Integral equations, eigenvalue, function interpolation

Marcin Chrząszcz mchrzasz@cern.ch

Monte Carlo methods, 26 May, 2016

Marcin Chrząszcz (Universität Zürich)

Integral equations, eigenvalue, function interpolation

Integral equations, introduction

 \Rightarrow Fredholm integral equation of the second order:

$$\phi(x) = f(x) + \int_a^b K(x, y)\phi(y)dy$$

 \Rightarrow The f and K are known functions. K is called kernel.

- \Rightarrow The CHALLENGE: find the ϕ that obeys the above equations.
- \Rightarrow There are NO numerical that can solve this type of equations!

 \Rightarrow Different methods have to be used depending on the f and K functions.

 \Rightarrow The MC algorithm: construct a probabilistic algorithm which has an expected value the solution of the above equations. There are many ways to build this!

 \Rightarrow We assume that the Neumann series converges!

Integral equations, approximations

 \Rightarrow The following steps approximate the Fredholm equation:

$$\phi_0(x) = 0,$$
 $\phi_1(x) = f(x) + \int_a^b K(x, y)\phi_0(y)dy = f(x)$

$$\phi_2(x) = f(x) + \int_a^b K(x, y)\phi_1(y)dy = f(x) + \int_a^b K(x, y)f(y)dy$$

$$\phi_3(x) = f(x) + \int_a^b K(x, y) dy = f(x) + \int_a^b K(x, y) f(y) dy + \int_a^b \int_a^b K(x, y) K(y, z) f(z) dy dz$$

 \Rightarrow Now we put the following notations:

$$K^{(1)}(x,y) = K(x,y) \qquad \qquad K^{(2)}(x,y) = \int_{a}^{b} K(x,t)K(t,y)dt$$

 \Rightarrow One gets:

$$\phi_3(x) = f(x) + \int_a^b K^{(1)}(x,y)f(y)dy + \int_a^b K^{(2)}(x,y)f(y)dy$$

Integral equations, approximations

 \Rightarrow Continuing this process:

$$K^{(n)}(x,y) = \int_{a}^{b} K(x,t) K^{(n-1)}(t,y) dt$$

and the n-th approximation:

$$\phi_n(x) = f(x) + \int_a^b K^{(1)}(x, y) f(y) dy + \int_a^b K^{(2)}(x, y) f(y) dy + \dots + \int_a^b K^{(n)}(x, y) f(y) dy$$

 \Rightarrow Now going with the Neumann series: $n \rightarrow \infty$:

$$\phi(x) = \lim_{n \to \infty} \phi_n(x) = f(x) + \sum_{i=1}^n \int_a^b K^{(n)}(x, y) f(y) dy$$

 \Rightarrow The above series converges only inside the square: $a \leqslant x, y \leqslant b$ for:

$$\int_{a}^{b} \int_{a}^{b} |K(x,y)|^{2} dx dy < 1$$

- \Rightarrow The random walk of particle happens on the interval (a, b):
- In the t = 0 the particle is in the position $x_0 = x$.
- If the particle at time t = n 1 is in the x_{n-1} position then in time t = n the position is: x_n = x_{n-1} + ξ_n. The numbers ξ₁, ξ₂, ... are independent random numbers generated from ρ p.d.f..
- The particle stops the walk once it reaches the position *a* or *b*.
- The particle life time is n when xn ≤ a and xn ≥ b.
- The expected life time is given by the equation:

$$\tau(x) = \rho_1(x) + \int_a^b \left[1 + \tau(y)\right] \rho(y - x) dy$$

where:

$$\rho_q(x) = \int_{-\infty}^{a-x} \rho(y) dy + \int_{b-x}^{\infty} \rho(y) dy$$

is the probability of particle annihilation in the time t = 1.

 \Rightarrow The above can be transformed:

$$\tau(x) = 1 + \int_{a}^{b} \tau(y)\rho(x-y)dy \tag{1}$$

 \Rightarrow Now if p(x) is the probability that the particle in time t = 0 was in position x gets annihilated because it crosses the border a.

 \Rightarrow The probability obeys the analogous equation:

$$p(x) = \rho(x) + \int_{a}^{b} p(y)\rho(y-x)dy$$
⁽²⁾

where

$$\rho(x) = \int_{-\infty}^{a-x} \rho(y) dy$$

is the probability of annihilating the particle in the first walk.

- \Rightarrow For the functions au and ho we got the integral Fredholm equation.
- \Rightarrow So the above random walk can be be used to solve the Equations 1 and 2.

⇒ The $\rho(x)$ is the p.d.f. of random variables ξ_n . ⇒ We observe the random walk of the particle. The trajectory: $\gamma = (x_0, x_1, x_2, ..., x_n)$. This means for t = 0, 1, 2..., n - 1 and $x_n \leq a$ or $x_n \geq b$. Additionally we mark: $\gamma_r = (x_0, x_1, ..., x_r), r \leq n$. ⇒ We defined a random variable:

$$S(x) = \sum_{r=1}^{n} V(\gamma_r) f(x_{r-1})$$

where

$$V(\gamma_0) = 1, V(\gamma_r) = \frac{K(x_{r-1}, x_r)}{\rho(x_r - x_{r-1})} V(\gamma_{r-1})$$

 \Rightarrow One can prove that E[S(x)] treated as a function of x variable is the solution to the integral equation.

 \Rightarrow We define a new random variable:

$$c_r(x) = \begin{cases} \frac{V(\gamma_{n-r})f(x_{n-r})}{\rho(x_{n-r})}, & r \leq n, \\ 0, & r > n \end{cases}$$

where $\rho_r(x)$ is defined as:

$$\rho_1(x) = \int_{-\infty}^{a-x} \rho(y) dy + \int_{b-x}^{+\infty} \rho(y) dy,$$

$$\rho_r(x) = \int_a^b \dots \int_a^b \rho(x_1 - x) \rho(x_2 - x_1) \dots \rho(x_{r-1} - x_{r-2}) \rho_1(x_{r-1}) dx_1 \dots dx_{r-1}$$

is the probability that the particle that is at given time in the x coordinate will survive r moments.

 \Rightarrow One can prove that $E[c_r(x)]$ treated as a function of x variable is the solution to the integral equation.

Integral equations, general remark

There is a general trick:

Any integral equation can be transformed to linear equation using quadratic form. If done so one can use the algorithms form lecture 8 to solve it. Bullet prove solution!

Eigenvalue problem

 \Rightarrow The Eigenvalue problem is to find λ that obeys the equation:

$$H\overrightarrow{x} = \lambda \overrightarrow{x}$$

 \Rightarrow For simplicity we assume there the biggest Eigenvalue is singular and it's real. \Rightarrow The numerical method is basically an iterative procedure to find the biggest Eigenvalue:

- We choose randomly a vector \overrightarrow{x}_0 .
- The *m* vector we choose accordingly to formula:

$$\overrightarrow{x}_m = H \overrightarrow{x}_{m-1} / \lambda_m$$

where λ_m is choose such that

$$\sum_{j=1}^{n} |(\overrightarrow{x}_m)_j| = 1$$

the $(\overrightarrow{x})_j$ is the j coordinate of the \overrightarrow{x} vector, j = 1, 2, 3, ..., n

 \Rightarrow The set λ_m is converging to the largest Eigenvalue of the H matrix.

Eigenvalue problem

 \Rightarrow From the above we get:

$$\lambda_1 \lambda_2 \dots \lambda_m(\overrightarrow{x}_j) = (H^m \overrightarrow{x}_0)_j; \quad \lambda_1 \lambda_2 \dots \lambda_m = \sum_{j=1}^n (H^m \overrightarrow{x}_0)_j$$

 \Rightarrow For big k and m > k one gets:

$$\frac{\sum_{j=1}^{n} (H^m \overrightarrow{x}_0)_j}{\sum_{j=1}^{n} (H^k \overrightarrow{x}_0)_j} = \lambda_{k+1} \lambda_{k+2} ... \lambda_m \approx \lambda^{m-k}$$

from which:

$$\lambda \approx \left[\frac{\sum_{j=1}^{n} (H^m \overrightarrow{x}_0)_j}{\sum_{j=1}^{n} (H^k \overrightarrow{x}_0)_j}\right]^{\frac{1}{m-k}}$$

 \Rightarrow This is the Eigenvalue estimation corresponding to $H^m \overrightarrow{x}_0$ for sufficient large m.

Eigenvalue problem, probabilistic model \Rightarrow Let $Q = (q_{ij}), i, j = 1, 2, ..., n$ is the probability matrix:

$$q_{ij} \ge 0, \quad \sum_{j=1}^{n} q_{ij} = 1$$

 \Rightarrow We construct a random walk on the set: $\{1, 2, ..., n\}$ accordingly to the below rules:

- In the t = 0 the particle is in a randomly chosen state i₀ accordingly to binned p.d.f.: p_j.
- If in the moment t = n 1 the particle is in i_{n-1} state then in the next moment it goes to the state i_n with the probability q<sub>i_{n-1}j.
 </sub>
- For $\gamma = (i_0, i_1, ...)$ trajectory we define a random variable:

$$W_r(\gamma) = \frac{(\overrightarrow{x})_{i_0}}{p_{i_0}} \frac{h_{i_1i_0}h_{i_2i_1}h_{i_3i_2}...h_{i_ri_{r-1}}}{q_{i_1i_0}q_{i_2i_1}q_{i_3i_2}...q_{i_ri_{r-1}}}$$

 \Rightarrow Now we do:

$$\frac{E\left[W_m(\gamma)\right]}{E\left[W_k(\gamma)\right]} \approx \lambda^{m-k}$$

 \Rightarrow So to estimate the largest Eigenvalue:

Function interpolation

- \Rightarrow Lets put $f(x_1) = f_1$, $f(x_2) = f_2$, which we know the functions.
- \Rightarrow The problem: calculate the f(p) for $x_1 .$

 \Rightarrow From the interpolation method we get:

$$f(p) = \frac{p - x_1}{x_2 - x_1} f_2 + \frac{x_2 - p}{x_2 - x_1} f_1$$

 \Rightarrow I am jet-lagged writing this so let me put: $x_1 = 0$ and $x_2 = 1$:

$$f(p) = (1-p)f_1 + pf_2$$

 \Rightarrow For 2-dim:

$$f(p_1, p_2) = \sum_{\delta} r_1 r_2 f(\delta_1, \delta_2)$$

where:

$$r_i = \begin{cases} 1 - p_i, & \delta_i = 0\\ p_i, & \delta_i = 1 \end{cases}$$

 \Rightarrow the sum is over all pairs (in this case 4).

Function interpolation

 \Rightarrow For n-dim we get a monstrous:

$$f(p_1, p_2, ..., p_n) = \sum_{\delta} r_1 r_2 ... r_n f(\delta_1, ..., \delta_n)$$

the sum is over all combinations $(\delta_1,...,\delta_n)$, where $\delta_i = 0, 1$.

⇒ The above sum is over 2^n terms and each of it has (n + 1) terms. It's easy to imagine that for large n this is hard... Example n = 50 then we have 10^{14} ingredients. ⇒ There has to be a better way to do this!

 \Rightarrow From construction:

$$0 \leqslant r_1 r_2 \dots r_n \leqslant 1, \qquad \qquad \sum_{\delta} r_1 r_2 \dots r_n = 1$$

 \Rightarrow We can treat the r_i as probabilities! We define a random variable: $\xi = (\xi_1, ..., \xi_n)$ such that:

$$\mathcal{P}(\xi_i = 0) = 1 - p_i, \qquad \mathcal{P}(\xi_i = 1) = p_i$$

The extrapolation value is then equal:

$$f(p_1, p_2, ..., p_n) = E[f(\xi_1, ..., \xi_n)]$$

Travelling Salesman Problem

- Salesman starting from his base has to visit n-1 other locations and return to base headquarters. The problem is to find the shortest way.
- For large n the problem can't be solver by brutal force as the complexity of the problem is (n-1)!
- There exist simplified numerical solutions assuming factorizations. Unfortunately even those require anonymous computing power.
- Can MC help? YES :)
- The minimum distance l has to depend on 2 factors: P the area of the city the Salesman is travelling and the density of places he wants to visit: $\frac{n}{P}$
- Form this we can assume:

$$l \sim P^a (\frac{n}{P})^b = P^{a-b} n^b.$$

Traveling Salesman Problem

• From dimension analysis:

$$a-b=\frac{1}{2}.$$

- To get *l* we need square root of area.
- From this it's obvious:

$$l \sim P^a (\frac{n}{P})^b = P^{0.5} n^{a-0.5}.$$

• Now we can multiply the area by alpha factor that keeps the density constant then:

$$l \sim \alpha^{0.5} \alpha^{a-0.5} = \alpha^a$$

• In this case the distance between the clients will not change, but the number of clients will increase by α so:

 $l \sim \alpha$

• In the end we get:
$$a = 1$$

Traveling Salesman Problem

In total:

$$l \sim k(nP)^{0.5}$$

- Of course the k depends on the shape of the area and locations of client. However for large *n* the k starts loosing the dependency. It's an asymptotically free estimator.
- To use the above formula we need to somehow calculate k.
- How to estimate this? Well make a TOY MC: take a square put uniformly n points. Then we can calculate l. Then it's trivial:

$$k = l(nP)^{-0.5}$$

Traveling Salesman Problem

- This kind of MC experiment might require large CPU power and time. The adventage is that once we solve the problem we can use the obtained k for other cases (it's universal constant!).
- It turns out that:

$$k \sim \frac{3}{4}$$

- Ok, but in this case we can calculate *l* but not the actual shortest way! Why the hell we did this exercise?!
- Turns out that for most of the problems we are looking for the solution that is close to smallest *l* not the exact minimum.

War Games

- S. Andersoon 1966 simulated for Swedish government how would a tank battle look like.
- Each of the sides has 15 tanks. that they allocate on the battle field.
- The battle is done in time steps.
- Each tank has 5 states:
 - \circ OK
 - Tank can only shoot
 - Tank can only move
 - Tank is destroyed
 - Temporary states
- This models made possible to check different fighting strategies.

Backup

Integral equations, eigenvalue, function interpolation

²⁰/19