Introduction to numerical Methods

Marcin Chrząszcz, Danny van Dyk mchrzasz@cern.ch, danny.van.dyk@gmail.com

University of Zurich^{UZH}

Numerical Methods, 19 September, 2016

Course plan

- ⇒ The course consists of 2 hours lecture and 2 hours of exercise.
- ⇒ TA will explain to you how you will get points for the class exercise (you will be coding the algorithms) described on the lecture and applying them to some problems.
- \Rightarrow After passing the class exercise (> 66% of points) you will have an exam (oral).
- ⇒ The final mark:

mark = 0.5 exam + 0.5 class

⇒ The final exam will be average of exam and class marks.

Mark	Range
6	84 - 100 %
5	67 - 83 %
4	50 - 67 %
3	33 - 50 %
2	16 - 33 %
1	0 - 16 %

Course plan

- 1. Numerical precision, floating point representation.
- 2. Numerical stability.
- 3. Function interpolation, multidim. function interpolation.
- 4. Function approximation.
- 5. Linear equation solving with elimination methods and iteration methods.
- 6. Non-linear system of equation solving.
- 7. Numerical integration.
- 8. Differential equations solving.
- 9. Chaos theorem.

Why do we need numerical methods?

Prose:

- ⇒ Most of the problems that one tackles on daily basis cannot be computed analytically! During the university studies the problems you were solving were tailor suited to be analytically solvable!
- \implies Even if the problem is solvable analytically in daily work one needs to repeat the calculations many times changing some conditions. Solving $n^{\rm th}$ time a similar integral on paper can have deadly consequences on your sanity.
- ⇒ Let's face is computers are just much much faster then us in this kind of computations.

Cons:

⇒ One disadvantage of numerical methods is the fact that they don't give you an exact solution. The reason for that is that the computers don't operate on real numbers but just on their representation which we will learn during today's lecture.

Errors, fast reminder

- ⇒ As you already know there are two types of errors:
- Absolute error Δ .
- Relative error δ .

$$\Delta = |A - a|$$
 $\delta = |\frac{A - a}{A}|, \quad A \neq 0,$

where \boldsymbol{A} is the exact number, \boldsymbol{a} its approximation.

Errors, fast reminder

- ⇒ As you already know there are two types of errors:
- Absolute error Δ .
- Relative error δ .

$$\Delta = |A - a|$$
 $\delta = |\frac{A - a}{A}|, \quad A \neq 0,$

where A is the exact number, a its approximation.

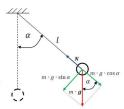
- ⇒ Now since we know what are errors lets look into the sources of errors:
- ⇒ Input errors.
- ⇒ Cut-off errors.
- \Rightarrow Rounding errors.

Input Errors

- \Rightarrow Input errors are errors that are associated with the inputs to the computer. We can have different types of this errors:
- Mathematical model errors. A canonical example of such simplification is the pendulum, where we make an approximation of $\sin x = x$ for small x:

$$l\frac{d^2x}{dt^2} + gx = 0$$

 Errors associated to a given numerical algorithm: a choice of a numerical algorithm is indeed an very important step of solving a given problem. As we will see during the course the simplest models that are fast to implement to execute on the machine can lead to large numerical errors.



 Input data errors. For many computations one needs tome inputs: constants, starting points, etc. There are errors that are associated to those as well. This kind of errors are super the easiest to control and usually are negligible

Cut-off Errors

- \Rightarrow This kind of errors arise where the true mathematical problem have some kind of infinite sum.
- \Rightarrow Computers are stupid creatures and they don't understand what is ∞ so we need to cut of computations at some point. Example:

Maclaurin series:

We know that an e^x function can be Taylor expanded:

$$e^x = \sum_{n=0}^{n=\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

We can replace the infinite sum with a finite one:

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^N}{N!}$$

 \Rightarrow This kind of errors are unfortunately very common in the field. We will have to deal with them every time we have some kind of $\lim_{n \to \infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}$

Rounding Errors

- ⇒ This kind of errors occur during calculations on machines.
- ⇒ Machine represents the number with a final precision.
- ⇒ During the calculations the errors accumulate with every operation.
- \Rightarrow This errors can be avoided or reduced by proper algorithm or by changing the precision of computations.

Rounding Errors

- ⇒ This kind of errors occur during calculations on machines.
- ⇒ Machine represents the number with a final precision.
- ⇒ During the calculations the errors accumulate with every operation.
- ⇒ This errors can be avoided or reduced by proper algorithm or by changing the precision of computations.

Integer numbers on our PC

⇒ The integer numbers are very easy to represent on PC:

$$a = \pm (c_1 N^0 + c_2 N^1 + \dots + c_d N^{d-1}),$$

where N is the base of the system. Computers of course use 2.

⇒ For example:

$$101011 \rightleftharpoons 1 \cdot 2^{0} + 1 \cdot 2^{1} + 0 \cdot 2^{2} + 1 \cdot 2^{3} + 0 \cdot 2^{4} + 1 \cdot 2^{5}$$

$$= 43$$

 \Rightarrow Now the first bit can be used for sign determination (0 plus 1 minus) int or can be used to extend the range of numbers unsigned

- \Rightarrow int -2147483648 2147483647
- \Rightarrow unsigned 0 4294967295

There are only thinds of people.

Those who understand binary and those who don't.

Floating numbers on our PC

⇒ Computers are using so-called "classical floating point representation":

$$a = \pm M \cdot N^C, \ a \neq 0,$$

- ullet M mantissa or significand
- ullet N base of the system
- ullet C exponent
- ⇒ In such system the mantissa is always normalized:

$$M \in \left\lceil \frac{1}{N}, 1 \right)$$

⇒ Using the definition we can write the mantissa and exponent in the following way:

$$M = (m_1 N^{-1} + m_2 N^{-2} + \dots + m_t N^{-t})$$
$$C = \pm (c_1 N^0 + c_2 N^1 + c_3 N^2 + \dots + c_d N^{d-1})$$

 \Rightarrow The most often know base are 2, 8, 10, 16.

Numbers on our PC: binary system

⇒ For example let's construct numbers using binary system:

$$M = \pm (m_1 2^{-1} + m_2 2^{-2} + \dots + m_t 2^t)$$
$$C = \pm (c_1 2^0 + c_2 2^1 + c_3 2^2 + \dots + c_d 2^{d-1})$$

where:

- ullet t length of mantissa, d length of exponent
- m_i mantissa digits; $m_i \in \{0,1\}$
- c_i exponent digits; $c_i \in \{0,1\}$

Example: 11110001 (s)mmmm(s)cc

Lets say we are representing a number with a byte. First 5 digits are the mantissa the next 3 are exponent.

$$M = -(1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} + 0 \cdot 2^{-4} = -\frac{7}{8}$$

$$C = +(0 \cdot 2^{0} + 1 \cdot 2^{1}) = 2$$

$$x = -\frac{7}{8} \cdot 2^{2} = -3.5$$

IEEE754-2008

 \Rightarrow The rules of the binary systems are defined by the ISO-IEEE754 standard (updated in 2008 of the 1985 standard).

Name	Common name	Base	Digits	Decimal digits	Exponent bits	Decimal E max	Exponent bias ^[6]	E min	E max	Notes
binary16	Half precision	2	11	3.31	5	4.51	24-1 = 15	-14	+15	not basic
binary32	Single precision	2	24	7.22	8	38.23	2 ⁷ -1 = 127	-126	+127	
binary64	Double precision	2	53	15.95	11	307.95	2 ¹⁰ -1 = 1023	-1022	+1023	
binary128	Quadruple precision	2	113	34.02	15	4931.77	2 ¹⁴ -1 = 16383	-16382	+16383	
binary256	Octuple precision	2	237	71.34	19	78913.2	2 ¹⁸ -1 = 262143	-262142	+262143	not basic
decimal32		10	7	7	7.58	96	101	-95	+96	not basic
decimal64		10	16	16	9.58	384	398	-383	+384	
decimal128		10	34	34	13.58	6144	6176	-6143	+6144	

- ⇒ There is a minimum and maximum number we can represent in the current system.
- ⇒ There are some tricks you can play: use subnormal
- \Rightarrow In general we can represent numbers from: $\langle -a, -b \rangle \cup \{0\} \cup \langle b, a \rangle$
- \Rightarrow The standard also defines the rounding procedures for numbers.

Error propagation: sum

- \Rightarrow Let's consider we have two numbers x and y.
- \Rightarrow Their representation are not exact so: $x=\overline{x}+\epsilon_x$ and $y=\overline{y}+\epsilon_y$
- ⇒ Now if we want to sum them:

$$x + y = \overline{x} + \overline{y} + \epsilon_x + \epsilon_y = \overline{x} + \overline{y} + \epsilon$$

- \Rightarrow If each of the ϵ_i numbers have a constant distribution on
- $\left[-\frac{1}{2}10^{-d}, \frac{1}{2}10^{-d}\right]$, where d is the precision.
- \Rightarrow Then ϵ has a triangular distribution on $\left[-10^{-d},10^{-d}\right]$
- \Rightarrow Repeating N times this we will approach the Gaussian distribution with a width of $\sim \sqrt{N}10^{-d}$

Error propagation: multiplication, division

- \Rightarrow Let's consider we have two numbers x and y.
- \Rightarrow Their representation are not exact so: $x=\overline{x}+\epsilon_x$ and $y=\overline{y}+\epsilon_y$
- \Rightarrow Now if we want to multiply them (we can neglect $\epsilon_x \epsilon_y$ terms):

$$x \cdot y = \overline{x} \cdot \overline{y} + \epsilon_x \cdot \overline{y} + \epsilon_y \cdot \overline{x}$$

- \Rightarrow If $|\overline{x}| \gg (\ll)|\overline{y}|$ then the error might explode.
- ⇒ Now if we want to divide them:

$$x/y = \overline{x}/\overline{y} + \frac{\epsilon_x}{\overline{y}} + \frac{\epsilon_y \overline{x}}{\overline{y}^2}$$

 \Rightarrow If $|y| \ll |x|$ then the division is will have large errors.

Application

⇒ When we implement a current algorithm we need to ensure that our algorithm is "backward stable", "well-conditioned" and "numerically stable".

Numerical stability

We say that the algorithm is numerically stable if the the results does not change if we increase the computation precision.

Backward stability

Backward stability means that our algorithm will gives us the true answer if we move to infinite precision of the machine. In practice we look if we can conserve the errors of the representation.

Well-conditioned

Each algorithm has some input parameters. If we introduce a slight difference in those parameters (of the order of the representation precision), the results should not change significantly.

⇒ The numerical precision lead to discovery of chaos. If we have time we will discuss this during our lectures.

Rounding error

⇒ Imagine we want to calculate:

$$1.0000 + \sum_{i=1}^{10} 0.0001$$

- \Rightarrow Now imagine we will carry the calculations with 4 digit precision.
- ⇒ If we calculate the:

$$1.0000 + \sum_{i=1}^{10} 0.0001 = 1.000$$

⇒ If we calculate the:

$$\sum_{i=1}^{10} 0.0001 + 1.0000 = 1.001$$

⇒ The order matters!

Condition parameter

The condition parameter

- \Rightarrow Let $\phi: \mathcal{R}^n \to \mathcal{R}^m$ be a function and $x \in \mathcal{R}^n$ be a precise value and $\overline{x} \in \mathcal{R}^n$ its computer representation.
- \Rightarrow If there $\kappa \in \mathcal{R}$ exists that:

$$\forall_{x,\overline{x}}: \frac{\|\psi(x) - \psi(\overline{x})\|}{\|\psi(x)\|} \leqslant \kappa \frac{\|x - \overline{x}\|}{\|x\|}$$

- \Rightarrow The κ is called the condition parameter.
- \Rightarrow If the value of κ is large then small difference cause by computer representation will explode in the final result.

Examples 1

 \Rightarrow Let's calculate the π number accordingly to the following formula for couple of i:

$$G_p = \frac{1}{p} \left[10^p \left(1 + p\pi 10^{-p} \right) - 10^p \right]$$

with a simple program one can see:

Example 1

- ⇒ How to fix this?!
- ⇒ Change double to long double

```
nchrzasz-ThinkPad-W530% ./ex1.x 10
    1415926535897931
       5926535897967 3.5527136788005009e-15
       .5926535898202 2.708944180085382e-14
      15926615397134 7.9499202776389666e-09
     1415927886962893 1.3510649621295556e-07
  3.1415926535897931 0
    1415926535897931 0
    1415926535897931 0
    1415926535897931 0
     41592653589794 8.8817841970012523e-16
      15926535911343 1.3411494137471891e-12
     1415926535613834 -2.8409719021738056e-11
```

Example 2

$$\begin{cases} x + 3y = 4 \\ x + 3.00001y = 4.00001 \end{cases}$$

$$\begin{cases} x + 3y = 4 \\ x + 2.99999y = 4.00002 \end{cases}$$

- \Rightarrow The coefficients of this equations are different by maximum of 0.00002.
- \Rightarrow The solutions to the first one is (1,1) and to the second (10,-2).
- \Rightarrow So clearly we have a big κ as changes $\mathcal{O}(10^{-5})$ are causing differences of $\mathcal{O}(10).$

Summary

- ⇒ Computers use only representations of the floating points!
- ⇒ Numerical methods suffer from computer precision!
- \Rightarrow It's YOUR responsibility to ensure that what you are doing will not explode the error.

Backup

