

Kern- und Teilchenphysik II Exercise Sheet 1

HS 16 Prof. Nicola Serra, Dr. Annapaola De Cosa

Issued: 09.03.2017

Due: 22.03.2017

Dr. Marcin Chrzaszcz

http://www.physik.uzh.ch/de/lehre/PHY213/FS2017.

html

Exercise 1: Conservation laws (4.5 Pts.)

One other quantum number that we did not discuss is Izospin. The izospin is a symmetry that you can exchange the quarks u and d without changing the strong interactions. Historically it was introduced by Heisenberg to "unify" proton and neutron. Both of them have the izospin $I = \frac{1}{2}$. The 3rd component of the izospin are however different: $I_3 = \pm \frac{1}{2}$. The strong interactions conserve the I and the I_3 . The EM interactions conserve the I_3 component but not the I. The weak iterations do not conserve both the I and the I_3 .

In summary Tab. 1 presents the quantum numbers and which iteration conserves them.

Quantum Number	Strong int.	EM int.	Weak int.
Charge Q	Y	Y	Y
Baryon Number B	Y	Y	Y
Lepton number L	Y	Y	Y
Lepton family/flavour number L_i	Y	Y	Y
Izospin I	Y	N	N
3rd component Izospin I ₃	Y	Y	N
S,C,B,T	Y	Y	N
Parity P	Y	Y	N
Charge conjugate C	Y	Y	N
CP, T	Y	Y	$N \mathcal{O}(10^{-3})$

Table 1: Conservation of quantum numbers for different forces. Y=YES, N=NO.

Based on the table above please indicate which forces is responsible for which interaction:

- $\pi^- p \to \pi^- \pi^+ n$
- $\bullet \ \gamma p \to \pi^+ n$
- $\nu_{\mu}n \rightarrow \mu^{-}p$
- $\pi^0 \to e^- e^- e^+ e^+$
- $p\bar{p} \to \pi^-\pi^+\pi^0$
- $\bullet \ \tau^- \to \pi^- \nu_{\tau}$

¹This is valid up to quark mass effects.

- $D \rightarrow K^+\pi^-\pi^+$
- $\bullet \ \pi^- \to \pi^0 e^- \nu_e$
- $\Lambda_0 p \to K^- pp$

Exercise 2: Conservation laws 2 (2 Pts.)

Show that mezon that decays to a pair $\pi^+\pi^-$ via strong interactions has $C=P=(-1)^J$, where J is the total angular momentum.

Exercise 3: Conservation laws 3 (4 Pts.)

We know that mezons $f_2(1275)$ (J=2) and $\rho(769)$ (J=1) are decaying via strong interactions to two charged pions. Which of the processes is inpossible in the EM interactions: $\rho \to \pi^0 \gamma$ or $f_2^0 \to \pi^0 \gamma$. Which of the decays is forbidden in all interactions: $\rho \to \pi^0 \pi^0$, $f_2 \to \pi^0 \pi^0$.

Exercise 4: Conservation laws 4 (2 Pts.)

We have proton and antiproton in the S state. Why reaction of $p\bar{p} \to \pi^0 \pi^0$ cannot proceed via strong interactions?

Exercise 5: Pion decay (16 Pts.)

Please calculate the matrix element of the dacay $\pi^- \to \mu\nu_{\mu}$. The form factor for the pion has the form of $F^{\mu} = p_{\mu}f_{\pi}$, where f_{π} is so called pion decay constant and is calculated on lattice to be $f_{\pi} = 130$ MeV. Using the matrix element calculate the Γ . Calculate also the Γ for the $\pi^- \to e\nu_e$. Why is the electron mode different then the muon one?

Exercise 6: Muon decay (16 Pts.)

Calculate the matrix element for the dacay of the muon: $\mu^- \to e^- \nu_\mu \bar{\nu_e}$. Using "Golden Rule" calculate the calculate the Γ and the lifetime of the muon.

Exercise 7: Muon decay simulation (12 Pts.)

Please simulate the muon decay from exercise 6 using ROOT. Please assume for the moment flat phase space (aka matrix element =1). The example can be found:

https://root.cern.ch/root/html/tutorials/physics/PhaseSpace.C.html

having simulate this decay please calculate the electron energy in the muon central of mass and draw it for your simulated events. Simulate at least 100.000 events.