Random number generators and application

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich

Experimental Methods in Particle Physics, 19 November, 2015

Random number generators and application

Random and pseudorandom numbers

John von Neumann:

"Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number — there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method."

- \Rightarrow Random number: a given value that is taken by a random variable
- \twoheadrightarrow by definition cannot be predicted.
- \Rightarrow Sources of truly random numbers:
- Mechanical
- Physical
- \Rightarrow Disadvantages of physical generators:
- To slow for typical applications, especially the mechanical ones!
- Not stable; small changes in boundary conditions might lead to completely different results!

Random numbers - history remark

 \Rightarrow In the past there were books with random numbers:

- \Rightarrow It's obvious that they didn't become very popular ;)
- \Rightarrow This methods are comming back!
- \twoheadrightarrow Storage device are getting more cheap and bigger (CD, DVD). \twoheadrightarrow 1995: G. Marsaglia, 650MB of random numbers, "White and Black Noise".

Pseudorandom numbers

 \Rightarrow Pseudorandom numbers are numbers that are generated accordingly to strict mathematical formula.

 \hookrightarrow Strictly speaking they are non random numbers, how ever they have all the statistical properties of random numbers.

 \hookrightarrow Discussing those properties is a wide topic so let's just say that without knowing the formula they are generated by one cannot say if those numbers are random or not.

- \Rightarrow Mathematical methods of producing pseudorandom numbers:
- Good statistical properties of generated numbers.
- Easy to use and fast!
- Reproducible!

 \Rightarrow Since mathematical pseudorandom genrators are dominantly: pseudorandom \rightarrow random.

Middle square generator; von Neumann

 \Rightarrow The first mathematical generator (middle square) was proposed by von Neumann (1964).

$$\hookrightarrow \text{ Formula:} \qquad X_n = \lfloor X_{n-1}^2 \cdot 10^{-m} \rfloor - \lfloor X_{n-1}^2 \cdot 10^{-3m} \rfloor$$

 \hookrightarrow where X_0 is a constant (seed), $\lfloor\cdot\rfloor$ is the cut-off of a number to integer.

$$\Rightarrow \text{ Example:}$$
Let's put $m = 2$ and $X_0 = 2045$:
 $\Rightarrow X_0^2 = \underbrace{04}_{\text{rej}} \underbrace{1820}_{\text{rej}} \underbrace{25}_{\text{rej}} \Rightarrow X_1 = 1820$
 $\Rightarrow X_1^2 = \underbrace{03}_{\text{rej}} \underbrace{3124}_{\text{rej}} \underbrace{00}_{\text{rej}} \Rightarrow X_1 = 3124$

 \hookrightarrow Simple generator but unfortunately quite bad generator. Firstly the sequences are very short and strongly dependent on the X_0 number.

Linear generators

 \Rightarrow General equation:

$$X_n = (a_1 X_{n-1} + a_2 X_{n-2} + \dots + a_k X_{n-k} + c) \mod m,$$

Linear generators; examples

 \Rightarrow General equation:

$$X_n = (a_1 X_{n-1} + a_2 X_{n-2} + \dots + a_k X_{n-k} + c) \mod m,$$

Shift register generator

 \Rightarrow General equation:

$$b_n = (a_1 X_{n-1} + a_2 X_{n-2} + \dots + a_k X_{n-k} + c) \mod 2,$$

where $a_i \subset (\{0,1\})$ \Rightarrow Super fast and easy to implement due to: $(a+b) \mod 2 = a \mod b$

а	Ь	a xor b
0	0	0
1	0	1
0	1	1
1	1	0

$$\Rightarrow \text{Maximal period is } 2^k - 1.$$

$$\Rightarrow \text{Example (Tausworths generator):}$$

$$a_p = a_q = 1, \text{ other } a_i = 0 \text{ and } p > q. \text{ Then: } b_n = b_{n-p} \text{ xor } b_{n-q}$$

$$\Rightarrow \text{ How to get numbers from bits (for example):}$$

$$U_i = \sum_{j=1}^{L} 2^{-j} b_{is+j}, s < L.$$

Fibonacci generator

 \Rightarrow In 1202 Fibonacci with Leonardo in Piza:

$$f_n = f_{n-2} + f_{n-1}, \ n \ge 2$$

 \Rightarrow Based on this first generator was created (Taussky and Todd, 1956):

$$X_n = (X_{n-2} + X_{n-1}) \mod m, \ n \ge 2$$

This generator isn't so good in terms of statistics tests. \Rightarrow Generalization:

$$X_n = (X_{n-r} \odot X_{n-s}) \mod m, \ n \ge r, \ s \ge 1$$

\odot	P_{max}	Stat. properties
+, -	$(2^r - 1)2^{L-1}$	good
x	$(2^r - 1)2^{L-13}$	very good
xor	$(2^r - 1)$	poor

Marcin Chrząszcz (Universität Zürich)

Backup

Random number generators and application

