
Introduction to
numerical Methods

Marcin Chrząszcz, Danny van Dyk
mchrzasz@cern.ch,

danny.van.dyk@gmail.com

Numerical Methods,
19 September, 2016

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 1/21...

1/21

mailto:mchrzasz@cern.ch
mailto:dany.van.dyk@gmail.com

.

Course plan

⇛ The course consists of 2 hours lecture and 2 hours of exercise.
⇛ TA will explain to you how you will get points for the class exercise (you
will be coding the algorithms) described on the lecture and applying them to
some problems.
⇛ After passing the class exercise (> 66% of points) you will have an exam
(oral).

⇛ The final mark:

mark = 0.5 exam + 0.5 class

⇛ The final exam will be average of exam and class marks.

Mark Range
6 84− 100 %
5 67− 83 %
4 50− 67 %
3 33− 50 %
2 16− 33 %
1 0− 16 %

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 2/21...

2/21

.

Course plan

1. Numerical precision, floating point representation.
2. Numerical stability.
3. Function interpolation, multidim. function interpolation.
4. Function approximation.
5. Linear equation solving with elimination methods and iteration

methods.
6. Non-linear system of equation solving.
7. Numerical integration.
8. Differential equations solving.
9. Chaos theorem.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 3/21...

3/21

.

Why do we need numerical methods?
.
Prose:..

.

⇛ Most of the problems that one tackles on daily basis cannot be
computed analytically! During the university studies the problems you
were solving were tailor suited to be analytically solvable!
⇛ Even if the problem is solvable analytically in daily work one needs
to repeat the calculations many times changing some conditions.
Solving nth time a similar integral on paper can have deadly
consequences on your sanity.
⇛ Let’s face is computers are just much much faster then us in this
kind of computations.

.
Cons:..

.

⇛ One disadvantage of numerical methods is the fact that they don’t
give you an exact solution. The reason for that is that the computers
don’t operate on real numbers but just on their representation which
we will learn during today’s lecture.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 4/21...

4/21

.

Errors, fast reminder

⇛ As you already know there are two types of errors:
• Absolute error ∆.
• Relative error δ.

∆ = |A− a| δ = |A− a
A
|, A ̸= 0,

where A is the exact number, a its approximation.

⇛ Now since we know what are errors lets look into the sources of
errors:
⇛ Input errors.
⇛ Cut-off errors.
⇛ Rounding errors.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 5/21...

5/21

.

Errors, fast reminder

⇛ As you already know there are two types of errors:
• Absolute error ∆.
• Relative error δ.

∆ = |A− a| δ = |A− a
A
|, A ̸= 0,

where A is the exact number, a its approximation.
⇛ Now since we know what are errors lets look into the sources of
errors:
⇛ Input errors.
⇛ Cut-off errors.
⇛ Rounding errors.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 5/21...

5/21

.

Input Errors
⇛ Input errors are errors that are associated with the inputs to the
computer. We can have different types of this errors:

• Mathematical model errors. A canonical
example of such simplification is the
pendulum, where we make an
approximation of sinx = x for small x:

l
d2x

dt2
+ gx = 0

• Errors associated to a given numerical
algorithm: a choice of a numerical
algorithm is indeed an very important step
of solving a given problem. As we will see
during the course the simplest models that
are fast to implement to execute on the
machine can lead to large numerical errors.

• Input data errors. For many
computations one needs
tome inputs: constants,
starting points, etc. There
are errors that are
associated to those as well.
This kind of errors are
super the easiest to control
and usually are negligible.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 6/21...

6/21

.

Cut-off Errors

⇛ This kind of errors arise where the true mathematical problem have some
kind of infinite sum.
⇛ Computers are stupid creatures and they don’t understand what is∞ so
we need to cut of computations at some point. Example:
.
Maclaurin series:
..

.

We know that an ex function can be Taylor expanded:

ex =
n=∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ ...

We can replace the infinite sum with a finite one:

ex ≈= 1 + x+ x2

2!
+
x3

3!
+
x4

4!
+ ...+

xN

N !

⇛ This kind of errors are unfortunately very common in the field. We will
have to deal with them every time we have some kind of lim,

∑∞, etc.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 7/21...

7/21

.

Rounding Errors

⇛ This kind of errors occur during calculations on machines.
⇛ Machine represents the number with a final precision.
⇛ During the calculations the errors accumulate with every operation.
⇛ This errors can be avoided or reduced by proper algorithm or by changing
the precision of computations.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 8/21...

8/21

.

Rounding Errors

⇛ This kind of errors occur during calculations on machines.
⇛ Machine represents the number with a final precision.
⇛ During the calculations the errors accumulate with every operation.
⇛ This errors can be avoided or reduced by proper algorithm or by changing
the precision of computations.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 8/21...

8/21

.

Integer numbers on our PC

⇛ The integer numbers are very easy to represent on PC:

a = ±(c1N0 + c2N1 + ...+ cdNd−1),

where N is the base of the system. Computers of course use 2.
⇛ For example:

101011⇄1 · 20 + 1 · 21 + 0 · 22 + 1 · 23+
0 · 24 + 1 · 25

= 43

⇛ Now the first bit can be used for sign
determination (0 plus 1 minus) int or can be used
to extend the range of numbers unsigned
⇛ int - −2147483648− 2147483647
⇛ unsigned - 0− 4294967295

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 9/21...

9/21

.

Floating numbers on our PC
⇛ Computers are using so-called ”classical floating point representation”:

a = ±M ·NC , a ̸= 0,

• M - mantissa or significand

• N - base of the system

• C - exponent

⇛ In such system the mantissa is always normalized:

M ∈
[
1
N
, 1
)

⇛ Using the definition we can write the mantissa and exponent in the
following way:

M = (m1N−1 +m2N−2 + ...+mtN−t)

C = ±(c1N0 + c2N1 + c3N2 + ...+ cdNd−1)

⇛ The most often know base are 2, 8, 10, 16.
Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 10/21...

10/21

.

Numbers on our PC: binary system
⇛ For example let’s construct numbers using binary system:

M = ±(m12−1 +m22−2 + ...+mt2t)
C = ±(c120 + c221 + c322 + ...+ cd2d−1)

where:
• t - length of mantissa, d - length of exponent
• mi - mantissa digits; mi ∈ {0, 1}
• ci - exponent digits; ci ∈ {0, 1}
.
Example: 11110001 (s)mmmm(s)cc
..

.

Lets say we are representing a number with a byte. First 5 digits are the
mantissa the next 3 are exponent.

M = −(1 · 2−1 + 1 · 2−2 + 1 · 2−3 + 0 · 2−4 = −7
8

C = +(0 · 20 + 1 · 21) = 2

x = −7
8
· 22 = −3.5

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 11/21...

11/21

.

IEEE754-2008

⇛ The rules of the binary systems are defined by the ISO-IEEE754
standard (updated in 2008 of the 1985 standard).

⇛ There is a minimum and maximum number we can represent in the
current system.
⇛ There are some tricks you can play: use subnormal
⇛ In general we can represent numbers from: ⟨−a,−b⟩ ∪ {0} ∪ ⟨b, a⟩
⇛ The standard also defines the rounding procedures for numbers.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 12/21...

12/21

.

Error propagation: sum

⇛ Let’s consider we have two numbers x and y.
⇛ Their representation are not exact so: x = x+ ϵx and y = y + ϵy
⇛ Now if we want to sum them:

x+ y = x+ y + ϵx + ϵy = x+ y + ϵ

⇛ If each of the ϵi numbers have a constant distribution on[
−1210

−d, 1210
−d], where d is the precision.

⇛ Then ϵ has a triangular distribution on
[
−10−d, 10−d

]
⇛ Repeating N times this we will approach the Gaussian distribution with a
width of ∼

√
N10−d

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 13/21...

13/21

.

Error propagation: multiplication, division

⇛ Let’s consider we have two numbers x and y.
⇛ Their representation are not exact so: x = x+ ϵx and y = y + ϵy
⇛ Now if we want to multiply them (we can neglect ϵxϵy terms):

x · y = x · y + ϵx · y + ϵy · x

⇛ If |x| ≫ (≪)|y| then the error might explode.
⇛ Now if we want to divide them:

x/y = x/y +
ϵx
y
+
ϵyx

y2

⇛ If |y| ≪ |x| then the division is will have large errors.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 14/21...

14/21

.

Application
⇛ When we implement a current algorithm we need to ensure that our
algorithm is ”backward stable”, ”well-conditioned” and ”numerically stable”.
.
Numerical stability
..

.
We say that the algorithm is numerically stable if the the results does not
change if we increase the computation precision.

.
Backward stability
..

.

Backward stability means that our algorithm will gives us the true answer if
we move to infinite precision of the machine. In practice we look if we can
conserve the errors of the representation.

.
Well-conditioned
..

.

Each algorithm has some input parameters. If we introduce a slight
difference in those parameters (of the order of the representation precision),
the results should not change significantly.

⇛ The numerical precision lead to discovery of chaos. If we have time we
will discuss this during our lectures.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 15/21...

15/21

.

Rounding error

⇛ Imagine we want to calculate:

1.0000 +
10∑
i=1

0.0001

⇛ Now imagine we will carry the calculations with 4 digit precision.
⇛ If we calculate the:

1.0000 +
10∑
i=1

0.0001 = 1.000

⇛ If we calculate the:

10∑
i=1

0.0001 + 1.0000 = 1.001

⇛ The order matters!

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 16/21...

16/21

.

Condition parameter

.
The condition parameter
..

.

⇛ Let ϕ : Rn → Rm be a function and x ∈ Rn be a precise value and
x ∈ Rn its computer representation.
⇛ If there κ ∈ R exists that:

∀x,x :
∥ψ(x)− ψ(x∥
∥ψ(x)∥

¬ κ∥x− x∥
∥x∥

⇛ The κ is called the condition parameter.

⇛ If the value of κ is large then small difference cause by computer
representation will explode in the final result.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 17/21...

17/21

.

Examples 1

⇛ Let’s calculate the π number accordingly to the following formula for
couple of i:

Gp =
1
p

[
10p
(
1 + pπ10−p

)
− 10p

]
with a simple program one can see:

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 18/21...

18/21

.

Example 1

⇛ How to fix this?!
⇛ Change double to long double

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 19/21...

19/21

.

Example 2

{
x+ 3y = 4
x+ 3.00001y = 4.00001

{
x+ 3y = 4
x+ 2.99999y = 4.00002

⇛ The coefficients of this equations are different by maximum of 0.00002.
⇛ The solutions to the first one is (1, 1) and to the second (10,−2).
⇛ So clearly we have a big κ as changes O(10−5) are causing differences of
O(10).

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 20/21...

20/21

.

Summary

⇛ Computers use only representations of the floating points!
⇛ Numerical methods suffer from computer precision!
⇛ It’s YOUR responsibility to ensure that what you are doing will not explode
the error.

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 21/21...

21/21

.

Backup

Marcin Chrząszcz, Danny van Dyk (UZH) Introduction to Numerical Methods 22/21...

22/21

