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Integral equations, introduction

= Fredholm integral equation of the second order:

b
o) = @)+ [ K@)y

= The f and K are known functions. K is called kernel.

= The CHALLENGE: find the ¢ that obeys the above equations.

= There are NO numerical that can solve this type of equations!

= Different methods have to be used depending on the f and K func-
tions.

= The MC algorithm: construct a probabilistic algorithm which has an
expected value the solution of the above equations. There are many
ways to build this!

= We assume that the Neumann series converges!
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Integral equations, approximations

= The following steps approximate the Fredholm equation:

do(z) =0, o1(x) = F(x) + / K (@, 9)é0(y)dy = £(z)

Ba(z) = f(2) + /wal( /Ko:y

¢3(2) = f(2) + [P K(z,y)dy = f(@) + [* K@) f@dy + [ [* K(@,9)K (y, 2)f (z)dydz

= Now we put the following notations:
b
KD (z,y) = K(z,y) K® (z,y) = / K (2, ) K (t,y)dt
= One gets:

b b
$3(z) = £(x) + / KO (2, ) f(y)dy + / K (2, ) f (y)dy
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Integral equations, approximations

= Continuing this process:
b
KOy) = [ K0k

and the n-th approximation:

b b
oule) = f(z) + / KO (2, ) f(y)dy + / K™ (2, ) f(y)dy+

a a b
+/ K™ (z,y)f(y)dy

= Now going with the Neumann series: n — oo:

d(z) = limp—oopn(z —I—Z/ K(n) (z,y) f(y)dy
= The above series converges only inside the square: a < x, y < b for:
boopb
/ / |K (z,y)*dedy < 1
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Integral equations, algorithm

= The random walk of particle happens on the interval (a, b):
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In the ¢t = 0 the particle is in the position z¢ = x.

If the particle at time ¢ =n — 1 is in the z,,—1 position then in time ¢ = n the
position is: p, = n—1 + &n. The numbers &1, &o, ... are independent random
numbers generated from p p.d.f..

The particle stops the walk once it reaches the position a or b.
The particle life time is n when x,, < a and z,, > b.

The expected life time is given by the equation:

b
o / 1 4+ 7(9)] oy — 2)dy
where:

pq(x) =/HE p(y)der/boo p(y)dy

— 00 —T

is the probability of particle annihilation in the time ¢t = 1.
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Integral equations, algorithm 2

= The above can be transformed:

b
) =1+ / r(@)o(x — y)dy 0

= Now if p(x) is the probability that the particle in time ¢ = 0 was in position = gets
annihilated because it crosses the border a.
= The probability obeys the analogous equation:

where
p(z) = /a_z p(y)dy

is the probability of annihilating the particle in the first walk.
= For the functions 7 and p we got the integral Fredholm equation.
= So the above random walk can be be used to solve the Equations 1 and 2.
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Integral equations, algorithm 3

= The p(z) is the p.d.f. of random variables &,.

= We observe the random walk of the particle. The trajectory: v = (zo, 1, 2, ..., Tn)-
This means for t = 0,1,2...,n — 1 and z, < a or =, > b. Additionally we mark:
Vr = (T0, 1, ey Tp)y T < M

= We defined a random variable:

S@@) =Y V() f(zr)

where
V(’YO) = 17
K(zyr—1,z,)
Viy)= ——"—"V (=
(’7 ) p(l‘r — mr—l) (’7 1)

= One can prove that E [S(x)] treated as a function of x variable is the solution to
the integral equation.

7
/19‘

Marcin Chrzaszcz (Universitét Ziirich) Integral equations, eigenvalue, function interpolation



Integral equations, algorithm 4

= We define a new random variable:
V(vn—r)f(@n_r)
— = rn,
er(z) = p(Tn—r)
0, r>n

where pr(x) is defined as:

a—x —+oo
p1(z) —/ p(y)dy+/ p(y)dy,

%) b—zx
b b
pr(z) = / / plx1 —z)p(x2 — x1)...p(@r—1 — Tr—2)p1(Tr—1)dz1...dTr 1

is the probability that the particle that is at given time in the x coordinate will survive
r moments.

= One can prove that E [c,(z)] treated as a function of z variable is the solution to
the integral equation.
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Integral equations, general remark

There is a general trick:

Any integral equation can be transformed to linear equation using quadratic form. If
done so one can use the algorithms form lecture 8 to solve it. Bullet prove solution!
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Eigenvalue problem

= The Eigenvalue problem is to find A that obeys the equation:
HZ =7

= For simplicity we assume there the biggest Eigenvalue is singular and it's real.
= The numerical method is basically an iterative procedure to find the biggest Eigen-
value:

® We choose randomly a vector Zo.

® The m vector we choose accordingly to formula:
E)m == H?m—l/)\m

where )\, is choose such that
S I@m)l=1
=1

the ('), is the j coordinate of the T vector, j = 1,2,3,....n

= The set \,, is converging to the largest Eigenvalue of the H matrix.
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Eigenvalue problem

= From the above we get:

)\1)\2...)\m(?]‘) = (Hm?o)j; AMA2. Ay = Z(Hm?o)j

j=1
= For big k and m > k one gets:

S (HTF ),

ot et DA VD YHTIND VAPV L
> (H T 0); e

from which:

n m 1
A |:Zj—1(H 70)1] e
>y (H*Zo);

= This is the Eigenvalue estimation corresponding to H™ o for sufficient large m.
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Eigenvalue problem, probabilistic model
= Let Q = (¢ij5). 4,5 = 1,2, ..., n is the probability matrix:

n
qi; 2 0, Zlﬁj =1
j=1

= We construct a random walk on the set: {1, 2, ....n} accordingly to the below rules:

® |n the t = 0 the particle is in a randomly chosen state i¢ accordingly to binned
p.d.f.: pj.

® [f in the moment ¢t = n — 1 the particle is in 4,1 state then in the next moment
it goes to the state i, with the probability ¢;,, ;.

® For v = (4o, 1,...) trajectory we define a random variable:
—
(@)ig hivioPizia higis - Pigi,_y

Pig  GirigQiziiQigiz---YGiri, 1

Wr(7) =

= Now we do:

EWn()] o
E [Wi(y)]

= So to estimate the largest Eigenvalue:
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Function interpolation

= Lets put f(z1) = f1, f(x2) = f2, which we know the functions.
= The problem: calculate the f(p) for z1 < p < 2.
= From the interpolation method we get:

p—x1 T2 —p

flp) = f2+ f

To — X1 T2 — X1

= | am jet-lagged writing this so let me put: 1 = 0 and x> = 1:

fp) =1 -p)fr +pf
= For 2-dim:

Fpr,p2) =Y riraf(61,62)
s
where:

1—pi, 51:0
ry =
Di, 57,':].

=> the sum is over all pairs (in this case 4).
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Function interpolation
= For n-dim we get a monstrous:
f(p1,p2, ..., pn) = ZT1T2...Tnf(51, vy On)
B

the sum is over all combinations (41, ..., d»), where §; = 0, 1.

= The above sum is over 2" terms and each of it has (n + 1) temrs. It's easy to
imagine that for large n this is hard... Example n = 50 then we have 10'* ingredients.
= There has to be a better way to do this!

= From construction:

0L rire...ry < 1, Zrlrg...rn =H
5

= We can treat the r; as probabilities! We define a random varaible: £ = (&1, ...,&n)
such that:

PE=0=1-p;, PE=1)=p
The extrapolation value is then equal:

f(p17p27 ---7pn) =£ [f(£17 75”)]
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Travelling Salesman Problem

e Salesman starting from his base has to visit n — 1 other locations
and return to base headquarters. The problem is to find the
shortest way.

e For large n the problem can’t be solver by brutal force as the
complexity of the problem is (n — 1)!

e There exist simplified numerical solutions assuming factorizations.
Unfortunately even those require anonymous computing power.

e Can MC help? YES )

e The minimum distance [ has to depend on 2 factors: P the area of
the city the Salesman is travelling and the density of places he

..n
wants to visit: —
P

e Form this we can assume:

[~ P°

(%)b — pa=bpb.
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Traveling Salesman Problem

e From dimension analysis:

1
P ——
@ 2

To get | we need square root of area.
From this it's obvious: n
I~ Pa(ﬁ)b _ PO'Sna_Oﬁ.

e Now we can multiply the area by alpha factor that keeps the

density constant then:

0.5aa—0.5 — 0

|~ o

In this case the distance between the clients will not change, but
the number of clients will increase by « so:

|~
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Traveling Salesman Problem

In total:

I ~ k(nP)%®

e Of course the k depends on the shape of the area and locations of
client. However for large n the k starts loosing the dependency. It's
an asymptotically free estimator.

e To use the above formula we need to somehow calculate k.

e How to estimate this? Well make a TOY MC: take a square put
uniformly n points. Then we can calculate [. Then its trivial:

k=1(nP)" %5
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Traveling Salesman Problem

e This kind of MC experiment might require large CPU power and
time. The adventage is that once we solve the problem we can use
the obtained k for other cases (it's universal constant!).

e |t turns out that:

3
k’\-’z

e Ok, but in this case we can calculate [ but not the actual shortest
way! Why the hell we did this exercise?!

e Turns out that for most of the problems we are looking for the
solution that is close to smallest [ not the exact minimum.
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War Games

S. Andersoon 1966 simulated for Swedish government how would a
tank battle look like.

Each of the sides has 15 tanks. that they allocate on the battle field.

The battle is done in time steps.
Each tank has 5 states:

o OK

Tank can only shoot

Tank can only move

Tank is destroyed

Temporary states

O
O
]
]

This models made possible to check different fighting strategies.
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Backup
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