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Trivial example
⇛ Lets start with a TRIVIAL example: we want to calculate S = A+B.
We can rewrite it in:

S = p
A

p
+ (1− p) B

1− p

and one can interpret the sum as expected value of:

W =

Ap with propability pA
1−p with propability 1− p

⇛ The algorithm:
• We generate a random variable W and calculate:

Ŝ =
1
N

N∑
i=1

Wi

⇛ The Ŝ is an unbias estimator of S.
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Trivial example2
• Lets say we have a linear equation system:

X = pY + (1− p)A
Y = qX + (1− q)B

• We know A,B, p, q; X and Y are meant to be determined.
• Algorithm:

1. We choose first element of the first equation with probability p and
second with probability 1− p.

2. I we choose the second one, the outcome of this MCMC is W = A.
3. If we choose the first we go to second equation and choose the first

element with probability q and the second with 1− q.
4. We we choose the second one, the outcome of this MCMC is W = B.
5. If we choose the first we go to the first equation back again.
6. We repeat the procedure.

• We can estimate the solution of this system:

X̂ =
1
N

∑
i=1

Wi σ̂X =
1√
N − 1

√√√√ 1
N

N∑
i=1

W 2i − X̂2
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Random walk

⇛ We are in the point x and we walk accordingly to the following rules:

• From point x we walk with probability p to point y or with 1− p to a.
• From point y we walk with probability q to point x and with 1−Q to b.

• The walks ends when you end up in a or b.

• You get a ”reward” A if you end up in point a and B if you end up in b.

• X is expected ”reward” when you start the walk from x, Y when you start from y.

⇛ The algorithm above is so-called random walk on the set {a, x, y, b}
⇛ The described walked can solve the linear equation system that we discussed above.
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Markov Chain MC

• Consider a finite (or Countable set) possible states: S1, S2, ...

• The Xt is the state of the system in the time t

• We are looking at discrete time steps: 1, 2, 3, ...

• The conditional probability is defined as:

P (Xt = Sj |Xt−1 = Sj−1, ..., X1 = S1)

• The Markov chain is then if the probability depends only on previous step.

P (Xt = Sj |Xt−1 = Sj−1, ..., X1 = S1) = P (Xt = Sj |Xt−1 = Sj−1)

• For this reason MCMC is also knows as drunk sailor walk.

• Very powerful method. Used to solve linear eq. systems, invert matrix, solve
differential equations, etc.

• Also used in physics problems: Brown motions, diffusion, etc.
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Linear equations system
⇛ Lets start from a linear equation system:

A−→x =
−→
b , detA ̸= 0,

where A = (aij , i, j = 1, 2, ..., n -matrix,
−→
b = (b1, b2, ..., bn)-vector,−→x = (x1, x2, ..., xn) - vector of unknowns.

⇛ The solution we mark as −→x 0 = (x01, x02, ..., x0n)
⇛ The above system can be transformed into the iterative representation:

−→x = −→a + H−→x

where H is a matrix, −→a is a vector.
⇛ We assume that the matrix norm:

∥H∥ = max
1¬i¬n

n∑
j=1

|hhij | < 1

⇛ We can always change transform every system to the iteration form: A = V−W.

(V−W)−→x =
−→
b 7→ −→x = V−1

−→
b + V−1W−→x
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Linear equations system

⇛ Now we further modify the equation system:

−→x = −→a + H−→x ⇒ (I− H)−→x = −→a

where I = δij - unit matrix, δij is the Kronecker delta.
⇛ What one can do is to represent the solution in terns of Neumann series:

−→x 0 = (I− H)−1−→a = −→a + H−→a + H2−→a + H3−→a + ...

⇛ So for the ith component we have:

x0i = ai +
n∑
j=1

hijaj +
n∑
j1=1

n∑
j2=1

hij1hj1j2aj2

+...+
n∑
j1=1

...

n∑
jn=1

hij1 ...hjn−1jnajn

⇛ We will construct a probabilistic interpretation using MCMC and then we show that
the expected value is equal to the above formula.
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Neumann-Ulam method

• To do so we add to our matrix an additional column of the matrix:

hi,0 = 1−
n∑
j=1

hij > 0

• The system has states: {0, 1, 2..., n}
• State at t time is denoted as it(it = 0, 1, 2, ..., n; t = 0, 1, ....)

• We make a random walk accordingly to to the following rules:

◦ At the beginning of the walk (t = 0) we are at i0.
◦ In the t moment we are in the it position then in t+ 1 time stamp we

move to state it+1 with the probability hitit+1 .
◦ We stop walking if we are in state 0.

• The path γ = (i0, i1, i2, ..., ik, 0) is called trajectory.

• For each trajectory we assign a number:

X(γ) = X(i0, i1, i2, ..., ik, 0) =
aik
hik0
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Neumann-Ulam method

⇛ The X(γ) variable is a random variable from: {a1/h1,0, a2/h2,0, ..., an/hn,0}.
The probability that X(γ) = aj/hj,0 is equal to the probability that the last non zero
state of the γ trajectory is j.
⇛ The expected value of the X(γ) trajectory if the trajectory begins from i0 = s is:

E{X(γ)|i0 = s} =
∞∑
k=0

∑
{γk}

X(γ)P (γ)

where γk is a trajectory of length k, which starts in i0 = s and P (γ) is the probability
of occurrence of this trajectory. ⇛ Yes you guest it lets do Taylor expansion:

E{X(γ)|i0 = s} =
∑
γ0

X(γ)P (γ) +
∑
γ1

X(γ)P (γ) + ...+
∑
γk

X(γ)P (γ)

⇛ Now let’s examine the elements of the above series.
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Neumann-Ulam method

{γ0}: One trajectory: γ0 = (i0 = s|0), P (γ0) = hs,0 and X(γ0) = as/hs,0. So:∑
γ0

X(γ)P (γ) =
as
hs,0
hs,0 = as

{γ1}: Trajectories: γ1 = (i0 = s, i1|0), i1 ̸= 0, P (γ1) = P (s, i1, 0) = hs,i1hi1,0 and
X(γ1) = ai1/hi1,0. So:∑

γ1

X(γ)P (γ) =
n∑
i1=1

ai1
hi1,0
hs,i1hi1,0 =

n∑
i=1

hs,i1ai1

{γ2}: Trajectories: γ2 = (i0 = s, i1, i2|0), i1, i2 ̸= 0,
P (γ2) = P (s, i1, i2, 0) = hs,i1hi1,i2hi1,0 and X(γ2) = ai2/hi2,0. So:∑

γ2

X(γ)P (γ) =
n∑
i1=1

n∑
i2=1

ai2
hi2,0
hs,i1hi1,i2hi2,0 =

n∑
i1=1

n∑
i2=1

hs,i1hi1,i2ai2

⇛ etc...
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Neumann-Ulam method

⇛ After summing up:

E{X(γ)|i0 = s} = as +
n∑
i1=1

hs,i1ai1 +
n∑
i1=1

n∑
i2=1

hs,i1hi1,i2ai2 + ....

+
n∑
i1=1

n∑
i2=1

...

n∑
ik=1

hs,i1hi1,i2 ...hik−1,ikaik + ...

⇛ If you compare this expression with the Neumann series we will they are the same
so:

x0i = E{X(γ)|i0 = i}

.
To sum up:
..

.

We have proven that solving a linear system can be represented by an expectation
value of the random variable X(γ). The error is computed using standard deviation
equation.
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Neumann-Ulam method

• For example lets try to solve this equation system:

−→x =

 1.5−1.0
0.7

+
 0.2 0.3 0.10.4 0.3 0.2
0.3 0.1 0.1

−→x
• The solution is −→x 0 = (2.154303, 0.237389, 1.522255).

• The propability matrix hij has the
shape:
i/j 1 2 3 0
1 0.2 0.3 0.1 0.4
2 0.4 0.3 0.2 0.1
3 0.3 0.1 0.1 0.5

• An example solution:
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Neumann-Ulam dual method
• The problem with Neumann-Ulam method is that you need to
repeat it for each of the coordinates of the −→x 0 vector.
• The dual method calculates the whole −→x 0 vector.
• The algorithm:
◦ On the indexes: {0, 1, ..., n} we set a probability distribution:
q1, q2, ..., qn, qi > 0 and

∑n
i=1 qi = 1.

◦ The starting point we select from qi distribution.
◦ If in t time we are in it state then with probability p(it+1|it) = hit+1,it

in t+ 1 we will be in state it+1. For it+1 = 0 we define the probability:
h0,it = 1−

∑n
j=1 hj,it . Here we also assume that hj,it > 0.

◦ NOTE: there the matrix is transposed compared to previous method:
HT .
◦ Again we end our walk when we are at state 0.
◦ For the trajectory: γ = (i0, i1, ..., ik, 0), we assign the vector:

−→
Y (γ) =

ai0
qi0p(0|ik)

êik ∈ R
n

• The solution will be : −→x 0 = 1
N

∑−→
Y (γ)
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Neumann-Ulam dual method
• Let’s try to solve the equation system:

−→x =

 1.5−1.0
0.7

+
 0.2 0.3 0.10.4 0.3 0.2
0.1 0.1 0.1

−→x
• The solution is: −→x 0 = (2.0, 0.0, 1.0).
• Let’s put the initial probability as constant:

q1 = q2 = q3 =
1
3

• The propability matrix hij has the
shape:
i/j 1 2 3 4
1 0.2 0.4 0.1 0.3
2 0.3 0.3 0.1 0.3
3 0.1 0.2 0.1 0.6

• An example solution:
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Generalization, the algorithm

⇛ We set the P matrix in a arbitrary way.
⇛ If in the t moment the point is in the it state, then with the
probability pit,it+1 he can go to it+1 state.
⇛ We stop the walk once we reach 0.
⇛ For the given trajectory we assign the value: X(γk)
⇛ We repeat the procedure N times and take the mean and RMS.
⇛ We repeat this also for every of the −→x 0 vector components.
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Partial differential equations, intro

⇛ Let’s say we are want to describe a point that walks on the R axis:

• At the beginning (t = 0) the particle is at x = 0

• If in the t the particle is in the x then in the time t+ 1 it walks to x+ 1 with the
known probability p and to the point x− 1 with the probability q = 1− p.
• The moves are independent.

⇛ So let’s try to described the motion of the particle.
⇛ The solution is clearly a probabilistic problem. Let ν(x, t) be a probability that at
time t particle is in position x. We get the following equation:

ν(x, t+ 1) = pν(x− 1, t) + qν(x+ 1, t)

with the initial conditions:

ν(0, 0) = 1, ν(x, 0) = 0 if x ̸= 0.

⇛ The above functions describes the whole system (every (t, x) point).

Marcin Chrząszcz (CERN) Markov Chain MC 16/22...

16/22



.

Partial differential equations, intro
⇛ Now in differential equation language we would say that the particle walks in steps of∆x in times: k∆t, k = 1, 2, 3....:

ν(x, t +∆t) = pν(x−∆x, t) + qν(x +∆x, t).

⇛ To solve this equation we need to expand the ν(x, t) funciton in the Taylor series:

ν(x, t) +
∂ν(x, t)

∂t
∆t = pν(x, t)− p

∂ν(x, t)

∂x
∆x +

1

2
p
∂2ν(x, t)

∂x2
(∆x)2

+qν(x, t) + q
∂ν(x, t)

∂x
∆x +

1

2
q
∂2ν(x, t)

∂x2
(∆x)2

⇛ From which we get:

∂ν(x, t)

∂t
∆t = −(p− q)

∂ν(x, t)

∂x
∆x +

1

2

∂2ν(x, t)

∂x2
(∆x)2

⇛ Now We divide the equation by∆t and take the∆t→ 0:

(p− q)
∆x

∆t
→ 2c,

(∆x)2

∆t
→ 2D,

⇛ We get the Fokker-Planck equation for the diffusion with current:

∂ν(x, t)

∂t
= −2c

∂ν(x, t)

∂x
+D

∂2ν(x, t)

∂x2

⇛ TheD is the diffusion coefficient, c is the speed of current. For c = 0 it is a symmetric distribution.
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Laplace equation, Dirichlet boundary conditions
⇛ The aforementioned example shows the way to solve the partial differential equa-
tion using Markov Chain MC.
⇛ We will see how different classes of partial differential equations can be approxi-
mated with a Markov Chain MC, whose expectation value is the solution of the equation.
⇛ The Laplace equation:

∂2u

∂x21
+
∂2u

∂x22
+ ...+

∂2u

∂x2k
= 0

The u(x1, x2, ..., xk) function that is a solution of above equation we call harmonic
function. If one knows the values of the harmonic function on the edges Γ(D) of the
D domain one can solve the equation.

.
The Dirichlet boundary conditions:
..

.

Find the values of u(x1, x2, ..., xk) inside the D domain knowing the values of the
edge are given with a function:

u(x1, x2, ..., xk) = f(x1, x2, ..., xk) ∈ Γ(D)

⇛ Now I am lazy so I put k = 2 but it’s the same for all k!
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Laplace equation, Dirichlet boundary conditions

⇛ We will put the Dirichlet boundary condition as a
discrete condition:

• The domain D we put a lattice with distance h.

• Some points we treat as inside (denoted with circles).
Their form a set denoted D∗.

• The other points we consider as the boundary points
and they form a set Γ(D).

⇛ We express the second derivatives with the discrete form:

u(x+h)−u(x)
h

− u(x)−u(x−h)
h

h
=
u(x+ h)− 2u(x) + u(x− h)

h2

⇛ Now we choose the units so h = 1.
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Laplace equation, Dirichlet boundary conditions
.
The Dirichlet condition in the discrete form:
..

.

Find the u∗ function which obeys the differential equation:

U∗(x, y) =
1
4
[u∗(x− 1, y) + u∗(x+ 1, y) + u∗(x, y − 1) + u∗(x, y + 1)]

in all points (x, y) ∈ D∗ with the condition:

u∗(x, y) = f∗(x, y), (x, y) ∈ Γ(D∗)

where f∗(x, y) is the discrete equivalent of f(x, y) function.

⇛ We consider a random walk over the lattice D∗ ∪ Γ(D∗).
• In the t = 0 we are in some point (ξ, η) ∈ D∗)
• If at the t the particle is in (x, y) then at t+ 1 it can go with equal probability to

any of the four neighbour lattices: (x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1).
• If the particle at some moment gets to the edge Γ(D∗ then the walk is

terminated.

• For the particle trajectory we assign the value of: ν(ξ, η) = f∗(x, y), where
(x, y) ∈ Γ(D∗).
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Laplace equation, Dirichlet boundary conditions
⇛ Let pξ,η(x, y) be the probability of particle walk that starting in (ξ, η) to end the
walk in (x, y).
⇛ The possibilities:

1. The point (ξ, η) ∈ Γ(D∗). Then:

pξ,η(x, y) =

{
1, (x, y) = ξ, η)
0, (x, y) ̸= ξ, η)

(1)

2. The point (ξ, η) ∈ D∗:

pξ,η(x, y) =
1
4
[pξ−1,η(x, y) + pξ+1,η(x, y) + pξ,η−1(x, y) + pξ,η+1(x, y)] (2)

this is because to get to (x, y) the particle has to walk through one of the neighbours:
(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1).
⇛ The expected value of the ν(ξ, η) is given by equation:

E(ξ, η) =
∑

(x,y)∈Γ∗
pξ,η(x, y)f

∗(x, y) (3)

where the summing is over all boundary points
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Laplace equation, Dirichlet boundary conditions
⇛ Now multiplying the 2 by f∗(x, y) and summing over all edge points (x, y):

E(ξ, η) =
1
4
[E(ξ − 1, η) + E(ξ + 1, η) + E(ξ, η − 1) + E(ξ, η + 1)]

⇛ Putting now 1 to 3 one gets:

E(x, y) = f∗(x, y), (ξ, η) ∈ Γ(D∗)

⇛ Now the expected value solves identical equation as our u∗(x, y) function. From
this we conclude:

E(x, y) = u∗(x, y)

⇛ The algorithm:

• We put a particle in (x, y).

• We observe it’s walk up to the moment when it’s on the edge Γ(D∗).

• We calculate the value of f∗ function in the point where the particle stops.

• Repeat the walk N times taking the average afterwards.

.
Important:
..
.One can show the the error does not depend on the dimensions!
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Backup
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