Partlal leferentlal
Equatlon Solvmg, vol 2

5,

vy A
W.'; b

Marcin Chrzaszcz <487 Universityof
mchrzasz@cern.ch *wg_:*r;rr Zurich™ % .

Monte Carlo methods!
12 May, 2016



mailto:mchrzasz@cern.ch

Announcement

There will be no lectures and class on 19" of May
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Dirichlet conditions:expected number of steps
= find the function u(z1, z2, ..., zx) such that if fulfils the Laplace equation:

?u  9%u &u k
—t=—+..+ =0 DCR
89:% + 8x§ + ...+ ami , (x1,22,...,28) €D C

In the domain D, on the the I'(D) the w function is given by:
U(mhl’z, ey a:k) = f($1,$2, ...,l’k), (xl,xg, 71’19) S F(D)

= Now lets assume that the domain D is a hyperball:

k
2 2
0< E z; <r°, r =const
i=1

= Now 7, (21, Z2, ..., k) is a probability that a particle starting from (z1, z2, ..., T)
will end up on the edge after v steps. The k(z1, 2, ..., k) is the estimated number
of steps for this trajectory.

_J1, (z1,z2,...,2}) € (D) 1
T = 0}
0, (x1,z2,...,2) €D

™= Ty —1(z1/, T2/, oy T !)
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Dirichlet conditions:expected number of steps
= From Eq. 1 and 2 one gets:

K(T1, T2, .y T) = Zwrl,(xl,xz, ey )

one gets:

oo !
1
k(x1, 22, ..., Tr) = o Z [way_l(xll, x2l, ., Trl)
1« 1
:—kz (v—-1) Zm, (@i, zal, ..., zil) —kzzm (1, x2ly ooy TRl)

= From which we get:

K(z1, %2, ..., Tk) = 5% Z (z1t, T2ty oy iel) + 1
= Now this is equivalent of the Poisson differential equation:

Pk %k 0’k
5‘:52 + — g + ot — 922 = —2k, b. con. k(z1,22,....,2k) =0, (x1,22,...,%k)
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Dirichlet conditions:expected number of steps
2

= From previous equation: k(z1, Z2,...,Tk) = Y(T1, T2, ..., Tx) — Zle xj we get
the for the v function the Laplace equation:

%y 0%y Py
aix%‘f'aix%-f'...-f-aimi—o

because on the border (I'(D)):
1/’(3517132, 71'7@) = r? = const

so also inside the D: (1,22, ...,xx) = 72> = const = From which we can estimate
the number steps in the random walk:

k
K(T1, X2, .0y k) = r?— Z <r?

=1

Important conclusion:

The expected number of steps in the random walk (the time of walk) from the point
(z1, 2, ..., zk) till the edge od the domain can be estimated by r number (the
LINEAR! size). It is completly independent of the !
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Dirichlet conditions as linear system

= In the discrete form we can write the Dirichlet conditions as (2-dim case):
1
uz,y) = 7 fulz—Ly) +ulz+Ly) +ulzy-1) +ulzy+1)], (z,y) €D

u(xv y) = f(x,y), (:L',y) € F(D)

= Now we can order the grid ((z,y) € D UTI'(D)), we can represente the above
equations as a linear system:

n
Ui = ai + E hijuj, 1=1,2,...,n

j=1

The trick:

So to solve a differential equation with Dirichlet boundary condition we can use all
the methods of solving linear equation systems such as Neumann-Ulam or Wassow.
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Dirichlet conditions as linear system - example

1 2 3
4 e KA RA
® To do this we act as following: we number separately 3 10 l] 2 l3 4
the points inside the D domain and on the border
(D). 4 15 16
® We write for each point inside the domain the Laplace
equation as system of linear equations: 1 8 7 6
7
! -
0 1 2 3 4X
uy —uz/4 —ug/4 = (f1 + f10)/4
—u1/4 ug — ug/4 —us/4 = (f2)/4
—uz/4 ug —ug/4 = (fs+ fa)/4
—u1/4 ug — us/4 = (f8 + fo)/4
—uo/4 —uq/4 us —ug/4 —uy/4 =0
—uz/4 —us/4 ug = (fs + f6)/4
—us/4 ur = (fe + f7r + f8)/4
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Dirichlet conditions as linear system - example

= The above equation we can transform the above equation into the iterative repre-
sentation:

— — —
u =a+Hu

where W = (u1,u2, ...,u7) is the vector which represent the values of the function
inside the D domain, @ is the linear combinations of the boundary values. In our

example:
0 1 0 1 0 0 O
1 4 1 4 1
1 0 1 0 1 0 0
0o Y o o o 1 (|7 Tofindthe solution to aka @ one can use the methods
1 4 1 4 we already know: Neumann-Ulam and Wasow, etc.
H= 1 0 0 O 1 0 0 | = There are tricks and tips one can use to make this
1 1 1 1 |problem faster as each of the entry is 1.
o - 0 - 0 - -
4 1 4 1 4 4
0o 0 - 0 - 0 0
oot
0 0 0 0 - 0 O
4
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Neumann-Ulam method

= We put the particle in (z,y).

= We observe the trajectory of the particle until it reaches the boundary. Point Py is
the last point before hitting the boundary.

= For each trajectory we assign a value that the arithmetical mean of the boundary
points that are neighbours of the point P.

= We repeat the above n times and calculate the mean.

= The example solution for 20 trajectories:

u(2,2) = 1.0500 + 0.2756

= E 10.1 Solve the above linear system using the Neumann-Ulam method for an as-

sumed boundary conditions.

9
/1

Marcin Chrzaszcz (Universitét Ziirich) Partial Differential Equation Solving



Dual Wasow method

= We choose the starting point with an arbitrary p.d.f. p(Q).
= We choose with equal probability the point inside D where the particle walks.
= With equal probability we choose the next positions and so on until the particle hits
the boundary in the point Q’.
= We count all trajectories N(z1, 22,3, ...,Zx) that that have passed the point
(1’1,952,1'3, ,Ik)
= For the point (z1, z2, ..., zx) we calculate:

w(x1, T2, ..., Ti) = %N(ml,mg, ,xk)%
= The above steps we repeat N’ times.
= After that we take the arithmetic mean of w.
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Random walk with different step size

= If u(z, y) is a harmonic function that obeys the Laplace equation and S, (z,y) is a
circle in with the middle point (z,y) and radius r. Then a theorem states:

27
Sr(z,y) = %/ u(x 4 rcos ¢,y + rsin @p)de
0

= The above is true for in all the dimensions.
= The E.Muller method:
® At the begging we set the point in the initial point: (z1, z2, ..., k).

® We construct a k dimensional sphere with center (z1, z2, ..., zx) and radius r.
The r has to be choosen in a way that the whole is inside the D: S,.(Z') € D. We
choose a random point from (0, 27) on the sphere which is our new point.

® We stop the walk when the point is on I'(D).

= We repeat this N times.
= The final result if the arithmetical mean of all trajectories and is equal of the
w(x1, T2, ..y Tk).
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Muller method

= The method is faster the faster the particle reaches the edge.
= In order to do so we choose the radius that it is the maximal one that allows the
sphere to be inside the domain D.

vA

= There is a problem!!!! The probability that we choose a
point on the edge is 0'!!!

= An approximation has to be made: we choose a small
number ¢ and we consider that the particle reached the
border when the distance is with d.

= We can always choose the § such that the estimator
error of function is smaller then a given e.
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Muller method, example

= An example solution of Laplace equation on square (0 < 0 y < 1) with

<1,
the boundary conditions: w(0,y) = 1, u(1,y) = u(z,0) = u(:c 1)

[ Method | Points (x,y) | N. trajectories | Ave.n.of.steps s] | Solution ||
Cons. step (0.3,0.3) 2000 89.87 42.0 0.396
' (0.5,0.1) 2000 46.05 215 0.075
(h=0.05) | (0.5,0.5) 2000 15.83 541 0.247
(0.3,0.3) 2000 6.06 17.9 0.398
Muller met. | (0.5,0.1) 2000 6.04 180 | 0.078
(0.5,0.5) 2000 5.07 14.5 0.255
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Other boundary conditions

= Find the solution to the Laplace equation:

u  0*u 0%u k
s = DCR
Py + 5= 922 +..+ 52 0, (z1,22,...,28) €D C

inside the D domain if on the edge I'(D) the function fulfils the equation:

au(xl, L2y ey [Ek)

flzi, 2, ..y xk)T +g(z1,x2, ..., xp)u(x1, T2, .oy k) = h(21, T2, ..., Th)
where %ﬁb’“”m is there derivative in the direction of normal to the I'(D) in the
direction inside D.

= The cases:

® f =0.= Dirichlet boundary condition (Ist class condition).
® g = 0. = Neumann boundary condition (2nd class condition).

® others. = General case (3rd class condition).
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Other boundary conditions

= In 2-dim:
32u 82U 2
—+ == = D CR
92 + 9 0, (z,y)eDC

with the boundary condition:

7)) 4 gt yyute,y) = hey), (9) € T(D)

= And the discrete differential equation:

u(@,y) = 7 [ = byy) + ulo + byy) + e,y — ) +ulz,y + b))

Reminder:

If at moment ¢ the point is in (z, y) then in the ¢ + 1 time the particle moves with

equal probability to one of the following points: (z — h,y), (z + h,y), (x,y — h),
(z,y + h).
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Random walk for boundary points
= The boundary point @) has only one internal neighbour point P.

® [f the normal is parallel to the grid axis in the point Q:

7@ P 4 Q@) = (@)

® Solving the above to get u(Q) we get:

Q) — J@uP) __ n@)
FQ-hg@ 7@ - he@

® To help we assign a temporary values:

f(Q)
plf(Q) —hg(Q)

P(Q) =

= So:
u(Q) = pp(Q)u(P) + (1 — p)(Q)
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Random walk for boundary points
= The boundary point @) has only one internal neighbour point P.

® [f the normal is parallel to the grid axis in the point Q:

7@ P 4 Q@) = (@)

® Solving the above to get u(Q) we get:

Q) — J@uP) __ n@)
FQ-hg@ 7@ - he@

® To help we assign a temporary values:

f(Q)
plf(Q) —hg(Q)

P(Q) =

= So:

w(@) = pp(Q)u(P) + (1 - p)P(Q)

= Interpretation: u(Q) can be seen that with probability p it is equal ¢(Q)u(P) and
with provability (1 — p) is equal to ¥(Q).
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Random walk for boundary points, continued

= The boundary point @ has only one internal neighbour point P.
= The algorithm:

® We start the walk from a internal point (X,Y") and we assign to it a weight:
W =1

® |If a particle at a given moment is sitting on the boundary then with probability p it
goes back to previous point P and gets a weight W - ¢(Q) and with probability
(1 — p) it finishes the walk and gets a weight of W - 4(Q).

® For each trajectory we assign a value equal to the weight of the last point. So for
example if the trajectory: QW, Q. Q% ..., Q™ we wil assign the number:

H(QM)H(Q™)3(QP)...6(Q*V)(Q™)

= One again this is only for 1 neighbour point P and that the normal of the boundary
is parallel to the grid!
= The general case is more difficult!
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More general case
= The boundary conditions:

1 *
y“ f(Q)h\/l—_A'_—C% [CQU(Pl) + Clu(P2) - U(Q ] +
9(Q)u(Q") = h(Q)
5 N = The trick:
Q*
ol ?(Q) = — /(@) y
p1|f(Q) = hy/1+cF
ch I(D) 62(Q") = —2f(@Q) _
g p2 | F(Q) = hy/1+ ¢
- 2
x ¢3(Q*):_h _ Cl+1h(Q)) _
ps | f(Q) —hy/1+c

= Putting above new variables we get:

w(Q") = p191(Q7)u(Pr) + p2¢2(Q" )u(P2) + psy(Q")

= We will interpret the p1, p2, p3s numbers as probability.
Marcin Chrzaszcz (Universitét Zirich)
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More general case, continuation

= The rules of random walk:
® The particle starts in (X,Y") inside the domain with weight: W = 1.
® |f at some point in time the particle hits the boundary in point Q™:

o With probability p; it goes to point P, and the weight is W - ¢1(Q*)
o With probability ps it goes to point P, and the weight is W - ¢2(Q*)
o With probability ps it stops the walk and the weight is W - (Q*)

® For each trajectory we assign the weight at the end point.
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Backup
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