

Optimization

. Optimization problem:

```
.
\mathsf{W\!e} have a set X \subset \mathbb{R}^m and a function F: X \to \mathbb{R}.Task:
Find the optimum point:
```
$x_{opt} ∈ X : ∀_{x ∈ X} F(x) \geqslant F(x_{opt})$

 \Rightarrow This is completely different then normal function minimalization as we choose *xopt* from a set X. This makes a big differences for numerical computations.

²*/*9

- \Rightarrow The MC algorithms for solving this problem:
- *•* Hit and miss method the simplest and the slowest.
- *•* Sequence methods MC interpretation of method of further approximations.
- *•* Genetic methods, stat. optimization.

Optimization hit and miss

- \Rightarrow The algorithm acts as follows:
- *•* We generate *N* points *x*1*, ..., x^N ∈ X* from a constant p.d.f. on *X*.
- We calculate the F function value in the points $x_1, ..., x_N$:

$$
F_1 = F(x_1), \quad F_2 = F(x_2), \quad ..., \quad F_N
$$

- *•* We calculate $F^* = \min\{F_1, F_2, ..., F_N\}$.
- The solution is $x_j : F(x_j) = F^*$
- ⇛ Precision:

. $F(x) < F^*$ is smaller then ϵ . If $F^* = \min_{1 \leqslant j \leqslant N} \{ F(x_j) \}$ where $x_j = 1, 2, ... N$ are random points from uniform p.d.f. on $X.$ Then with the probability $1-(1-\gamma)^N$ the volume of points x for which

⇛ We can say that with probability 1 *−* (1 *− γ*) *^N* the points *xopt* was localized with the probability *γ*.

³*/*9

 \Rightarrow the smaller the volume the better the accuracy.

Marcin Chrząszcz (Universität Zürich) *Applications of MC methods* 3/9

Optimization hit and miss

- \Rightarrow The algorithm acts as follows:
- *•* We generate *N* points *x*1*, ..., x^N ∈ X* from a constant p.d.f. on *X*.
- We calculate the F function value in the points $x_1, ..., x_N$:

$$
F_1 = F(x_1), \quad F_2 = F(x_2), \quad ..., \quad F_N
$$

- *•* We calculate $F^* = \min\{F_1, F_2, ..., F_N\}$.
- The solution is $x_j : F(x_j) = F^*$
- ⇛ Precision:

. $F(x) < F^*$ is smaller then ϵ . If $F^* = \min_{1 \leqslant j \leqslant N} \{ F(x_j) \}$ where $x_j = 1, 2, ... N$ are random points from uniform p.d.f. on $X.$ Then with the probability $1-(1-\gamma)^N$ the volume of points x for which

⇛ We can say that with probability 1 *−* (1 *− γ*) *^N* the points *xopt* was localized with the probability *γ*.

⁴*/*9

 \Rightarrow the smaller the volume the better the accuracy.

Marcin Chrząszcz (Universität Zürich) *Applications of MC methods* 4/9

Optimization hit and miss

 \Rightarrow Example: $[0,1]^m$ and $F: X \rightarrow \mathbb{R}$.

How many points we need to generate to ahve 0*.*9 probability to be have half of the range of each direction in each precision:

- For $m = 1: \gamma = 1/2 \rightarrow N = 4$.
- For $m = 2$: $\gamma = 1/4 \rightarrow N = 9$.
- *•* For *m* = 14: γ = 2^{-14} → *N* > 23 000.

 \Rightarrow Inefficient for multi-dimensions. Marcin Chrząszcz (Universität Zürich) *Applications of MC methods* 5/9

Optimization sequence

- \Rightarrow The algorithm:
- *•* We choose the starting point *x*¹ *∈ X* from some p.d.f. on *X* set.
- *•* After generating *x*1*, x*2*, ..., xⁿ* check if some conditions are meet.
	- *◦* If YES then we stop and we put *xⁿ* as solution.
	- *◦* If NO then we generate *xn*+1 form a p.d.f. that depends on already generated points.
- \Rightarrow The basic sequence algorithm:

Marcin Chrząszcz (Universität Zürich) **Applications of MC methods** 6

- *•* Choose *x*1.
- **•** After we have $x_1, x_2, ..., x_n$ then we generate a temporary point ξ_n :

$$
x_{n+1} = \begin{cases} x_n, & \text{if } F(x_n + \xi_n) \ge F(x_n) - \epsilon \\ x_n + \xi_n, & \text{if } F(x_n + \xi_n) < F(x_n) - \epsilon \end{cases}
$$

⁶*/*9

Optimization sequence

 \Rightarrow From the above algorithm we will get a sequence:

 $F(x_1) \geq F(x_2) \geq F(x_3) \geq \ldots \geq F(x_n) \geq F(x_{n+1})...$

 \Rightarrow If the function is bounded from the bottom the the above sequence is converging.

 \Rightarrow How can we be sure it will converge to x_{opt} ?

Marcin Chrząszcz (Universität Zürich) *Applications of MC methods* 7/9

 \Rightarrow If we choose the correct the P_n every sequence starting from x' will converge to \overline{x} , where F has a local minimum. ⁷*/*9

Optimization sequence

- \Rightarrow There are two types of algorithms:
- *•* If the algorithm can find the global minimum then we call it: global algorithm.
- *•* If the algorithm can find only local minimum the we call it: local algorithm.
- \Rightarrow If in the sequence $\{x_n\}$ we find a point x' such that:

$$
F(x_{opt}) < F(x') < F(x_{opt}) + \epsilon
$$

⁸*/*9

then the above algorithm will converge only to *x ′* .

Marcin Chrząszcz (Universität Zürich) **Applications of MC methods** 8/9

 \Rightarrow Of course we can change the ϵ such that we escape the $x'.$

Backup

