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Trivial example
= Lets start with a TRIVIAL example: we want to calculate S = A+ B.

We can rewrite it in:

A B
S=p=+4(1—-p)——o
P ( ml_p

and one can interpret the sum as expected value of:

% with propability p
114%19 with propability 1 — p

W =

= The algorithm:
e We generate a random variable W and calculate:

N 1
SN W,-

= The S is an unbias estimator of S.
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Trivial example2
e Lets say we have a linear equation system:
X pY +(1—p)A
Y ¢ X+(1—-¢)B

e We know A, B,p,q; X and Y are meant to be determined.
e Algorithm:
1. We choose first element of the first equation with probability p and
second with probability 1 — p.
2. | we choose the second one, the outcome of this MCMCis W = A.
If we choose the first we go to second equation and choose the first
element with probability ¢ and the second with 1 — gq.
We we choose the second one, the outcome of this MCMC is W = B.
If we choose the first we go to the first equation back again.
We repeat the procedure.

)

s oua

e We can estimate the solution of this system:

N 1
X=—-SW, ox=——u
N; i 0x
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Random walk

11—
P P y |
1 1
a X ¢ q I—ql b

= We are in the point = and we walk accordingly to the following rules:

® From point = we walk with probability p to point y or with 1 — p to a.

® From point y we walk with probability ¢ to point x and with 1 — @ to b.

® The walks ends when you end up in a or b.

® You get a "reward” A if you end up in point a and B if you end up in b.

® X is expected "reward” when you start the walk from z, Y when you start from .

= The algorithm above is so-called random walk on the set {a, z,y, b}
= The described walked can solve the linear equation system that we discussed above.
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Markov Chain MC

® Consider a finite (or Countable set) possible states: S1, Sa, ...
® The X, is the state of the system in the time ¢
® We are looking at discrete time steps: 1,2, 3, ...

® The conditional probability is defined as:

P(Xt = Sj|Xt_1 = Sj_l, ...,Xl = Sl)

® The Markov chain is then if the probability depends only on previous step.
P(X, = Sj|Xi-1=Sj-1,....,. X1 = 51) = P(X; = S| X¢—1 = Sj—1)

® For this reason MCMC is also knows as drunk sailor walk.

® Very powerful method. Used to solve linear eq. systems, invert matrix, solve
differential equations, etc.

® Also used in physics problems: Brown motions, diffusion, etc.
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Linear equations system

= Lets start from a linear equation system:
—
A7 = b, detA#0,

where A = (asj,4,j = 1,2,...,n -matrix, b= (b1, b2, ..., bn)-vector,

T = (1,22, ...,Zn) - vector of unknowns.

= The solution we mark as 7° = (22,23, ...,2%)

= The above system can be transformed into the iterative representation:

— — —
r =a+HZT

where H is a matrix, @ is a vector.
= We assume that the matrix norm:

1<i<n 4

n
|H|| = max Y [k | <1
J=1
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Linear equations system
= Lets start from a linear equation system:
AZ = b, detA#£0,

where A = (asj,4,j = 1,2,...,n -matrix, b= (b1, b2, ..., bn)-vector,

T = (1,22, ...,Zn) - vector of unknowns.

= The solution we mark as 7° = (22,23, ...,2%)

= The above system can be transformed into the iterative representation:

— — —
r =a+HZT

where H is a matrix, @ is a vector.
= We assume that the matrix norm:

1<i<n 4

n
|H|| = max Y [k | <1
J=1

= We can always change transform every system to the iteration form: A=V — W.

—

V-WZ=b — T=V'0+V'Wz
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Linear equations system

= Now we further modify the equation system:
—
z

—T+HT > (1-HT =7

where | = ;5 - unit matrix, d;; is the Kronecker delta.
= What one can do is to represent the solution in terns of Neumann series:

= (-H)'d =d +Hd +HT +HT + ...
= So for the i*" component we have:

=a; + Z hija; + Z Z hijy o a4,

Jji1=172=1
+... + § E hl]l Jn 15n Ajn
Ji1=1  Jjn=1

= We will construct a probabilistic interpretation using MCMC and then we show that
the expected value is equal to the above formula.
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Neumann-Ulam method

® To do so we add to our matrix an additional column of the matrix:

hio :1—Zhij >0
=1

The system has states: {0,1,2...,n}
State at ¢ time is denoted as i:(i: = 0,1,2,...,n;t =0,1,....)

® We make a random walk accordingly to to the following rules:

o At the beginning of the walk (t = 0) we are at i.

o In the t moment we are in the i; position then in ¢ 4+ 1 time stamp we
move to state 4,41 with the probability h

o We stop walking if we are in state 0.

Tlt41"

The path v = (4o, @1, %2, ..., ik, 0) is called trajectory.
® For each trajectory we assign a number:

Qs

X(’}/) = X(io,il,ig, ...,ik70) =

i1,0
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Neumann-Ulam method

= The X () variable is a random variable from: {a1/h1,0,a2/h2,0, ..., an/hn,0}.
The probability that X (v) = a;/hj,0 is equal to the probability that the last non zero
state of the -y trajectory is j.

= The expected value of the X () trajectory if the trajectory begins from iy = s is:

B{X(Y)io=s}=Y_> X(3)P()

k=0 {7}

where 7y is a trajectory of length k, which starts in i = s and P(7) is the probability
of occurrence of this trajectory. = Yes you guest it lets do Taylor expansion:

E{X(y)lio=s} =Y XMPH) +>_XMPH) + ..+ > X()P()

= Now let's examine the elements of the above series.
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Neumann-Ulam method

{70}: One trajectory: vo = (io = $|0), P(v0) = hs,0 and X (y0) = as/hs,0. So:
Z X (v hs - 25 heo = as

{’yl}: Trajectories: Y= (io = S,i1|0), 11 75 0, P(’yl) = P(S, il,O) = hs,il hil,O and
X(’yl) = ail/hil,o. So:

a;

§ X(’Y)P('Y) = h 10 hsiyhiyo = g hs,iy ai
1

R4 L

i1=1

{~2}: Trajectories: v2 = (i0 = s,141,%2|0), i1,i2 # 0,
P(’}/Q) = P(S,il,ig, 0) = h57i1 hil,izhil,o and X(’YQ) = a¢2/hi270. So:

ZX(’Y) Z Z iz hs sz Py igRig,0 = Z Z Ps,iy Ry yip @iy
Y2

11=11=1 11=11ip=1

= etc...
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Neumann-Ulam method

= After summing up:

E{X(7)|Z0 = 5} =as + Z hs,ilail + Z Z hs,ilhi1,7;2ai2 =+ ...

i1=1 i1=11i2=1
n n n
+ E E E hs7i1hi17i2.'.hik—liikaik + ...
i1=112=1 =1

= If you compare this expression with the Neumann series we will they are the same
so:

] = B{X(7)lio = i}

To sum up:

We have proven that solving a linear system can be represented by an expectation
value of the random variable X (). The error is computed using standard deviation
equation.

n
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Neumann-Ulam method

e For example lets try to solve this equation system:

1.5 0.2 0.3 0.1
T=| -10|+] 04 03 02 |7
0.7 0.3 0.1 0.1

e The solution is 7' = (2.154303,0.237389, 1.522255).

e The propability matrix h;; has the
shape:

7 1 5 3 0 e An exampe inon:
1 |02 03 01 04

2 |04 03 02 01
3 103 01 01 05
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Neumann-Ulam dual method

e The problem with Neumann-Ulam method is that you need to
repeat it for each of the coordinates of the 7’ vector.

e The dual method calculates the whole ' vector.

e The algorithm:
o On the indexes: {0, 1,...,n} we set a probability distribution:

q1,G2; - qn, @ > 0and 327 ¢ = 1.

o The starting point we select from g; distribution.
o If in ¢ time we are in i; state then with probability p(i;11i¢) = hi,,, 4,
int + 1 we will be in state 4;,4;. For 4,41 = 0 we define the probability:
hoi, =1— 23—1 hji,. Here we also assume that h;;, > 0.

o NOTE: there the matrix is transposed compared to previous method:
HT.

o Again we end our walk when we are at state 0.

o For the trajectory: v = (i, 1, ..., ik, 0), we assign the vector:

Y(y) = iy _ER™

/'Y e —
qzop(oll )

e The solution will be : 2770 = — Z Y(y)

N
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Neumann-Ulam dual method

e Let's try to solve the equation system:

—

r =

1.5 0.2 03 0.1

—-1.0 |+ 04 03 02 |7

0.7 0.1 01 0.1

e The solution is: @' = (2.0,0.0,1.0).
e Let's put the initial probability as constant:

o 71
Q1—CI2—Q3—3

e The propability matrix h;; has the

e An example solution:

shape:

i/j | 1 2 3 4
1T 102 04 01 03
2 {03 03 01 03
3 101 02 01 06
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Generalization, the algorithm

= We set the P matrix in a arbitrary way.

= If in the t moment the point is in the i; state, then with the
probability p;, ;,,, he can go to i;,; state.

= We stop the walk once we reach 0.

= For the given trajectory we assign the value: X ()

= We repeat the procedure N times and take the mean and RMS.
= We repeat this also for every of the 2’0 vector components.
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Partial differential equations, intro

= Let's say we are want to describe a point that walks on the R axis:
® At the beginning (¢t = 0) the particle is at = 0

® [f in the ¢ the particle is in the x then in the time ¢ 4+ 1 it walks to = + 1 with the
known probability p and to the point © — 1 with the probability ¢ =1 — p.

® The moves are independent.

= So let’s try to described the motion of the particle.
= The solution is clearly a probabilistic problem. Let v(x,t) be a probability that at
time ¢ particle is in position z. We get the following equation:

v(z,t +1) =pv(z—1,t) + qu(z + 1,t)
with the initial conditions:
v(0,0)=1, v(z,0)=0 if z #0.

= The above functions describes the whole system (every (¢, z) point).
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Partial differential equations, intro

= Now in differential equation language we would say that the particle walks in steps of Az in times: kAt, k = 1,2,3....:

v(z,t+ At) = pv(z — Az, t) + qu(z + Az, t).

= To solve this equation we need to expand the v (x, t) funciton in the Taylor series:

Ov(w,t) dv(x,t) 1 8%u(w,t) 5
v(@,t) + = At = pu(a t) - p—p = Aa f —p— L~ (Ax)
ox 2 ox2
tav(e, t) + Bu(x,t)A L1 1 8 v(z,t) a )
viz, — Ax _— T
¢ e 27 92
= From which we get:
Ov(x,t) ov(x,t) 1 8%v(z, t) 2
——At=—(p—q)——A -—(A
e - a)— e B )

= Now We divide the equation by At and take the At — O:

(Az)?

-2 2 2D
pP—q)— — <«c B 3
At

=> We get the Fokker-Planck equation for the diffusion with current:

ov(x,t) _ 7268V(z,t) N Dazu(m, t)
ot Oz dx2

= The D is the diffusion coefficient, c is the speed of current. For ¢ = 0 it is a symmetric distribution.
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Laplace equation, Dirichlet boundary conditions

= The aforementioned example shows the way to solve the partial differential equa-
tion using Markov Chain MC.
= We will see how different classes of partial differential equations can be approxi-
mated with a Markov Chain MC, whose expectation value is the solution of the equation.
= The Laplace equation:

0%u  9*u Pu 0

3_1’% + 8_:75% + ...+ 8_56’,% =
The u(z1, 2, ..., xk) function that is a solution of above equation we call harmonic
function. If one knows the values of the harmonic function on the edges I'(D) of the
D domain one can solve the equation.

The Dirichlet boundary conditions:

Find the values of u(z1, z2, ..., k) inside the D domain knowing the values of the
edge are given with a function:

u(x1,x2, ..., xk) = f(z1,T2,...,x) € T(D)

= Now | am lazy so | put k = 2 but it's the same for all k!

18
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Laplace equation, Dirichlet boundary conditions

= We will put the Dirichlet boundary condition as a y
discrete condition:

® The domain D we put a lattice with distance h.

® Some points we treat as inside (denoted with circles).

R e NEVAS)

Their form a set denoted D*. [ D
® The other points we consider as the boundary points W
and they form a set I'(D). ( L
/\
X e
= We express the second derivatives with the discrete form:
u(w“ﬁ_u(w) = u(x)_z(z_h) _u(x+h) —2u(x) +u(x—h)
h B h?
= Now we choose the units so h = 1.
19
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Laplace equation, Dirichlet boundary conditions

The Dirichlet condition in the discrete form:

Find the u™ function which obeys the differential equation:

U*(z,y) = i [W'(z—-1,9) +u (z+1,y) +u(z,y— 1) +u’(z,y+ 1)]

in all points (z,y) € D* with the condition:

u*(z,y) = f*(z,9), (z,y) € (D7)

where f*(z,y) is the discrete equivalent of f(x,y) function.

= We consider a random walk over the lattice D* UT'(D™).
® In the t = 0 we are in some point (§,n) € D*)

® |f at the ¢ the particle is in (x,y) then at ¢ 4+ 1 it can go with equal probability to
any of the four neighbour lattices: (z — 1,y), (z + 1,v), (z,y — 1), (z,y + 1).

® |f the particle at some moment gets to the edge I'(D* then the walk is
terminated.

® For the particle trajectory we assign the value of: v(§,n) = f*(x,y), where
e I(D*

(z,y) € T(D").
20



Laplace equation, Dirichlet boundary conditions

= Let p¢ n(x,y) be the probability of particle walk that starting in (£,7) to end the
walk in (z,v).
= The possibilities:

1. The point (§,7n) € T'(D*). Then:

pﬁ,"l(xvy) = {
2. The point (§,n) € D*:

1
Pen(,y) = 7 [Pe-10(2,Y) + Petrn (@, 9) + Pen-1(2,9) + Penta(z, )] ()

this is because to get to (z, y) the particle has to walk through one of the neighbours:

(z - Ly). (z+1Ly) (2,y - 1), (z,y +1).
= The expected value of the v(&, n) is given by equation:

BEm =Y pen(@y)f () @)

(z,y)eT*

where the summing is over all boundary points

21
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Laplace equation, Dirichlet boundary conditions
= Now multiplying the 2 by f*(z,y) and summing over all edge points (z,y):

B(&m) = LUB(E ~ Ln) + B¢ + Ln) + E(€.n— 1) + E(€.n+ 1)
= Putting now 1 to 3 one gets:

E(x,y) = f"(z,y), (&n) € T(D7)
= Now the expected value solves identical equation as our u*(z,y) function. From
this we conclude:
E(z,y) = u"(z,y)
= The algorithm:
® We put a particle in (z,y).
® We observe it's walk up to the moment when it's on the edge I'(D").

® We calculate the value of f* function in the point where the particle stops.

Repeat the walk IV times taking the average afterwards.

Important:

One can show the the error does not depend on the dimensions!
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Backup
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