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Announcement

There will be no lectures and class on 19th of May

Marcin Chrząszcz (Universität Zürich) Partial Differential Equation Solving 2/19...

2/19



.

Dirichlet conditions:expected number of steps
⇛ find the function u(x1, x2, ..., xk) such that if fulfils the Laplace equation:

∂2u

∂x21
+
∂2u

∂x22
+ ...+

∂2u

∂x2k
= 0, (x1, x2, ..., xk) ∈ D ⊂ Rk

In the domain D, on the the Γ(D) the u function is given by:

U(x1, x2, ..., xk) = f(x1, x2, ..., xk), (x1, x2, ..., xk) ∈ Γ(D)

⇛ Now lets assume that the domain D is a hyperball:

0 ¬
k∑
i=1

x2i ¬ r2, r = const

⇛ Now πν(x1, x2, ..., xk) is a probability that a particle starting from (x1, x2, ..., xk)
will end up on the edge after ν steps. The κ(x1, x2, ..., xk) is the estimated number
of steps for this trajectory.

π0 =

{
1, (x1, x2, ..., xk) ∈ Γ(D)
0, (x1, x2, ..., xk) ∈ D

(1)

πν =
1

2k

′∑
πν−1(x1′, x2′, ..., xk′) (2)
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Dirichlet conditions:expected number of steps
⇛ From Eq. 1 and 2 one gets:

κ(x1, x2, ..., xk) =
∞∑
ν=1

νπν(x1, x2, ..., xk)

one gets:

κ(x1, x2, ..., xk) =
1
2k

∞∑
ν=1

[
ν

′∑
πν−1(x1′, x2′, ..., xk′)

]

=
1
2k

∞∑
ν=1

[
(ν − 1)

′∑
πν−1(x1′, x2′, ..., xk′)

]
+
1
2k

∞∑
ν=1

′∑
πν−1(x1′, x2′, ..., xk′)

⇛ From which we get:

κ(x1, x2, ..., xk) =
1
2k

′∑
κ(x1′, x2′, ..., xk′) + 1

⇛ Now this is equivalent of the Poisson differential equation:

∂2κ

∂x21
+
∂2κ

∂x22
+ ...+

∂2κ

∂x2k
= −2k, b. con. κ(x1, x2, ..., xk) = 0, (x1, x2, ..., xk) ∈ Γ(D)
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Dirichlet conditions:expected number of steps
⇛ From previous equation: κ(x1, x2, ..., xk) = ψ(x1, x2, ..., xk) −

∑k
i=1 x

2
i we get

the for the ψ function the Laplace equation:

∂2ψ

∂x21
+
∂2ψ

∂x22
+ ...+

∂2ψ

∂x2k
= 0

because on the border (Γ(D)):

ψ(x1, x2, ..., xk) = r
2 = const

so also inside the D: ψ(x1, x2, ..., xk) = r2 = const ⇛ From which we can estimate
the number steps in the random walk:

κ(x1, x2, ..., xk) = r
2 −

k∑
i=1

¬ r2

.
Important conclusion:
..

.

The expected number of steps in the random walk (the time of walk) from the point
(x1, x2, ..., xk) till the edge od the domain can be estimated by r number (the
LINEAR! size). It is completly independent of the k!
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Dirichlet conditions as linear system

⇛ In the discrete form we can write the Dirichlet conditions as (2-dim case):

u(x, y) =
1
4
[u(x− 1, y) + u(x+ 1, y) + u(x, y − 1) + u(x, y + 1)] , (x, y) ∈ D

u(x, y) = f(x, y), (x, y) ∈ Γ(D)

⇛ Now we can order the grid ((x, y) ∈ D ∪ Γ(D)), we can represente the above
equations as a linear system:

ui = ai +
n∑
j=1

hijuj , i = 1, 2, ...., n

.
The trick:
..

.
So to solve a differential equation with Dirichlet boundary condition we can use all
the methods of solving linear equation systems such as Neumann-Ulam or Wassow.
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Dirichlet conditions as linear system - example

• To do this we act as following: we number separately
the points inside the D domain and on the border
Γ(D).

• We write for each point inside the domain the Laplace
equation as system of linear equations:

u1 −u2/4 −u4/4 = (f1 + f10)/4

− u1/4 u2 − u3/4 − u5/4 = (f2)/4

−u2/4 u3 −u6/4 = (f3 + f4)/4

− u1/4 u4 − u5/4 = (f8 + f9)/4

−u2/4 −u4/4 u5 −u6/4− u7/4 = 0

− u3/4 − u5/4 u6 = (f5 + f6)/4

− u5/4 u7 = (f6 + f7 + f8)/4
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Dirichlet conditions as linear system - example
⇛ The above equation we can transform the above equation into the iterative repre-
sentation:

−→u = −→a + H−→u

where −→u = (u1, u2, ..., u7) is the vector which represent the values of the function
inside the D domain, −→a is the linear combinations of the boundary values. In our
example:

H =



0
1
4
0
1
4
0 0 0

1
4
0
1
4
0
1
4
0 0

0
1
4
0 0 0

1
4
0

1
4
0 0 0

1
4
0 0

0
1
4
0
1
4
0
1
4
1
4

0 0
1
4
0
1
4
0 0

0 0 0 0
1
4
0 0



⇛ To find the solution to aka u one can use the methods
we already know: Neumann-Ulam and Wasow, etc.
⇛ There are tricks and tips one can use to make this
problem faster as each of the entry is 14 .
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Neumann-Ulam method

⇛ We put the particle in (x, y).
⇛ We observe the trajectory of the particle until it reaches the boundary. Point Pk is
the last point before hitting the boundary.
⇛ For each trajectory we assign a value that the arithmetical mean of the boundary
points that are neighbours of the point Pk.
⇛ We repeat the above n times and calculate the mean.
⇛ The example solution for 20 trajectories:

u(2, 2) = 1.0500± 0.2756

⇛ E 10.1 Solve the above linear system using the Neumann-Ulam method for an as-
sumed boundary conditions.
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Dual Wasow method

⇛ We choose the boundary conditions with arbitrary chosen probability p.d.f. p(Q)
the starting point.
⇛ We choose with equal probability the point inside D where the particle goes.
⇛ With equal probability we choose the next positions and so on until the particle hits
the boundary in the point Q′.
⇛ We count all trajectories N((x1, x2, x3, ..., xk) that that have passed the point
(x1, x2, x3, ..., xk).
⇛ For the point (x1, x2, ..., xk) we calculate:

w(x1, x2, ..., xk) =
1
2k
N(x1, x2, ..., xk)

f(Q)
p(Q)

⇛ The above steps we repeat N times.
⇛ After that we take the arithmetic mean of w.
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Random walk with different step size

⇛ If u(x, y) is a harmonic function that obeys the Laplace equation and Sr(x, y) is a
circle in with the middle point (x, y) and radius r. Then a theorem states:

Sr(x, y) =
1
2π

∫ 2π
0

u(x+ r cosϕ, y + r sinϕ)dϕ

⇛ The above is true for in all the dimensions.
⇛ The E.Muller method:

• At the begging we set the point in the initial point: (x1, x2, ..., xk).

• We construct a k dimensional sphere with center (x1, x2, ..., xk) and radius r.
The r has to be choosen in a way that the whole is inside the D: Sr(−→x ) ∈ D. We
choose a random point from U(0, 2π) on the sphere which is our new point.

• We stop the walk when the point is on Γ(D).

⇛ We repeat this N times.
⇛ The final result if the arithmetical mean of all trajectories and is equal of the
u(x1, x2, ..., xk).
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Muller method

⇛ The method is faster the faster the particle reaches the edge.
⇛ In order to do so we choose the radius that it is the maximal one that allows the
sphere to be inside the domain D.

⇛ There is a problem!!!! The probability that we choose a
point on the edge is 0!!!!
⇛ An approximation has to be made: we choose a small
number δ and we consider that the particle reached the
border when the distance is with δ.
⇛ We can always choose the δ such that the estimator
error of function is smaller then a given ϵ.
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Muller method, example

⇛ An example solution of Laplace equation on square (0 ¬ x ¬ 1, 0 ¬ y ¬ 1) with
the boundary conditions: u(0, y) = 1, u(1, y) = u(x, 0) = u(x, 1) = 1

Method Points (x, y) N. trajectories Ave.n.of.steps Time [s] Solution

Cons. step (0.3, 0.3) 2000 89.87 42.0 0.396
(0.5, 0.1) 2000 46.05 21.5 0.075

(h = 0.05) (0.5, 0.5) 2000 115.83 54.1 0.247

Muller met.
(0.3, 0.3) 2000 6.06 17.9 0.398
(0.5, 0.1) 2000 6.04 18.0 0.078
(0.5, 0.5) 2000 5.07 14.5 0.255
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Other boundary conditions

⇛ Find the solution to the Laplace equation:

∂2u

∂x21
+
∂2u

∂x22
+ ..+

∂2u

∂x2k
= 0, (x1, x2, ..., xk) ∈ D ⊂ Rk

inside the D domain if on the edge Γ(D) the function fulfils the equation:

f(x1, x2, ..., xk)
∂u(x1, x2, ..., xk)

∂n
+ g(x1, x2, ..., xk)u(x1, x2, ..., xk) = h(x1, x2, ..., xk)

where ∂u(x1,x2,...,xk)
∂n

is there derivative in the direction of normal to the Γ(D) in the
direction inside D.
⇛ The cases:

• f = 0. ⇛ Dirichlet boundary condition (1st class condition).

• g = 0. ⇛ Neumann boundary condition (2nd class condition).

• others. ⇛ General case (3rd class condition).
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Other boundary conditions

⇛ In 2-dim:

∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ D ⊂ R2

with the boundary condition:

f(x, y)
∂u(x, y)
∂n

+ g(x, y)u(x, y) = h(x, y), (x, y) ∈ Γ(D)

⇛ And the discrete differential equation:

u(x, y) =
1
4
[u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)]

.
Reminder:
..

.

If at moment t the point is in (x, y) then in the t+ 1 time the particle moves with
equal probability to one of the following points: (x− h, y), (x+ h, y), (x, y − h),
(x, y + h).
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Random walk for boundary points
⇛ The boundary point Q has only one internal neighbour point P .

• If the normal is parallel to the grid axis in the point Q:

f(Q)
u(P )− u(Q)

h
+ g(Q)u(Q) = h(Q)

• Solving the above to get u(Q) we get:

u(Q) =
f(Q)u(P )

f(Q)− hg(Q) −
h(Q)

f(Q)− hg(Q)

• To help we assign a temporary values:

ϕ(Q) =
f(Q)

p [f(Q)− hg(Q)] , ψ(Q) = −h h(Q)
(1− p) [f(Q)− hg(Q)]

⇛ So:

u(Q) = pϕ(Q)u(P ) + (1− p)ψ(Q)

⇛ Interpretation: u(Q) can be seen that with probability p it is equal ϕ(Q)u(P ) and
with provability (1− p) is equal to ψ(Q).
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Random walk for boundary points
⇛ The boundary point Q has only one internal neighbour point P .
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Random walk for boundary points, continued

⇛ The boundary point Q has only one internal neighbour point P .
⇛ The algorithm:

• We start the walk from a internal point (X,Y ) and we assign to it a weight:
W = 1.

• If a particle at a given moment is sitting on the boundary then with probability p it
goes back to previous point P and gets a weight W · ϕ(Q) and with probability
(1− p) it finishes the walk and gets a weight of W · ψ(Q).
• For each trajectory we assign a value equal to the weight of the last point. So for

example if the trajectory: Q(1), Q(2), Q(3), ..., Q(k) we will assign the number:

ϕ(Q(1))ϕ(Q(2))ϕ(Q(3))...ϕ(Q(k−1))ψ(Q(k))

⇛ One again this is only for 1 neighbour point P and that the normal of the boundary
is parallel to the grid!
⇛ The general case is more difficult!
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More general case
⇛ The boundary conditions:

f(Q)
1

h
√
1 + c21

[c2u(P1) + c1u(P2)− u(Q∗] +

g(Q)u(Q∗) = h(Q)

⇛ The trick:

ϕ1(Q
∗) =

c1f(Q)

p1

[
f(Q)− h

√
1 + c21

]
ϕ2(Q

∗) =
c2f(Q)

p2

[
f(Q)− h

√
1 + c21

]
ψ3(Q

∗) = −h
√
c21 + 1h(Q))

p3

[
f(Q)− h

√
1 + c21

]
⇛ Putting above new variables we get:

u(Q∗) = p1ϕ1(Q
∗)u(P1) + p2ϕ2(Q

∗)u(P2) + p3ψ(Q
∗)

⇛ We will interpret the p1, p2, p3 numbers as probability.
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More general case, continuation

⇛ The rules of random walk:

• The particle starts in (X,Y ) inside the domain with weight: W = 1.

• If at some point in time the particle hits the boundary in point Q∗:

◦ With probability p1 it goes to point P1 and the weight is W · ϕ1(Q∗)
◦ With probability p2 it goes to point P2 and the weight is W · ϕ2(Q∗)
◦ With probability p3 it stops the walk and the weight is W · ψ(Q∗)

• For each trajectory we assign the weight at the end point.
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Backup
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