Introductlon to
numerlcal Methods

N
Marcin Chrzaszcz, Danny van Dyl_k-'___-_ I 1/
mchrzasz@cern.ch, ; Unlvezf::ty of
danny.van.dyk@gmail.com Zungh

-

st B T\
1)

Numerical Methods, ;
19 September, 2016

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

mailto:mchrzasz@cern.ch
mailto:dany.van.dyk@gmail.com

Course plan

= The course consists of 2 hours lecture and 2 hours of exercise.
= TA will explain to you how you will get points for the class exercise (you
will be coding the algorithms) described on the lecture and applying them to

some problems.
= After passing the class exercise (> 66% of points) you will have an exam

(oral).
Mark Range

= The final mark: 6 84 — 100 %
5 67 —83 %

mark = 0.5 exam + 0.5 class 4 50 — 67 %

3 33 -50%

= The final exam will be average of exam and class marks. 2 16 —33 %
1 0-16 %

2
/19)

Introduction to Numerical Methods

Marcin Chrzaszcz, Danny van Dyk (UZH)

Course plan

1. Numerical precision, floating point representation.

2. Numerical stability.

3. Function interpolation, multidim. function interpolation.

4. Function approximation.

5. Linear equation solving with elimination methods and iteration
methods.

6. Non-linear system of equation solving.

7. Numerical integration.

8. Differential equation eq. solving.

9. Chaos theorem.

3
Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods /19 y

Why do we need numerical methods?

Prose:

Most of the problems that one tackles on daily basis cannot be
computed analytically! During the university studies the problems you
were solving were tailor suited to be analytically solvable!

Even if the problem is solvable analytically in daily work one needs
to repeat the calculations many times changing some conditions.
Solving n*® time a similar integral on paper can have deadly
consequences on your sanity.

Let's face is computers are just much much faster then us in this
kind of computations.

Cons:

One disadvantage of numerical methods is the fact that they don't
give you an exact solution. The reason for that is that the computers
don’t operate on real numbers but just on their representation which
we will learn during today’s lecture.

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods @

Errors, fast reminder

= As you already know there are two types of errors:
e Absolute error A.

e Relative error 6.

A —
A=|A-d §==—"

, A#Q,

where A is the exact number, a its approximation.

5
/19‘

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Errors, fast reminder

= As you already know there are two types of errors:
e Absolute error A.

e Relative error 6.

A —
A=|A-d §==—"

, A#Q,

where A is the exact number, a its approximation.
= Now since we know what are errors lets look into the sources of

errors:

= Input errors.

= Cut-off errors.
= Rounding errors.

5
Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods /19 y

Input Errors
= Input errors are errors that are associated with the inputs to the
computer. We can have different types of this errors:

® Mathematical model errors. A canonical
example of such simplification is the
pendulum, where we make an
approximation of sinx = z for small z:

2
Cclh? oz =0
¢ Input data errors. For many
e Errors associated to a given numerical computations one needs

algorithm: a choice of a numerical tome inputs: constants,
algorithm is indeed an very important step starting points, etc. There
of solving a given problem. As we will see are errors that are
during the course the simplest models that associated to those as well.
are fast to implement to execute on the This kind of errors are
machine can lead to large numerical errors. super the easiest to control

and usually are negligible

6
/19‘

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Cut-off Errors

= This kind of errors erase where the true mathematical problem have
some kind of infinite sum.

= Computers are stupid creatures and they don’t understand what is co so
we need to cut of computations at some point. Example:

Maclaurin series:

We know that an e® function can be Taylor expanded:

g ["2 .3

— =14+ —+ =+

n! 2! 3!

= This kind of errors are unfortunately very common in the field. We will
have to deal with them every time we have some kind of lim, Y, etc.

7
/19‘

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Rounding Errors

= This kind of errors occur during calculations on machines.

= Machine represents the number with a final precision.

= During the calculations the errors accumulate with every operation.

= This errors can be avoided or reduced by proper algorithm or by changing
the precision of computations.

8
f1o

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Rounding Errors

= This kind of errors occur during calculations on machines.
= Machine represents the number with a final precision.
= During the calculations the errors accumulate with every operation.

= This errors can be avoided or reduced by proper algorithm or by changing
the precision of computations.

GO O Sle 399999999999999-399999999999998

Web Show options...

399 999 999 999 999 - 399 999 999 999 998 =0

More about calculator.

8
Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods /19 y

Integer numbers on our PC

= The integer numbers are very easy to represent on PC:
a = :l:(ClNO —+ Cg]\f1 + ...+ Cdeil),

where N is the base of the system. Computers of course use 2.
= For example:

101011 =1-204+1-2' +0-22 +1-23+
0-2¢41-2°

=43 There are only :U kinds of people.

= Now the first bit can be used for sign Those Who Understand binary

determination (0 plus 1 minus) int or can be used and those who don't
to extend the range of numbers unsigned
= int - —2147483648 — 2147483647

= unsigned - 0 — 4294967295

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Floating numbers on our PC
= Computers are using so-called "classical floating point representation”:

a=+M-N¢ a#0,

e M - mantissa or significand
e N - base of the system
e (' - exponent

= In such system the mantissa is always normalized:

1
Me|~=,1
6 [N’)

= Using the definition we can write the mantissa and exponent in the
following way:

M= (mi N~ +myN~2+ ..+ mN?)
C=4(ci N+ coN* +c3N? + ... + chd_l)

= The most often know base are 2,8, 10, 16.
Marcin Chrzaszcz, Danny van Dyk (UZH)

10
/19‘

Introduction to Numerical Methods

Numbers on our PC: binary system
= For example let's construct numbers using binary system:

M =+(m27" +me272 + ..+ my2)
C=£(c12° + 22" + 327 + ...+ ca277)
where:
® { - length of mantissa, d - length of exponent
® m; - mantissa digits; m; € {0,1}

e ¢; - exponent digits; ¢; € {0,1}

Example: 11110001 (s)mmmm(s)cc

Lets say we are representing a number with a byte. First 5 digits are the
mantissa the next 3 are exponent.

M=-(1-27'41.27241.27%340-27* =~
C=+4+(0-2°+1-2Y) =
r=-—--22—_3

8

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

1
/19‘

|IEEE/54-2008

= The rules of the binary systems are defined by the ISO-IEEE754
standard (updated in 2008 of the 1985 standard).

Decimal Exponent Decimal Exponent

Name Common name Base Digits E min E max Notes

digits bits E max bias!®!
binary16 Half precision 2 1 31311 5 451 2%-1=15 -14 +15 | not basic
binary32 Single precision 2 24 7.22 8 38.23 27-1=127 -126 +127
binary64 Double precision 2 53 15.95 11 307.95 2'0-1=1023 -1022 +1023
binary128 Quadruple precision 2 13 34.02 15| 4931.77 | 2'4-1=16383 -16382 +16383
binary256 Octuple precision 2 237 71.34 19 789132 218-1=1262143 -262142 +262143 not basic
decimal32 10 7 7 7.58 96 101 -95 +96 | not basic
decimal64 10 16 16 9.58 384 398 -383 +384
decimal128 10 34 34 13.58 6144 6176 -6143 +6144

= There is a minimum and maximum number we can represent in the
current system.

= There are some tricks you can play: use subnormal

= In general we can represent numbers from: (—a, —b) U {0} U (b, a)
= The standard also defines the rounding procedures for numbers.

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Error propagation: sum

= Let’s consider we have two numbers x and y.
= Their representation are not exact so: x =% + €; and y =7 + ¢,
= Now if we want to sum them:

T+Yy=T+y+e+e,=T+Y+e€

= If each of the ¢; numbers have a constant distribution on

[—%10_‘1, %10_”1], where d is the precision.

= Then € has a triangular distribution on [—lO_d, IO_d]

= Repeating N times this we will approach the Gaussian distribution with a
width of ~ v/ N10~¢

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Error propagation: multiplication, division

= Let’s consider we have two numbers x and y.
= Their representation are not exact so: x =% + €; and y =7 + ¢,
= Now if we want to multiply them (we can neglect €,¢€, terms):

TY=T - Yt+e Yte T

= If |Z| > (<)[g| then the error might explode.
= Now if we want to divide them:

€ €4T
Tfy=Z/F+ =+ 2
Yy Y

= If |y| < |z| then the division is will have large errors.

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Application
= When we implement a current algorithm we need to ensure that our

» o ”

algorithm is "backward stable”, "well-conditioned” and "numerically stable”.

Numerical stability

We say that the algorithm is numerically stable if the the results does not
change if we increase the computation precision.

Backward stability

Backward stability means that our algorithm will gives us the true answer if
we move to infinite precision of the machine. In practice we look if we can
conserve the errors of the representation.

Well-conditioned

Each algorithm has some input parameters. If we introduce a slight
difference in those parameters (of the order of the representation precision),
the results should not change significantly.

= The numerical precision lead to discovery of chaos. If we have time we
will discuss this during our lectures.

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Rounding error

= Imagine we want to calculate:

10
1.0000 + » ~0.0001

i=1

= Now imagine we will carry the calculations with 4 digit precision.
= If we calculate the:

10

1.0000 + > 0.0001 = 1.000
i=1
= If we calculate the:
10
> 0.0001 + 1.0000 = 1.001
i=1

= The order matters!

16
/19‘

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Examples 1

= Let’s calculate the m number accordingly to the following formula for
couple of i:

Gp= % [107 (1 4 pm1077) — 107]

with a simple program one can see:

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Example 1

= How to fix this?!
= Change double to long double

18
/19‘

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Summary

= Computers use only representations of the floating points!

= Numerical methods suffer from computer precision!

= It's YOUR responsibility to ensure that what you are doing will not explode
the error.

19
/19‘

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

Backup

20
/19‘

Marcin Chrzaszcz, Danny van Dyk (UZH) Introduction to Numerical Methods

