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Course Plan
We will have 6 hours of Monte Carlo (MC) lectures. The lectures will be
devoted:

• 1 h: Mathematical introduction to MC methods.
• 1 h: MC integration methods.
• 2 h: Random numbers generators.
• 0.5 h: Cool applications of MC methods.
• 1.5h: Hands-on tutorial with MC methods.

The hands-on tutorial will consist of program templates in which we
will implement couple of algorithms that were explained in the lecture.
⇛ All examples shown in this course are available in the github
repository:
https://github.com/mchrzasz/EMPP_MC
There will be an indication (in this color) on the adequate slide for
each of the macro.
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Definitions
⇛ Basic definition:
.

.
Monte Carlo method is any technique that uses random numbers to solve a given
mathematical problem.

↣ Random number: For the purpose of this course we need to assume that we know
what it is, although the formal definition is highly non-trivial.
⇛ My favourite definition (Halton 1970): more complicated, but more accurate.
.

.

”Representing the solution of a problem as a parameter of a hypothetical population,
and using a random sequence of numbers to construct a sample of the population,
from which statistical estimates of the parameter can be obtained.”

To put this definition in mathematical language:
Let F be a solution of a given mathematical problem. The estimate of the result F̂ :

F̂ = f({r1, r2, r3, ..., rn}; ...),
where {r1, r2, r3, ..., rn} are random numbers.

The problem we are solving doesn’t need to be stochastic!

↠ One could wonder why are we trying to add all the stochastic properties to a deterministic

problem. Those are the properties that allow to use all well known statistic theorems.
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History of MC methods

• G. Compte de Buffon (1777) - First documented usage of random numbers for
integral computation (Buffon thrown niddle on the table with parrarel line; we will
do a modern version of this exercise).

• Marquis de Laplace (1886) - Used the Buffon niddle to determine the value of π
number.

• Lord Kelvin (1901) - Thanks to drawing randomly numbered cards he managed he
managed to calculate some integrals in kinematic gas theorem.

• W. S. Gosse (better knows as Student) (1908) - Used similar way as Lord Kelvin to
get random numbers to prove t-Student distribution.

• Enrico Fermi (1930) - First mechanical device (FERMIAC) for random number
generations. Solved neutron transport equations in the nuclear plants.

• S. Ulam, R. Feynman, J. von Neumann et. al. - First massive usage of random
numbers. Most applications were in Manhattan project to calculate neutron
scattering and absorption.
In Los Alamos the name Monte Carlo was created as kryptonim of this kind of
calculations.
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Euler number determination, Lecture1/Euler_number
⇛ As mentioned before MC methods can be used to solve problems that do not
have stochastic nature! All the integrals calculated in Los Alamos during the
Manhattan project are nowadays solvable without any MC methods.
↣ Let’s give a trivial example of solving a non stochastic problem: calculating Euler
number e. We know that e = 2.7182818.... ⇛ To calculate the ê we will use the
following algorithm:
• We generate a random number in range (0, 1) (in stat. U(0, 1)) until the number

we generate is smaller then the previous one, aka we get the following sequence:

x1 < x2 < ... < xn−1 > xn

• We store the number n. We repeat this experiment N times and calculate the
arithmetic average of n. The obtained value is an statistical estimator of e:

ê =
1
N

N∑
i=1

ni
N→∞−−−−→ e.

⇛ Numerical example:

N ê ê− e

Is this ∼
√
N?

100 2.760000 0.041718
10000 2.725000 0.006718

1000000 2.718891 0.000609
100000000 2.718328 0.000046
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Let’s test the
√
N , Lecture1/Euler_number

⇛ In the last example we measured the Euler number using different
number of pseudo-experiments.
↣ We compared the obtained value to the true and observed roughly
a
√
N dependence on the difference between the true value and the

obtained one.
↣ Could we test this? YES! Lets put our experimentalist hat on!
↣ From the begging of studies they tooth us to get the error you
need to repeat the measurements.
.
The algorithm:
..

.

Previous time we measured Euler number using N events, where
N ∈ (100, 1000, 10000, 100000). Now lets repeat this measurement
nN times (of course each time we use new generated numbers). From
the distribution of ê− e we could say something about the
uncertainty of our estimator for given N .
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Let’s test the
√
N , Lecture1/Euler_number

↣ Could we test this? YES! Lets put our experimentalist hat on!
↣ From the begging of studies they tooth us to get the error you
need to repeat the measurements.

-ee
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e with 100 toys
e with 100 toys

Entries  1000

Mean   0.0006059

RMS    0.08954

 / ndf 2χ  64.98 / 50

Constant  1.77± 43.08 

Mean      0.002883± 0.001281 

Sigma     0.00222± 0.08671 

e with 100 toys

-ee
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.080
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e with 1000 toys
e with 1000 toys

Entries  1000

Mean   0.0008092

RMS    0.02821

 / ndf 2χ    100 / 80

Constant  1.06± 24.76 

Mean      0.0009638± 0.0002005 

Sigma     0.00081± 0.02789 

e with 1000 toys

-ee
-0.03 -0.02 -0.01 0 0.01 0.02 0.030
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30

e with 10000 toys
e with 10000 toys

Entries  1000

Mean   0.0001612

RMS    0.008682

 / ndf 2χ  73.68 / 75

Constant  1.1±  25.8 

Mean      2.975e-04± -6.721e-05 

Sigma     0.000240± 0.008685 

e with 10000 toys

-ee
-0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.0080
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e with 100000 toys
e with 100000 toys

Entries  1000

Mean   1.642e-06

RMS    0.002609

 / ndf 2χ  54.26 / 73

Constant  1.19± 28.24 

Mean      8.557e-05± 8.297e-05 

Sigma     0.000073± 0.002552 

e with 100000 toys
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Let’s test the
√
N , Lecture1/Euler_number

↣ Could we test this? YES! Lets put our experimentalist hat on!
↣ From the begging of studies they tooth us to get the error you
need to repeat the measurements.
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 / ndf 2χ  6.053 / 3

p0        0.01181± 0.8548 

 / ndf 2χ  6.053 / 3
p0        0.01181± 0.8548 

Graph
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Monte Carlo and integration
↪→ All MC calculations are equivalent to preforming an integration.
⇒ Assumptions: ri random numbers from U(0, 1). The MC result:

F = F (r1, r2, ...rn)

is unbias estimator of an integral:

I =

∫ 1
0

...

∫ 1
0

F (x1, x2, ..., xn)dx1, dx2..., dxn

aka the expected value of the I integral is:

E(F ) = I.

.

.

⇛ This mathematical identity is the most useful property of the MC methods. It is a
link between mathematical analysis and statistic world. Now we can use the best of
the both world!

If we want to calculate the integral in different range then (0, 1) we just scale the the
previous result:

1
N

N∑
i=1

f(xi)
N→∞−−−−→ E(f) = 1

b− a

∫ b
a

f(x)dx
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Uncertainty from Monte Carlo methods

⇛ In practice we do not have N →∞ so we will never know the exact result of an
integral :(
7−→ Let’s use the statistical world and estimate the uncertainty of an integral in this
case :)
↣ A variance of a MC integral:

V (Î) =
1
n

{
E(f2)− E2(f)

}
=
1
n

{ 1
b− a

∫ b
a

f2(x)dx− I2
}

.

.↬ To calculate V (Î) one needs to know the value of I !

⇛ In practice V (Î) is calculated via estimator:

V̂ (Î) =
1
n
V̂ (f), V̂ (f) =

1
n− 1

n∑
i=1

[
f(xi)−

1
n

n∑
i=1

f(xi)
]2
.

⇛ MC estimator of standard deviation: σ̂ =
√
V̂ (Î)
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Buffon needle - π number calculus
⇛ Buffon needle (Buffon 1777, Laplace 1886): We are throwing a needle (of length l)
on to a surface covered with parallel lines width distance L. If a thrown needle
touches a line we count a hit, else miss. Knowing the number of hits and misses one
can calculate the π number.

Experiment: Theory:

n - number of hits
N number of hits and misses,
aka number of tries.

⇒ x - angle between needle and horizontal line,
x ∈ U(0, π).⇒ the probability density function
(p.d.f.) for x:

ρ(x) =
1
π

⇒ p(x) probability to hit a line for a given x value:

p(x) =
l

L
| cosx|

⇒ Total hit probability:

P = E[p(x)] =

∫ π
0

p(x)ρ(x)dx =
2l
πL

Now one can calculate P̂ from MC : P̂ =
n

N

N→∞−−−−→ P = 2l
πL
⇒ π̂ = 2Nl

nL
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Buffon needle - Simplest Carlo method
Monte Carlo type ”heads or tails”
Let’s use the summery of p(x) function nad take 0 < x < π2 .
⇒ Algorithm:

Generate 2 dim. distribution:

(x, y) : U(0, π
2
)× U(0, 1) and

y

{
¬ p(x) : hit,
> p(x) : miss.

Let’s define weight function: w(x, y) = Θ(p(x)− y),
where Θ(x) is the step function.
↣ p.d.f.: ϱ(x, y) = ρ(x)g(y) = 2

π
· 1

⇒ Integrated probability:

P = E(w) =

∫
w(x, y)ϱ(x, y)dxdy =

2l
πL

N→∞←−−−− P̂ = 1
N

N∑
i=1

w(xi, yi) =
n

N

Standard deviation for P̂ : σ̂ =
1√
N − 1

√
n

N

(
1− n
N

)
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Buffon needle, Lecture1/Heads_tails
⇛ Lets make this toy experiment and calculate the π number.
↪→ We can simulate the central position (y) of an needle between (−L,L)
from U(−L,L).
.
Symmetry:
..

.
Please note the symmetry of the problem, if the position of the needle would
be > L then we can shift the needle by any number of L’s.

↪→ New we simulate the angle (ϕ) with a flat distribution from (0, π). ↪→ The
maximum and minimum y position of the needle are:

ymax = y + | cosϕ|l
ymin = y − | cosϕ|l

↪→ Now we check if the needle touches any of the lines: y = L, y = 0 or
y = −L. If yes we count the events.

N π̂ π̂ − π σ(π̂)
10000 3.12317 −0.01842 0.03047

100000 3.14707 0.00547 0.00979
1000000 3.13682 −0.00477 0.00307

10000000 3.14096 −0.00063 0.00097
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Central Limit Theorem, Lecture1/CLT
.

.

Large independent random numbers assembly has always Gaussian distribution no
matter from what distribution they were generated from as far as they have finite
variances and expected values and the assembly is sufficiently large.
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Crude Monte Carlo method of integration
⇛ Crude Monte Carlo method of integration is based on Central Limit Theorem (CLT):

1
N

N∑
i=1

f(xi)
N→∞−−−−→ 1

b− a

∫ b
a

f(x)dx = E(f)

⇛ The standard deviation can be calculated:

σ =
1√
N

√[
E(f2)− E2(f)

]
⇛ From LNT we have:

P =

∫
w(x)ρ(x)dx =

∫ π/2
0

(
l

L
cosx)

2
π
dx =

2l
πL

N→∞−−−−→ 1
N

N∑
i=1

w(xi)

⇛ Important comparison between ”Hit and mishit” and Crude MC methods. One can
analytically calculate:

σ̂Crude < σ̂Hit and mishit

⇛ Crude MC is always better then ”Hit and mishit” method. We will prove this on an
example (can be proven analytically as well).
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Crude MC vs ”Hit and mishit”, Lecture1/Crude_vs_HT
⇛ We can repeat a toy MC studies as we did in the Euler needle case.
↪→ In this example we want to calculate

∫ π/2
0 cosxdx

0.7 0.8 0.9 1 1.1 1.2 1.30

20

40
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80

100

HT_100
HT_100

Entries  1000
Mean   0.9983
RMS    0.07424

 / ndf 2χ  23.34 / 26
Constant  3.34± 83.87 
Mean      0.0024± 0.9978 
Sigma     0.00176± 0.07276 

HT_100

0.7 0.8 0.9 1 1.1 1.2 1.30

10

20

30

40

50

60

C_100
C_100

Entries  1000
Mean        1
RMS    0.04901

 / ndf 2χ  43.33 / 37
Constant  2.25± 56.05 
Mean      0.002± 1.001 
Sigma     0.00120± 0.04791 

C_100

0.9 0.95 1 1.05 1.10

10

20

30

40

50

HT_1000
HT_1000

Entries  1000
Mean   0.9989
RMS    0.02458

 / ndf 2χ  209.3 / 61
Constant  1.38± 29.98 
Mean      0.0009± 0.9976 
Sigma     0.00071± 0.02344 

HT_1000

0.9 0.95 1 1.05 1.10

10

20

30

40

50

60

70

C_1000
C_1000

Entries  1000
Mean   0.9997
RMS    0.01496

 / ndf 2χ   36.5 / 40
Constant  2.42± 58.19 
Mean      0.0005± 0.9999 
Sigma     0.00040± 0.01467 

C_1000

Marcin Chrząszcz (Universität Zürich) Introduction to Monte Carlo methods 15/21...

15/21



.

Crude MC vs ”Hit and mishit”, Lecture1/Crude_vs_HT
⇛ We can repeat a toy MC studies as we did in the Euler needle case.
↪→ In this example we want to calculate

∫ π/2
0 cosxdx

0.97 0.98 0.99 1 1.01 1.02 1.030

10

20

30

40

50

HT_10000
HT_10000

Entries  1000

Mean        1

RMS    0.007308

 / ndf 2χ  64.76 / 60

Constant  1.64± 38.36 

Mean      0.0±     1 

Sigma     0.000193± 0.006833 

HT_10000

0.97 0.98 0.99 1 1.01 1.02 1.030

10

20
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40
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C_10000
C_10000

Entries  1000

Mean   0.9999

RMS    0.004772

 / ndf 2χ  34.91 / 38

Constant  2.39± 58.09 

Mean      0.0±     1 

Sigma     0.000122± 0.004654 

C_10000

0.99 0.995 1 1.005 1.010
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HT_100000
HT_100000

Entries  1000

Mean        1

RMS    0.002495

 / ndf 2χ   52.5 / 57

Constant  1.43± 34.18 

Mean      0.0±     1 

Sigma     0.000070± 0.002474 

HT_100000

0.99 0.995 1 1.005 1.010

10

20

30

40

50

60

C_100000
C_100000

Entries  1000

Mean        1

RMS    0.001548

 / ndf 2χ  29.67 / 38

Constant  2.21± 55.49 

Mean      0.0±     1 

Sigma     0.000039± 0.001559 

C_100000
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Crude MC vs ”Hit and mishit”, Lecture1/Crude_vs_HT
⇛ We can repeat a toy MC studies as we did in the Euler needle case.
↪→ In this example we want to calculate

∫ π/2
0 cosxdx

210 310 410 510
0

0.01
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0.03

0.04

0.05

0.06

0.07

0.08

Graph
 / ndf 2χ  11.64 / 3

p0        0.01005± 0.7295 

 / ndf 2χ  11.64 / 3

p0        0.01005± 0.7295 

Graph

210 310 410 510
0

0.01

0.02

0.03

0.04

0.05

Graph
 / ndf 2χ  3.597 / 3

p0        0.006143± 0.4753 

 / ndf 2χ  3.597 / 3

p0        0.006143± 0.4753 

Graph

⇛ One clearly sees that both methods follow 1/
√
N dependence and

that the Crude MC is always better then the ”Hit and mishit”.
⇛ Please note that for the ”Hit and mishit” we are suing 2 times more
random numbers than for the Crude method so in terms of timing the
Crude MC is also much faster.
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Classical methods of variance reduction

⇛ In Monte Carlo methods the statistical uncertainty is defined as:

σ =
1√
N

√
V (f)

⇛ Obvious conclusion:

• To reduce the uncertainty one needs to increase N .
⇒ Slow convergence. In order to reduce the error by factor of 10 one needs to
simulate factor of 100 more points!

⇛ How ever the other handle (V (f)) can be changed! −→ Lot’s of theoretical effort
goes into reducing this factor.
⇛ We will discuss four classical methods of variance reduction:

1. Stratified sampling.

2. Importance sampling.

3. Control variates.

4. Antithetic variates.
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Stratified sampling

⇛ The most intuitive method of variance reduction. The idea behind it is to divide
the function in different ranges and to use the Riemann integral property:

I =

∫ 1
0

f(u)du =

∫ a
0

f(u)du+

∫ 1
a

f(u)du, 0 < a < 1.

⇛ The reason for this method is that in smaller ranges the integration function is
more flat. And it’s trivial to see that the more flatter you get the smaller uncertainty.
⇒ A constant function would have zero uncertainty!
.
General schematic:
..

.

Let’s take our integration domain and divide it in smaller domains. In the jth domain
with the volume wj we simulate nj points from uniform distribution. We sum the
function values in each of the simulated points for each of the domain. Finally we
sum them with weights proportional to wi and anti-proportional to ni.
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Stratified sampling - mathematical details
Let’s define our integrals and domains:

I =

∫
Ω

f(x)dx, Ω =
k∪
i=1

wi

The integral over jth domain:

Ij =

∫
wj

f(x)dx, ⇒ I =
k∑
j=1

Ii

⇒ pj uniform distribution in the wj domain: dpj = dx
wj

.
⇒ The integral is calculated based on crude MC method. The estimator is equal:

Îj =
wj
nj

nj∑
i=1

f(xij)

Now the total integral is just a sum:

Î =
k∑
j=1

Îj =
k∑
j=1

wj
nj

nj∑
i=1

f(x(i)j ),

Variance: V (Î) =
∑k
j=1

w2j
nj
Vj(f), and it’s estimator: V̂ (Î) =

∑k
j=1

w2j
nj
V̂j(f)
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Importance sampling
⇛ If the function is changing rapidly in its domain one needs to use a more elegant
method: make the function more stable.
⇒ The solution is from first course of mathematical analysis: change the integration
variable :)

f(x)dx −→ f(x)
g(x)
dG(x), where g(x) =

dG(x)
dx

.
Schematic:
..

.

• Generate the distribution from G(x) instead of U .

• For each generate point calculate the weight: w(x) = f(x)
g(x) .

• We calculate the expected value Ê(w) and its variance V̂G(w) for the whole
sample.

• If g(x) is choose correctly the resulting variance can be much smaller.
• There are some mathematical requirements:
◦ g(x) needs to be non-negative and analytically integrable on its

domain.
◦ G(x) invertible or there should be a direct generator of g distribution.
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Importance sampling - Example
⇛ Let’s take our good old π determination example.

⇛ Let’s take here for simplicity: L = l.

• Let’s take a trivial linear weight function:
g(x) = 4

π
(1− 2

π
x)

• It’s invertible analytically: G(x) = 4
π
x(1− x

π
)

• The weight function:

w(x) =
p(x)
g(x)

=
π

4
cosx
1− 2x/π

• Now the new standard deviation is smaller:

σISπ ≃
0.41√
N
< σπ ≃

1.52√
N

• Importance sampling has advantages:

◦ Big improvements of variance reduction.
◦ The only method that can cope with singularities.
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Wrap up

⇛ To sum up:

• We discussed basic mathematical properties of MC methods.

• We shown that besides the stochastic nature of MC they can be used to
determine totally non stochastic quantities.

• We demonstrated there is a perfect isomorphism between MC method and
integration.

• We learned how co calculate integrals and estimate the uncertainties.

• Finally we discussed several classical methods of variance reduction.
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Backup

Marcin Chrząszcz (Universität Zürich) Introduction to Monte Carlo methods 22/21...

22/21



.

Control variates

⇛ Control variates uses an other nice property of Riemann integral:∫
f(x)dx =

∫
[f(x)− g(x)]dx+

∫
g(x)dx

• g(x) needs to be analytically integrable.

• The uncertainty comes only from the integral:
∫
[f(x)− g(x)]dx.

• Obviously: V (f → g) f→g−−−→ 0
⇛ Advantages:

• Quite stable, immune to the singularities.

• g(x) doesn’t need to be invertible analytically.

⇛ Disadvantage:

• Useful only if you know
∫
g(x)dx
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Antithetic variates

⇛ In MC methods usually one uses the independent random variables. The Antithetic
variates method on purpose uses a set of correlated variables (negative correlation is
the important property):

• Let f and f ′ will be functions of x on the same domain.

• The variance: V (f + f ′) = V (f) + V (f ′) + 2Cov(f, f ′).
• If Cov(f, f ′) < 0 then you can reduce the variance.

⇛ Advantages:

• If you can pick up f and f ′ so that they have negative correlation one can
significantly reduce the variance!

⇛ Disadvantages:

• There are no general methods to produce such a negative correlations.

• Hard to generalize this for multidimensional case.

• You can’t generate events from f(x) with this method.
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