Partial Differential Equation Solving, vol 2.

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich^{uzH}

Monte Carlo methods, 12 May, 2016

Marcin Chrząszcz (Universität Zürich)

Partial Differential Equation Solving

There will be no lectures and class on 19^{th} of May

Dirichlet conditions:expected number of steps \Rightarrow find the function $u(x_1, x_2, ..., x_k)$ such that if fulfils the Laplace equation:

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \ldots + \frac{\partial^2 u}{\partial x_k^2} = 0, \quad (x_1, x_2, ..., x_k) \in D \subset \mathbb{R}^k$$

In the domain D, on the the $\Gamma(D)$ the u function is given by:

$$U(x_1, x_2, ..., x_k) = f(x_1, x_2, ..., x_k), \quad (x_1, x_2, ..., x_k) \in \Gamma(D)$$

 \Rightarrow Now lets assume that the domain D is a hyperball:

$$0 \leqslant \sum_{i=1}^{k} x_i^2 \leqslant r^2, \quad r = \text{const}$$

 \Rightarrow Now $\pi_{\nu}(x_1, x_2, ..., x_k)$ is a probability that a particle starting from $(x_1, x_2, ..., x_k)$ will end up on the edge after ν steps. The $\kappa(x_1, x_2, ..., x_k)$ is the estimated number of steps for this trajectory.

$$\pi_0 = \begin{cases} 1, & (x_1, x_2, \dots, x_k) \in \Gamma(D) \\ 0, & (x_1, x_2, \dots, x_k) \in D \end{cases}$$

$$\pi_{\nu} = \frac{1}{2k} \sum_{\nu} \pi_{\nu}(x_{1}\prime, x_{2}\prime, ..., x_{k}\prime)$$

Marcin Chrząszcz (Universität Zürich)

Partial Differential Equation Solving

(1)

Dirichlet conditions:expected number of steps

 \Rightarrow From Eq. 1 and 2 one gets:

$$\kappa(x_1, x_2, ..., x_k) = \sum_{\nu=1}^{\infty} \nu \pi_{\nu}(x_1, x_2, ..., x_k)$$

one gets:

$$\kappa(x_1, x_2, ..., x_k) = \frac{1}{2k} \sum_{\nu=1}^{\infty} \left[\nu \sum_{\nu=1}^{\prime} \pi_{\nu-1}(x_1, x_2, ..., x_k) \right]$$
$$= \frac{1}{2k} \sum_{\nu=1}^{\infty} \left[(\nu - 1) \sum_{\nu=1}^{\prime} \pi_{\nu-1}(x_1, x_2, ..., x_k) \right] + \frac{1}{2k} \sum_{\nu=1}^{\infty} \sum_{\nu=1}^{\prime} \pi_{\nu-1}(x_1, x_2, ..., x_k)$$

 \Rightarrow From which we get:

$$\kappa(x_1, x_2, ..., x_k) = \frac{1}{2k} \sum_{l=1}^{\prime} \kappa(x_1, x_2, ..., x_k) + 1$$

 \Rightarrow Now this is equivalent of the Poisson differential equation:

$$\frac{\partial^2 \kappa}{\partial x_1^2} + \frac{\partial^2 \kappa}{\partial x_2^2} + \ldots + \frac{\partial^2 \kappa}{\partial x_k^2} = -2k, \text{ b. con. } \kappa(x_1, x_2, \ldots, x_k) = 0, \quad (x_1, x_2, \ldots, x_k) \in \Gamma(D_1)$$

Marcin Chrząszcz (Universität Zürich)

Dirichlet conditions:expected number of steps

 \Rightarrow From previous equation: $\kappa(x_1, x_2, ..., x_k) = \psi(x_1, x_2, ..., x_k) - \sum_{i=1}^k x_i^2$ we get the for the ψ function the Laplace equation:

$$\frac{\partial^2 \psi}{\partial x_1^2} + \frac{\partial^2 \psi}{\partial x_2^2} + \ldots + \frac{\partial^2 \psi}{\partial x_k^2} = 0$$

because on the border ($\Gamma(D)$):

$$\psi(x_1, x_2, \dots, x_k) = r^2 = \text{const}$$

so also inside the $D: \psi(x_1, x_2, ..., x_k) = r^2 = \text{const} \Rightarrow$ From which we can estimate the number steps in the random walk:

$$\kappa(x_1, x_2, ..., x_k) = r^2 - \sum_{i=1}^k \leqslant r^2$$

Important conclusion:

The expected number of steps in the random walk (the time of walk) from the point $(x_1, x_2, ..., x_k)$ till the edge od the domain can be estimated by r number (the LINEAR! size). It is completly independent of the k!

Marcin Chrząszcz (Universität Zürich)

Partial Differential Equation Solving

Dirichlet conditions as linear system

 \Rightarrow In the discrete form we can write the Dirichlet conditions as (2-dim case):

$$\begin{split} u(x,y) &= \frac{1}{4} \left[u(x-1,y) + u(x+1,y) + u(x,y-1) + u(x,y+1) \right], \ (x,y) \in D \\ u(x,y) &= f(x,y), \ (x,y) \in \Gamma(D) \end{split}$$

 \Rightarrow Now we can order the grid ((x, y) $\in D \cup D$), we can represente the above equations as a linear system:

$$u_i = a_i + \sum_{j=1}^n h_{ij} u_j, \quad i = 1, 2, ..., n$$

The trick:

So to solve a differential equation with Dirichlet boundary condition we can use all the methods of solving linear equation systems such as Neumann-Ulam or Wassow.

Dirichlet conditions as linear system - example

- To do this we act as following: we number separately the points inside the D domain and on the border Γ(D).
- We write for each point inside the domain the Laplace equation as system of linear equations:

Dirichlet conditions as linear system - example

 \Rightarrow The above equation we can transform the above equation into the iterative representation:

$$\overrightarrow{u} = \overrightarrow{a} + \mathsf{H} \overrightarrow{u}$$

where $\vec{u} = (u_1, u_2, ..., u_7)$ is the vector which represent the values of the function inside the D domain, \overrightarrow{a} is the linear combinations of the boundary values. In our example:

$$\mathbf{H} = \begin{pmatrix} 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{4} & 0 \\ \frac{1}{4} & 0 & 0 & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{4} & 0 & 0 \\ \end{pmatrix} \xrightarrow{\Rightarrow} \text{To find the solution to aka } \overline{u} \text{ one can use the methods} we already know: Neumann-Ulam and Wasow, etc.} \Rightarrow \text{There are tricks and tips one can use to make this problem faster as each of the entry is } \frac{1}{4}.$$

н

4

to make this

Neumann-Ulam method

 \Rightarrow We put the particle in (x, y).

 \Rightarrow We observe the trajectory of the particle until it reaches the boundary. Point P_k is the last point before hitting the boundary.

 \Rightarrow For each trajectory we assign a value that the arithmetical mean of the boundary points that are neighbours of the point P_k .

 \Rightarrow We repeat the above *n* times and calculate the mean.

 \Rightarrow The example solution for 20 trajectories:

 $u(2,2) = 1.0500 \pm 0.2756$

 \Rightarrow E 10.1 Solve the above linear system using the Neumann-Ulam method for an assumed boundary conditions.

Dual Wasow method

 \Rightarrow We choose the boundary conditions with arbitrary chosen probability p.d.f. p(Q) the starting point. \Rightarrow We choose with equal probability the point inside D where the particle goes.

 \Rightarrow With equal probability we choose the next positions and so on until the particle hits the boundary in the point Q'.

 \Rightarrow We count all trajectories $N((x_1, x_2, x_3, ..., x_k)$ that that have passed the point $(x_1, x_2, x_3, ..., x_k)$. \Rightarrow For the point $(x_1, x_2, ..., x_k)$ we calculate:

$$w(x_1, x_2, ..., x_k) = \frac{1}{2k} N(x_1, x_2, ..., x_k) \frac{f(Q)}{p(Q)}$$

- \Rightarrow The above steps we repeat N times.
- \Rightarrow After that we take the arithmetic mean of w.

Random walk with different step size

 \Rightarrow If u(x, y) is a harmonic function that obeys the Laplace equation and $S_r(x, y)$ is a circle in with the middle point (x, y) and radius r. Then a theorem states:

$$S_r(x,y) = \frac{1}{2\pi} \int_0^{2\pi} u(x+r\cos\phi, y+r\sin\phi)d\phi$$

- \Rightarrow The above is true for in all the dimensions.
- \Rightarrow The E.Muller method:
- At the begging we set the point in the initial point: $(x_1, x_2, ..., x_k)$.
- We construct a k dimensional sphere with center $(x_1, x_2, ..., x_k)$ and radius r. The r has to be choosen in a way that the whole is inside the $D: S_r(\vec{x}) \in D$. We choose a random point from $\mathcal{U}(0, 2\pi)$ on the sphere which is our new point.
- We stop the walk when the point is on Γ(D).
- \Rightarrow We repeat this N times.

 \Rightarrow The final result if the arithmetical mean of all trajectories and is equal of the $u(x_1, x_2, ..., x_k)$.

Backup