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.

Random and pseudorandom numbers
.
John von Neumann:
..

.

”Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number — there are
only methods to produce random numbers, and a strict arithmetic
procedure of course is not such a method.”

⇛ Random number: a given value that is taken by a random variable
↠ by definition cannot be predicted.
⇛ Sources of truly random numbers:
• Mechanical
• Physical
⇛ Disadvantages of physical generators:
• To slow for typical applications, especially the mechanical ones!
• Not stable; small changes in boundary conditions might lead to

completely different results!
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Random numbers - history remark

⇛ In the past there were books with random numbers:

⇛ It’s obvious that they didn’t become very popular ;)
⇛ This methods are comming back!
↠ Storage device are getting more cheap and bigger (CD, DVD).
↠ 1995: G. Marsaglia, 650MB of random numbers, ”White and Black
Noise”.
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Pseudorandom numbers

⇛ Pseudorandom numbers are numbers that are generated
accordingly to strict mathematical formula.
↬ Strictly speaking they are non random numbers, how ever they
have all the statistical properties of random numbers.
↬ Discussing those properties is a wide topic so let’s just say that
without knowing the formula they are generated by one cannot say if
those numbers are random or not.
⇛ Mathematical methods of producing pseudorandom numbers:
• Good statistical properties of generated numbers.
• Easy to use and fast!
• Reproducible!
⇛ Since mathematical pseudorandom genrators are dominantly:
pseudorandom ↣ random.
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Middle square generator; von Neumann

⇛ The first mathematical generator (middle square) was proposed by
von Neumann (1964).

↬ Formula:
....
Xn = ⌊X2n−1 · 10−m⌋ − ⌊X2n−1 · 10−3m⌋

↬ where X0 is a constant (seed), ⌊·⌋ is the cut-off of a number to
integer.
⇛ Example:
Let’s put m = 2 and X0 = 2045:

↬ X20 = 04︸︷︷︸
rej

1820 25︸︷︷︸
rej

⇒ X1 = 1820

↬ X21 = 03︸︷︷︸
rej

3124 00︸︷︷︸
rej

⇒ X1 = 3124

↬ Simple generator but unfortunately quite bad generator. Firstly the
sequences are very short and strongly dependent on the X0 number.
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Linear generators Lecture2/Linear_gen1

⇛ This was a first generator written and it’s a good example how to
not write generators.
⇛ It’s highly non stable!
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Linear generators

⇛ General equation:

....
Xn = (a1Xn−1 + a2Xn−2 + ...+ akXn−k + c) mod m,

↬ where ai, c,m are parameters of a generator(integer numbers).
↬ Generator initialization ⇄ setting those parameters.
⇛ Very old generators. (often used in Pascal, or first C versions):

k = 1 : Xn = (aXn−1 + c) modm,

c =

{
= 0,multiplicativegeneator

̸= 0,mixgeneator
⇛ The period can be achieved by tuning the seed parameters:

Pmax =

{
2L−2; for m = 2L

m− 1; for m = prime number
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Shift register generator
⇛ General equation:

....
bn = (a1Xn−1 + a2Xn−2 + ...+ akXn−k + c) mod 2,

where ai ⊂ ({0, 1})
⇛ Super fast and easy to implement due to: (a+ b) mod 2 = a xor b

a b a xor b
0 0 0
1 0 1
0 1 1
1 1 0

⇛ Maximal period is 2k − 1.
⇛ Example (Tausworths generator):
ap = aq = 1, other ai = 0 and p > q. Then: bn = bn−p xor bn−q
⇛ How to get numbers from bits (for example):
Ui =

∑L
j=1 2

−jbis+j , s < L.
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Fibonacci generator

⇛ In 1202 Fibonacci with Leonardo in Piza:

fn = fn−2 + fn−1, n ⩾ 2

⇛ Based on this first generator was created (Taussky and Todd, 1956):

Xn = (Xn−2 +Xn−1) mod m, n ⩾ 2

This generator isn’t so good in terms of statistics tests.
⇛ Generalization:

Xn = (Xn−r ⊙Xn−s) mod m, n ⩾ r, s ⩾ 1⊙
Pmax Stat. properties

+,− (2r − 1)2L−1 good
x (2r − 1)2L−13 very good
xor (2r − 1) poor
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Multiply with carry, generator

⇛ We start from:

bn = (a1Xn−1 + a2Xn−2 + ...+ akXn−k + c) mod m,

where a1, .., ak ∈ N are constant parameters.
⇛ The c parameters is calculated foe each step:

c = ⌊(a1Xn−1 + a2Xn−2 + ...+ akXn−k + c)/m⌋,

⇛ Initialization: a1, .., ak, c.
⇛ Advantages:

• Fast and easy to implement.

• Large period.

• Good statistical properties.

• First proposed by Marsaglia.
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Subtract with borrow, generator

⇛ Created again by Marsaglia (1991):

Xn = (Xn−r ⊖Xn−s) mod m, r, s ∈ N,

where :

x⊖ y =
{
x− y − c+m, c = 1, when x− y − c < 0
x− y − c, c = 0, when x− y − c  0

⇛ Initialization: X1, ..., Xn−r and c = 0.
⇛ Fast and easy :)
⇛ Fails some of the basic statistics tests.
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Non linear generators
⇛ The natural solutions to problems of linear generators are the non-linear
generators (second part of 1980s).
⇛ Eichenauera i Lehna (1986):

Xn = (aX−1n1 + b) mod m,

⇛ Eichenauera-Hermanna (1993)

Xn = [a(n+ n0) + b]−1 mod m,

⇛ L. Blum, M. Blum, Shub (1986):

Xn = X2n−1 mod m,

↣ Very popular in cryptography.
⇛ Pros and cons:

• They all pass all statistical tests.

• Much slower then linear generators.
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RANLUX generator

⇛ All described generators are based on some mathematical algorithms and
recursion. The typical scheme is of constructing a MC generator:

• Think of a formula that takes some initial values.

• Generate large number of random numbers and put them through
statistical tests.

• If the test are positive we accept the the generator.

⇛ Now let’s think: why the hell numbers obtained that way are showing some
random number properties?

There is no science behind it, it’s pure luck!
⇛ M.Luscher (1993) hep-lat/9309020
⇛ Generator RANLUX based on Kolomogorow entropy and Lyapunov
exponent. Effectively we are building inside the generator the chaos theory.
⇛ RANLUX and Mersenne Twister (TRandom1, TRandom3) are the 2 most
powerful generators in the world that passed every known statistical test.
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Chaos theory in a nut shell

⇛ We know that the solution of classical systems is
described by trajectory in phase spaces. Now the
problem with this picture starts to be when arround
one point in this phase space we are getting more
and more trajectories that are drifting a part later
on.
⇛ The Lyapunov exponent tells us how a two
solutions drift apart with time:

|δX(t)| ≈ eλt|δX0|

⇛ Kolomogorow entropy:

hK =
∫
P

λdµ
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HEP simulation
⇛ There is some ambiguity what particle physicist call MC. Normally those
are mathematical theorises but when we say MC we usually mean MC
simulation of a physics process. ⇛ There are plenty of things that need to
be simulated:
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Detector simulation

⇛ Things do not get simpler on the detector side simulation.
⇛ Lots of effects need to be taken into account:

↣ Bremsstrahlung
↣ Interactions with different
detector materials
↣ Particle identification
↣ Showers

⇛ Example of generators:
↣ FLUKA
↣ Geant
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Method of Moments
⇛ Now real cool things!
⇛ Let’s consider we want to study a rare decay: B± → K±µµ. The decay is
described by the following PDF:

1
Γ

d2Γ
dq2d cos θl

=
3
4
(1− FH)(1− cos2 θl) + FH/2 +AFB cos θl

⇛ PDF by construction is normalized:
∫ 1
−1
1
Γ

d2Γ
dq2d cos θl

= 1

• Normally we do a likelihood fit and
we are done.

• There is a second way!
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Method of Moments
⇛ Let’s calculate the integrals:∫ 1

−1

1
Γ

d2Γ
dq2d cos θl

· cos θl =
2
3
AFB

∫ 1
−1

1
Γ

d2Γ
dq2d cos θl

· cos2 θl =
1
5
+
2FH
15

⇛ So we can get our parameters that we searched for by doing a
integration. So now what?

⇛ Well nature is the best random number generator so let’s take the data
and treat and calculate the integral estimates:∫ 1

−1

1
Γ

d2Γ
dq2d cos θl

· cos θl =
2
3
AFB =

1
N

N∑
i=1

cos θl,i

∫ 1
−1

1
Γ

d2Γ
dq2d cos θl

· cos2 θl =
1
5
+
2FH
15
=
1
N

N∑
i=1

cos2 θl,i
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Method of Moments

⇛ So what did we do?

• We have just estimated a parameters of interests without using any fit!!

⇛ Pros and cones of method of moments:

• Are very immune to bias.

• Do not suffer from boundary problems.

• Require less statistic to work then likelihood fit.

• They always have a Gaussian error.

• Estimator has a larger uncertainty.
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Method of Moments, uncertainty estimator

⇛ It can be proven that Method of
Moments estimator converges slower then
the maximum likelihood fit.
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Other application of MC - testing your analysis

⇛ Probably the biggest application of MC methods in HEP are validations of
your experimental methodology. The procedure is as follows:

• Define your analysis methodology: selection, efficiency corrections,
parameters you want to measure.

• Simulate an assembly of simulation events for different values of
parameters you want to measure.

• Do the analysis on this pseudo data.

• See if you are getting back what you have simulated.

Marcin Chrząszcz (Universität Zürich) Random number generators and application 21/23...

21/23



.

Testing your analysis, Lecture2/Test_met
⇛ Probably the biggest application of MC methods in HEP are validations of
your experimental methodology. The procedure is as follows:

• Define your analysis methodology: selection, efficiency corrections,
parameters you want to measure.

• Simulate an assembly of simulation events for different values of
parameters you want to measure.

• Do the analysis on this pseudo data.

• See if you are getting back what you have simulated.
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Wrap up

⇛ Things to remember:

• Computer cannot produce random numbers, only pseudorandom
numbers.

• We use pseudorandon numbers as random numbers if they are
statistically acting the same as random numbers.

• Linear generators are not commonly used nowadays.

• State of the art generators are the ones based on Kolomogorows theorem.

• MC methods used to simulate physics process, detector response and
validating the estimators.
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Backup
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