# Applications of MC methods

### Marcin Chrząszcz mchrzasz@cern.ch



University of Zurich<sup>uze</sup>

Monte Carlo methods, 26 May, 2016

### Optimization

Optimization problem:

We have a set  $X \subset \mathbb{R}^m$  and a function  $F : X \to \mathbb{R}$ . Task: Find the optimum point:

 $x_{opt} \in X : \forall_{x \in X} F(x) \ge F(x_{opt})$ 

 $\Rightarrow$  This is completely different then normal function minimalization as we choose  $x_{opt}$  from a set X. This makes a big differences for numerical computations.

- $\Rightarrow$  The MC algorithms for solving this problem:
- Hit and miss method the simplest and the slowest.
- Sequence methods MC interpretation of method of further approximations.
- Genetic methods, stat. optimization.

### Optimization hit and miss

- $\Rightarrow$  The algorithm acts as follows:
- We generate N points  $x_1, ..., x_N \in X$  from a constant p.d.f. on X.
- We calculate the F function value in the points  $x_1, ..., x_N$ :

$$F_1 = F(x_1), \quad F_2 = F(x_2), \quad \dots, \quad F_N$$

- We calculate  $F^* = \min\{F_1, F_2, ..., F_N\}.$
- The solution is  $x_j : F(x_j) = F^*$
- $\Rightarrow$  Precision:

If  $F^* = \min_{1 \le j \le N} \{F(x_j)\}$  where  $x_j = 1, 2, ...N$  are random points from uniform p.d.f. on X. Then with the probability  $1 - (1 - \gamma)^N$  the volume of points x for which  $F(x) < F^*$  is smaller then  $\epsilon$ .

⇒ We can say that with probability  $1 - (1 - \gamma)^N$  the points  $x_{opt}$  was localized with the probability  $\gamma$ .

 $\Rightarrow$  the smaller the volume the better the accuracy.

### Optimization hit and miss

- $\Rightarrow$  The algorithm acts as follows:
- We generate N points  $x_1, ..., x_N \in X$  from a constant p.d.f. on X.
- We calculate the F function value in the points  $x_1, ..., x_N$ :

$$F_1 = F(x_1), \quad F_2 = F(x_2), \quad \dots, \quad F_N$$

- We calculate  $F^* = \min\{F_1, F_2, ..., F_N\}.$
- The solution is  $x_j : F(x_j) = F^*$
- $\Rightarrow$  Precision:

If  $F^* = \min_{1 \le j \le N} \{F(x_j)\}$  where  $x_j = 1, 2, ...N$  are random points from uniform p.d.f. on X. Then with the probability  $1 - (1 - \gamma)^N$  the volume of points x for which  $F(x) < F^*$  is smaller then  $\epsilon$ .

⇒ We can say that with probability  $1 - (1 - \gamma)^N$  the points  $x_{opt}$  was localized with the probability  $\gamma$ .

 $\Rightarrow$  the smaller the volume the better the accuracy.

### Optimization hit and miss

The smallest N that obeys:  $1 - (1 - \gamma)^N \ge 1 - \epsilon$ :

| γ      | $1-\epsilon$ |       |       |       |       |        |
|--------|--------------|-------|-------|-------|-------|--------|
|        | 0.5          | 0.9   | 0.95  | 0.99  | 0.999 | 0.9999 |
| 0.5    | 1            | 4     | 5     | 7     | 10    | 14     |
| 0.1    | 7            | 22    | 29    | 44    | 66    | 88     |
| 0.05   | 14           | 45    | 59    | 90    | 135   | 180    |
| 0.01   | 69           | 230   | 299   | 459   | 688   | 917    |
| 0.001  | 693          | 2302  | 2995  | 4603  | 6905  | 9206   |
| 0.0001 | 6932         | 23025 | 29956 | 46050 | 69075 | 92099  |

 $\Rightarrow$  Example:  $[0,1]^m$  and  $F: X \to \mathbb{R}$ .

How many points we need to generate to ahve 0.9 probability to be have half of the range of each direction in each precision:

• For 
$$m = 1: \gamma = 1/2 \implies N = 4$$

• For 
$$m = 2$$
:  $\gamma = 1/4 \rightarrow N = 9$ .

• For  $m = 14: \gamma = 2^{-14} \rightarrow N > 23\ 000.$ 

#### $\Rightarrow$ Inefficient for multi-dimensions.

### Optimization sequence

- $\Rightarrow$  The algorithm:
- We choose the starting point  $x_1 \in X$  from some p.d.f. on X set.
- After generating  $x_1, x_2, ..., x_n$  check if some conditions are meet.
  - $\circ$  If YES then we stop and we put  $x_n$  as solution.
  - $\circ~$  If NO then we generate  $x_{n+1}$  form a p.d.f. that depends on already generated points.
- $\Rightarrow$  The basic sequence algorithm:
- Choose x<sub>1</sub>.
- After we have x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> then we generate a temporary point ξ<sub>n</sub>:

$$x_{n+1} = \begin{cases} x_n, & \text{if } F(x_n + \xi_n) \ge F(x_n) - \epsilon \\ x_n + \xi_n, & \text{if } F(x_n + \xi_n) < F(x_n) - \epsilon \end{cases}$$

### Optimization sequence

 $\Rightarrow$  From the above algorithm we will get a sequence:

 $F(x_1) \ge F(x_2) \ge F(x_3) \ge \dots \ge F(x_n) \ge F(x_{n+1})\dots$ 

 $\Rightarrow$  If the function is bounded from the bottom the the above sequence is converging.  $\Rightarrow$  How can we be sure it will converge to  $x_{opt}$ ?



 $\Rightarrow$  If we choose the correct the  $P_n$  every sequence starting from x' will converge to  $\overline{x}$ , where F has a local minimum.

### Optimization sequence

 $\Rightarrow$  There are two types of algorithms:

- If the algorithm can find the global minimum then we call it: global algorithm.
- If the algorithm can find only local minimum the we call it: local algorithm.
- $\Rightarrow$  If in the sequence  $\{x_n\}$  we find a point x' such that:

 $F(x_{opt}) < F(x') < F(x_{opt}) + \epsilon$ 

then the above algorithm will converge only to x'.

 $\Rightarrow$  Of course we can change the  $\epsilon$  such that we escape the x'.

# Q & A

## Backup

Marcin Chrząszcz (Universität Zürich)

10/9