10)/16 = 1; N → (N − 1)/16 = 0;

end : 43110 = 1AF16

The former algorithm can be applied also for the conversion in binary. One just need to
change mod 16→ mod 2 in step 2 and to divide by 2 (not by 16) in step 4.

N = 12:

i = 1 i = 2 i = 3 i = 4
h1 = 12mod 2 = 0 h2 = 6mod 2 = 0 h3 = 3mod 2 = 1 h4 = 1mod 2 = 1
N → (N − 0)/2 = 6; N → (N − 0)/2 = 3; N → (N − 1)/2 = 1; N → (N − 1)/2 = 0;

end : 1210 = 11002

N = 53:

i = 1 i = 2 i = 3 i = 4
h1 = 53mod 2 = 1 h2 = 26mod 2 = 0 h3 = 13mod 2 = 1 h4 = 6mod 2 = 0
N → (N − 1)/2 = 26; N → (N − 0)/2 = 13; N → (N − 1)/2 = 6; N → (N − 0)/2 = 3;

i = 5 i = 6
h5 = 3mod 2 = 1 h6 = 1mod 2 = 1
N → (N − 1)/2 = 1; N → (N − 1)/2 = 0;

end : 5310 = 1101012

N = 123:

i = 1; i = 2 i = 3 i = 4
h1 = 123mod 2 = 1 h2 = 61mod 2 = 1 h3 = 30mod 2 = 0 h4 = 15mod 2 = 1
N → (N − 1)/2 = 61; N → (N − 1)/2 = 30; N → (N)/2 = 15; N → (N − 1)/2 = 7;

i = 5 i = 6 i = 7
h5 = 7mod 2 = 1 h6 = 3mod 2 = 1 h7 = 1mod 2 = 1
N → (N − 1)/2 = 3; N → (N − 1)/2 = 1; N → (N − 1)/2 = 0;

end : 5310 = 11110112



N = 431:

i = 1 i = 2 i = 3 i = 4, 5, 6, 7, 8, 9
h1 = 431mod 2 = 1 h2 = 215mod 2 = 1 h3 = 107mod 2 = 1 . . . (see N = 53)
N → (N − 1)/2 = 215; N → (N − 1)/2 = 107; N → (N)/2 = 53; . . .

end : 43110 = 1101011112

b) One needs to understand that the decimal representation of an integer is just a short-cut
notation. With 12410 one really means:

12410 = 1 · 102 + 2 · 101 + 4 · 100 .

This is valid in every basis. Thus is easy to find:

100112 = (1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20)10 = (16 + 2 + 1)10 = 1910

11012 = (1 · 23 + 1 · 22 + 0 · 21 + 1 · 20)10 = (8 + 4 + 1)10 = 1310

A216 = (A · 161 + 2 · 160)10 = (10 · 16 + 2)10 = 16210

1AD16 = (1 · 162 + A · 161 + D · 160)10 = (1 · 256 + 10 · 16 + 13)10 = 42910

c) Before converting a value into a floating number, one should convert it into a binary expres-
sion. We already know how to convert −43110. To convert a non-integer number N into
binary, one can use an extension of the algorithm used in exercise (1a).

1. i=0.

2. Take bNc (i.e. integer part of N) and convert it into a binary expression (call it hi).

3. Substitute N → 2(N − bNc).

4. Set i = i+1 and go back to step 2 until N = 0 or you have reached the desired precision.

5. Your number is h0.h1h2 . . . hn

Let us convert 0.3125 with the mentioned algorithm:

i = 0 i = 1 i = 2
h0 = b0.3125c = 0 h1 = b0.625c = 0 h2 = b1.25c = 1
N → 2(N − bNc) = 0.625; N → 2(N − bN)c) = 1.25; N → 2(N − bN)c) = 0.5;

i = 3 i = 4
h3 = b0.5c = 0 h1 = b1c = 1
N → 2(N − bNc) = 1; N → 2(N − bN)c = 0;

end : 0.312510 = 0.01012

Thus 0.312510 = 0.01012 = (1.01 · 2−2)2. Thus:

- The sign is +→ 0



- The exponent is −2. Exponent+bias: −2 + 15 = 13 = 011012.
- The mantissa is 1.010. The first digit (1.) is not stored, and we store 0100000000.

Thus we have:

0.312510 → 0︸︷︷︸
sign

01101︸ ︷︷ ︸
exp+bias

0100000000︸ ︷︷ ︸
mantissa

→ 00110101︸ ︷︷ ︸
byte 1

00000000︸ ︷︷ ︸
byte 2

→ 35 00︸ ︷︷ ︸
hexadecimal

For −43110 the exercise is similar. We have already computed 43110 = 110101111 =
1.10101111 · 28. Thus:

- The sign is − → 1
- The exponent is 8. Exponent+bias: 8 + 15 = 23 = 101112.
- The mantissa is 1.10101111. The first digit (1.) is not stored, and we store 1010111100.

Thus we have:

−43110 → 1︸︷︷︸
sign

10111︸ ︷︷ ︸
exp+bias

1010111100︸ ︷︷ ︸
mantissa

→ 11011110︸ ︷︷ ︸
byte 1

10111100︸ ︷︷ ︸
byte 2

→ DE BC︸ ︷︷ ︸
hexadecimal

d) We have already found the hexadecimal bytes representation for our floating numbers:
0.312510 = 35 00 and −43110 = DE BC. In big endian, these bytes would be sequen-
tially stored in the memory “from left to right", while in little endian the sequential storage
would go in the other direction. Explicitly:

0.312510 → big endian : 35︸︷︷︸
slot i

00︸︷︷︸
slot i+1

−43110 → big endian : DE︸ ︷︷ ︸
slot i

BC︸ ︷︷ ︸
slot i+1

→ little endian : 00︸︷︷︸
slot i

35︸︷︷︸
slot i+1

→ little endian : BC︸ ︷︷ ︸
slot i

DE︸ ︷︷ ︸
slot i+1

e) The number 2050 expressed in binary is 100000000010.

In binary16 its representation is:

0︸︷︷︸
sign

11010︸ ︷︷ ︸
exp+bias

0000000001︸ ︷︷ ︸
mantissa

⇒ + 226−15 × 1.0000000001 = 1.0000000001× 211 (1)

From this representation is already clear that the binary16 precision doesn’t allow to store
numbers like 2049 or 2051 at all, since this would require a 12 digit precision.

Thus, both in INPUT A and in INPUT B, the code is requiring the machine a precision it
cannot reach. As it should be clear from how the number 2050 is stored, the machine has
reached it maximal precision and it cannot store the number 2051 whatsoever. This means
that at each step in which the number 2051 is met, the machine truncate it consistently with
its maximum working precision, returning 2050.

INPUT C is well written and works fine. Differently from INPUT B, this time the machine
works at first with numbers of order 1, which are manipulated without difficulties. For
example, the binary16 representation of 5 would be:

0︸︷︷︸
sign

10001︸ ︷︷ ︸
exp+bias

0100000000︸ ︷︷ ︸
mantissa−1

⇒ + 217−15 × 1.0100000000 = 1.01× 22 = 1012 (2)



where indeed 1012 = 510. After having dealt with all order-1 numbers, it finally sums them
to 2050, getting 2060 which is a perfectly storable number.

In conclusion, one should be aware of the bad consequences of requiring the machine to work
with more significant digits than its maximum.


