Matrix inversion and Partial Differential Equation Solving

Marcin Chrząszcz mchrzasz@cern.ch

¹*/*20

Monte Carlo methods, 28 April, 2016

Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 1/20

Announcement

There will be no lectures and class on 19*th* of May

Matrix inversion

 \Rrightarrow The last time we discussed the method of linear equations solving. The same methods can be used for matrix inversions! The columns of inverse matrix can be found solving:

$$
\mathbf{A}\overrightarrow{x} = \hat{e}_i, \quad i = 1, 2, ..., n
$$

 \Rightarrow In order to determine the inverse of a matrix **A** we need to choose a temprorary matrix **M** such that:

$$
H = I - MA
$$

with the normalization condition:

$$
\|\mathbf{H}\|=\max_{1\leqslant i\leqslant n}\sum_{j=1}^n|h_{ij}|<1
$$

where **I** is a unit matrix.

Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 3/20

⇛ Next we Neumann expand the (**MA**) *[−]*¹ matrix:

$$
(\mathsf{MA})^{-1} = (\mathsf{I} - \mathsf{H})^{-1} = \mathsf{I} + \mathsf{H} + \mathsf{H}^2 + \dots
$$

 \Rightarrow The inverse matrix we get from the equation:

$$
A^{-1} = A^{-1}M^{-1}M = (MA)^{-1}M
$$

Matrix inversion, basic method

 \Rightarrow For the (i,j) element of the matrix $(MA)^{-1}$ we have:

$$
(MA)^{-1}_{ij} = \delta_{ij} + h_{ij} + \sum_{i_1=1}^n h_{ii_1}h_{i_1j} + \sum_{i_1=1}^n \sum_{i_2=1}^n h_{ii_1}h_{i_1i_2}h_{i_2j} + \dots
$$

 \Rightarrow The algorithm: We choose freely a probability matrix $P=(p_{ij})$ with the conditions:

$$
p_{i,j} \ge 0
$$
, $p_{ij} = 0 \Leftrightarrow h_{ij} = 0$, $p_{i,0} = 1 - \sum_{j=1}^{n} p_{ij} > 0$

- \Rightarrow We construct a random walk for the state set $\{0,1,2,3...,n\}$:
- 1. In the initial moment $(t = 0)$ we start in the state $i_0 = i$.
- 2. If in the moment *t* the point is in the i_t state, then in the time $t + 1$ he will be in state i_{t+1} with the probability $p_{i_t, t_{t+1}}$.

⁴*/*20

3. We stop the walk if we end up in the state 0.

Marcin Chrząszcz (Universität Zürich) **Matrix inversion and Partial Differential Exercis** 4

Matrix inversion, basic method

 \Rightarrow For the observed trajectory $\gamma_k = (i, i_1,..,j_k,0)$ we assign the value of:

$$
X(\gamma_k) = \frac{h_{ii_1} h_{i_1 i_2} \dots h_{i_{k-1} i_k} \delta_{i_k j}}{p_{ii_1} p_{i_1 i_2} \dots p_{i_{k-1} i_k} \ p_{i_k 0}}
$$

 \Rightarrow The mean is the of all observed $X(\gamma_k)$ is an unbiased estimator of the $(MA)^{-1}_{ij}.$

. Prove: .

Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 5/20

• The probability of observing the *γ^k* trajectory:

 $P(\gamma_k) = p_{ii_1} p_{i_1 i_2} ... p_{i_{k-1} i_k} p_{i_k 0}$

• Form this point we follow the prove of the previous lecture (Neumann-Ulan) and prove that:

 $E{X(\gamma_k)} = (MA)^{-1}$

 \Rightarrow A different estimator for the $(MA)^{-1}_{ij}$ element is the Wasow estimator:

$$
X^*(\gamma_k) = \sum_{m=0}^k \frac{h_{ii_1} h_{i_1 i_2} ... h_{i_{m-1} i_m}}{p_{ii_1} p_{i_1 i_2} ... p_{i_{m-1} i_m}} \delta_{i_m j}
$$

Matrix inversion, dual method

 \Rightarrow On the set of states $\{0,1,2,...,n\}$ we set a binned p.d.f.

$$
q_1, q_2, ..., q_n
$$
 such that $q_i > 0$, $i = 1, 2, 3...n$ and $\sum_{i=1}^{n} q_i = 1$.

- \Rightarrow Then choose arbitrary the probability matrix P (usual restrictions apply):
- *•* The initial point we choose with the probability *qi*.
- If in the moment *t* the point is in the i_t state, then in the time $t + 1$ he will be in state i_{t+1} with the probability $p_{i_t, t_{t+1}}$.
- *•* The walk ends when we reach 0 state.
- *•* For the trajectory we assign a matrix:

$$
Y(\gamma_k) = \frac{h_{i_1i}h_{i_2i_1}...h_{i_ki_{k-1}}}{p_{i_1i}p_{i_2i_1}...p_{i_ki_{k-1}}}\frac{1}{q_{i_0}p_{i_k}^0}e_{i_ki_0} \in \mathbb{R}^n \times \mathbb{R}^n
$$

- ⇛ The mean of *Y* (*γ*) is an unbiased estimator of the (*MA*) *[−]*¹ matrix.
- \Rightarrow The Wasow estimator reads:

$$
Y^* = \sum_{m=0}^k \frac{h_{i_1i}h_{i_2i_1}...h_{i_mi_{m-1}}}{p_{i_1i}p_{i_2i_1}...p_{i_mi_{m-1}}}e_{i_mi_0} \in \mathbb{R}^n \times \mathbb{R}^n
$$

Marcin Chrzaszcz (Universität Zürich)
Matrix inversion and Partial Differential Equation Solving

Partial differential equations, intro

- \Rightarrow Let's say we are want to describe a point that walks on the \R axis:
- At the beginning $(t = 0)$ the particle is at $x = 0$
- If in the *t* the particle is in the *x* then in the time $t + 1$ it walks to $x + 1$ with the known probability *p* and to the point $x - 1$ with the probability $q = 1 - p$.
- *•* The moves are independent.
- \Rightarrow So let's try to described the motion of the particle.

Marcin Chrząszcz (Universität Zürich) **Matrix inversion and Partial Diffi**n

 \Rightarrow The solution is clearly a probabilistic problem. Let $\nu(x,t)$ be a probability that at time *t* particle is in position *x*. We get the following equation:

$$
\nu(x, t + 1) = p\nu(x - 1, t) + q\nu(x + 1, t)
$$

with the initial conditions:

 $\nu(0,0) = 1, \quad \nu(x,0) = 0 \text{ if } x \neq 0.$

⁷*/*20

 \Rightarrow The above functions describes the whole system (every (t,x) point).

Partial differential equation language we would say that the particle walks in steps of ∆*x* in times: *k*∆*t*, *k* = 1, 2, 3....:

 $\nu(x, t + \Delta t) = p\nu(x - \Delta x, t) + q\nu(x + \Delta x, t).$

 \Rightarrow To solve this equation we need to expand the $\nu(x,t)$ funciton in the Taylor series:

$$
\nu(x,t) + \frac{\partial \nu(x,t)}{\partial t} \Delta t = p\nu(x,t) - p \frac{\partial \nu(x,t)}{\partial x} \Delta x + \frac{1}{2} p \frac{\partial^2 \nu(x,t)}{\partial x^2} (\Delta x)^2
$$

$$
+ q\nu(x,t) - q \frac{\partial \nu(x,t)}{\partial x} \Delta x + \frac{1}{2} q \frac{\partial^2 \nu(x,t)}{\partial x^2} (\Delta x)^2
$$

 \Rightarrow From which we get:

$$
\frac{\partial \nu(x,t)}{\partial t} \Delta t = -(p-q)\frac{\partial \nu(x,t)}{\partial x} \Delta x + \frac{1}{2} \frac{\partial^2 \nu(x,t)}{\partial x^2} (\Delta x)^2
$$

⇛ Now We divide the equation by ∆*t* and take the ∆*t →* 0:

$$
(p-q)\frac{\Delta x}{\Delta t} \to 2c, \qquad \frac{(\Delta x)^2}{\Delta t} \to 2D,
$$

 \Rightarrow We get the Fokker-Planck equation for the diffusion with current:

$$
\frac{\partial \nu(x,t)}{\partial t} = -2c \frac{\partial \nu(x,t)}{\partial x} + D \frac{\partial^2 \nu(x,t)}{\partial x^2}
$$

 $\frac{8}{20}$

 \Rightarrow The D is the diffusion coefficient, c is the speed of current. For $c=0$ it is a symmetric distribution. Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 8/20

 \Rightarrow The aforementioned example shows the way to solve the partial differential equation using Markov Chain MC.

 \Rightarrow We will see how different classes of partial differential equations can be approximated with a Markov Chain MC, whose expectation value is the solution of the equation. \Rightarrow The Laplace equation:

$$
\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \ldots + \frac{\partial^2 u}{\partial x_k^2} = 0
$$

The $u(x_1, x_2, ..., x_k)$ function that is a solution of above equation we call harmonic function. If one knows the values of the harmonic function on the edges Γ(*D*) of the *D* domain one can solve the equation.

. The Dirichlet boundary conditions:

Find the values of $u(x_1, x_2, ..., x_k)$ inside the D domain knowing the values of the edge are given with a function:

 $u(x_1, x_2, ..., x_k) = f(x_1, x_2, ..., x_k) \in \Gamma(D)$

⁹*/*20

 \Rightarrow Now I am lazy so I put $k = 2$ but it's the same for all k!

Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 9/20

. The Dirichlet condition in the discrete form:

. Find the *u ∗* function which obeys the differential equation:

$$
U^*(x,y) = \frac{1}{4} \left[u^*(x-1,y) + u^*(x+1,y) + u^*(x,y-1) + u^*(x,y+1) \right]
$$

in all points $(x, y) \in D^*$ with the condition:

$$
u^*(x, y) = f^*(x, y), \quad (x, y) \in \Gamma(D^*)
$$

where $f^*(x, y)$ is the discrete equivalent of $f(x, y)$ function.

- \Rightarrow We consider a random walk over the lattice $D^* \cup \Gamma(D^*).$
- In the $t = 0$ we are in some point $(\xi, \eta) \in D^*$)
- If at the *t* the particle is in (x, y) then at $t + 1$ it can go with equal probability to any of the four neighbour lattices: (*x −* 1*, y*), (*x* + 1*, y*), (*x, y −* 1), (*x, y* + 1).
- \bullet If the particle at some moment gets to the edge $\Gamma(D^*$ then the walk is terminated.

Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 11/20

 \bullet For the particle trajectory we assign the value of: $\nu(\xi,\eta)=f^*(x,y)$, where $(x, y) \in \Gamma(D^*).$

 \Rightarrow Let $p_{\xi,\eta}(x,y)$ be the probability of particle walk that starting in (ξ,η) to end the walk in (*x, y*).

 \Rightarrow The possibilities:

1. The point $(\xi, \eta) \in \Gamma(D^*)$. Then:

$$
p_{\xi,\eta}(x,y) = \begin{cases} 1, & (x,y) = \xi, \eta) \\ 0, & (x,y) \neq \xi, \eta) \end{cases}
$$
 (1)

2. The point $(\xi, \eta) \in D^*$:

$$
p_{\xi,\eta}(x,y) = \frac{1}{4} \left[p_{\xi-1,\eta}(x,y) + p_{\xi+1,\eta}(x,y) + p_{\xi,\eta-1}(x,y) + p_{\xi,\eta+1}(x,y) \right] \tag{2}
$$

this is because to get to (*x, y*) the particle has to walk through one of the neighbours: (*x −* 1*, y*), (*x* + 1*, y*), (*x, y −* 1), (*x, y* + 1).

 \Rightarrow The expected value of the $\nu(\xi, \eta)$ is given by equation:

$$
E(\xi,\eta)=\sum_{(x,y)\in\Gamma^*}p_{\xi,\eta}(x,y)f^*(x,y)\qquad(3)
$$

¹²*/*20

where the summing is over all boundary points

Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 12/20

Laplace equation, Dirichlet boundary conditions ⇛ Now multiplying the 2 by *f ∗* (*x, y*) and summing over all edge points (*x, y*):

$$
E(\xi, \eta) = \frac{1}{4} \left[E(\xi - 1, \eta) + E(\xi + 1, \eta) + E(\xi, \eta - 1) + E(\xi, \eta + 1) \right]
$$

 \Rightarrow Putting now 1 to 3 one gets:

$$
E(x, y) = f^*(x, y), \quad (\xi, \eta) \in \Gamma(D^*)
$$

⇛ Now the expected value solves identical equation as our *u ∗* (*x, y*) function. From this we conclude:

$$
E(x, y) = u^*(x, y)
$$

¹³*/*20

 \Rightarrow The algorithm:

- *•* We put a particle in (*x, y*).
- *•* We observe it's walk up to the moment when it's on the edge Γ(*D ∗*).
- *•* We calculate the value of *f ∗* function in the point where the particle stops.
- *•* Repeat the walk *N* times taking the average afterwards.

. Important:

Example

Let function $u(x, y)$ be a solution of Laplace equation in the square: $0 \leqslant x, y \leqslant 4$ with the boundary conditions:

$$
u(x, 0) = 0
$$
, $u(4, y) = y$, $u(x, 4) = x$, $x(0, y) = 0$

 \Rightarrow Find the $u(2, 2)!$

$$
\Rightarrow
$$
 The exact solution: $u(x, y) = xy/4$ so $u(2, 2) = 1$.

 \Rightarrow E9.1 Implement the above example and find $u(2, 2)$.

Parabolic equation

 \Rightarrow We are looking for a function $u(x_1, x_2, ..., x_k, t)$, which inside the $D \subset \mathbb{R}^k$ obeys the parabolic equation:

$$
\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \ldots + \frac{\partial^2 u}{\partial x_k^2} = c \frac{\partial u}{\partial t}
$$

with the boundary conditions:

$$
u(x_1, x_2, ..., x_k, t) = g(x_1, x_2, ..., x_k, t), \quad (x_1, x_2, x_3, ..., x_k) \in \Gamma(D)
$$

and with the initial conditions:

$$
u(x_1, x_2, ..., x_k, 0) = h(x_1, x_2, ..., x_k, t), \quad (x_1, x_2, x_3, ..., x_k) \in D
$$

 \Rightarrow In the general case the boundary conditions might have also the derivatives.

Marcin Chrząszcz (Universität Zürich) **Matrix inversion and Partial Differential Equation** Solving 15

 \Rightarrow We will find the solution to the above problem using random walk starting from 1-dim case and then generalize it for n-dim.

 \Rightarrow We are looking for a function $u(x,t)$, which satisfies the equation:

$$
\frac{\partial^2 u}{\partial x^2} = c \frac{\partial u}{\partial t}
$$

with the boundary conditions:

$$
u(0,t) = f_1(t), \ \ u(a,t) = f_2(t)
$$

and with the initial conditions:

$$
u(x,0) = g(x).
$$

 \Rightarrow The above equation can be seen as describing the temperature of a line with time. We know the initial temperature in different points and we know that the temperature on the end points is know.

 \Rightarrow The above problem can be discreteized:

$$
x = kh
$$
, $h = \frac{a}{n}$, $k = 1, 2, ...n$ $t = jl$, $j = 0, 1, 2, 3..., l = const$

 \Rightarrow The differential equation:

$$
\frac{u(x+h,t-l)-2u(x,t-l)+u(x-h,t-l)}{h^2} = c \frac{u(x,t)-u(x,t-l)}{l}
$$
\nMarcin Chrzaszcz (Universität Zürich)

\nMatrix inversion and Partial Differential Equation Solving

\n[16/20]

 \Rightarrow The steps we choose such that: $ch^2=2l.$

 \Rightarrow Then we obtain the equation:

$$
u(x,t) = \frac{1}{2}u(x+h, t-l) + \frac{1}{2}u(x-h, t-l)
$$

 \Rightarrow The value of function u in the point x and t can be evaluated with the arithmetic mean form points: *x*+*h* and *x−h* in the previous time step. ⇛ The algorithm estimating the function in the time *τ* and point *ξ*:

- *•* The particle we put in the point *ξ* and a "weight" equal *τ* .
- *•* If in a given time step *t* particle is at *x* then with 50 : 50 chances it can go to $x - h$ or $x + h$ and time $t - l$.
- *•* The particle ends the walk in two situations:

Marcin Chrząszcz (Universität Zürich) **Matrix inversion and Partial Differential Solving 17**

- *◦* If it reaches the *x* = 0 or *x* = *a*. In this case we assign to a given trajectory a value of $f_1(t)$ or $f_2(t)$, where t is the actuall "weight".
- *◦* If the "weight" of the particle is equal zero. in this case we assign as a value of the trajectory the $g(x)$, where x is the actual position of the particle.

 \Rightarrow Repeat the above procedure *N* times. The expected value of a function *u* in (ξ, τ) point is the mean of observed values.

. Digression:

 \Box . The 1-dim calse can be treated as a 2-dim (x,t) , where the area is unbounded in the t dimension. The walk is terminated after maximum τ/l steps.

 \Rightarrow Repeat the above procedure *N* times. The expected value of a function *u* in (ξ, τ) point is the mean of observed values.

. Digresion:

 \Box . The 1-dim calse can be treated as a 2-dim (x,t) , where the area is unbounded in the t dimension. The walk is terminated after maximum τ/l steps.

Parabolic equation, n-dim generalization

 \Rightarrow We still choose the k and l values accordingly to:

Marcin Chrząszcz (Universität Zürich) *Matrix inversion and Partial Differential Equation Solving* 20/20

$$
\frac{ch^2}{l} = 2k
$$

where *k* is the number of space dimensions. \Rightarrow We get:

$$
u(x_1, x_2, ..., x_k) = \frac{1}{2k} \{ u(x_1 + h, x_2, ..., x_k, t - l) - u(x_1 - h, x_2, ..., x_k, t - l) + ... + u(x_1, x_2, ..., x_k + h, t - l) + u(x_1, x_2, ..., x_k - h, t - l) \}
$$

 \Rightarrow The k dimension problem we can solve in he same way as 1dim. \Rightarrow In each point we have $2k$ possibility to move(left-right) in each of the dimensions. The probability has to be $\frac{1}{2k}$.

Backup

