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Classical methods of variance reduction

⇛ In Monte Carlo methods the statistical uncertainty is defined as:

σ =
1√
N

√
V (f)

⇛ Obvious conclusion:

• To reduce the uncertainty one needs to increase N .
⇒ Slow convergence. In order to reduce the error by factor of 10 one needs to
simulate factor of 100 more points!

⇛ How ever the other handle (V (f)) can be changed! −→ Lot’s of theoretical effort
goes into reducing this factor.
⇛ We will discuss four classical methods of variance reduction:

1. Stratified sampling.

2. Importance sampling.

3. Control variates.

4. Antithetic variates.
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Disadvantages of classical variance reduction methods

⇛ All aforementioned methods(beside the Stratified sampling) require knowledge of
the integration function!
⇛ If you use the method in the incorrect way, you can easily get the opposite effect
than intendant.
⇛ Successful application of then require non negligible effort before running the
program.
⇛ A natural solution would be that our program is ”smart” enough that on his own,
he will learn something about our function while he is trying to calculate the integral.
⇛ Similar techniques were already created for numerical integration!
⇛ Truly adaptive methods are nontrivial to code but are widely available in external
packages as we will learn.
⇛ Naming conventions:

• Integration MC- software that is able to compute JUST! integrals.

• Generator MC- software that BESIDES! beeing able to perform the integration is
also capable of performing a generation of points accordingly to the integration
function.
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Schematic of running this kind of methods
1. Function probing (exploration):
◦ Recursive algorithm that searches for hipper-surfaces in which the

function is approximately close. For evaluation of an integral in a given
hipper-surface normally one uses numerical or MC crude methods. In
general it is not an easy task!
◦ Often the function is approximated by a given set of elementary

functions.
2. Calculation phase
◦ The integral is calculated using mostly using Stratified Sampling and

Importance Sampling, depending on exploration phase.
◦ If a MC program has capability to generated distributions accordingly

to the function of which we want to calculate the integral, it’s in this
place where it happens.

⇛ There are algorithms where the exploration phase is linked with calculation phase.
For each of the optimisation phase the integral is calculated as well. The result will be
weighted average of those integrals!
.
..

.
This method might be bias! if in the extrapolation phase the algorithm picks up a
function peaks to late the whole method will lead to systematically bias results.
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RIWIAD algorithm
⇛ The first algorithm of this kind RIWIAD was proposed by Sheppeya & Lautrupa in
1970s. It was used to calculate integrals in cube (0, 1)n.
⇛ It worked as follows:

• At the begging the hipper-cube is divided in equal size sub cubes and in each of
them the integral is calculated.

• Based on the calculated integrals programs moves the boundaries to make the
hipper-cubes smaller in the places where the function is greater and smaller
where the function is smaller.

• The process starts over and continues over and over again. At each step the
integral estimator and it’s standard deviation is calculated. Form those a weighted
average is constructed and it’s standard deviation is constructed and its standard
deviation.

• The process stops when the standard deviation reaches our desired sensitivity.

⇛ Disadvantages:

• Hipper-cubes are always parallel to the coordinate axis.

• Some are are divided even thought they didn’t have to.

• The weighted average might be a bias estimator.
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Friedmanns algorithm

⇛ In the 1970s J.Friedmann has also developed an adaptive MC integration
algorithm.
⇛ The algorithm was as follows:

• A probe function is constructed using a combination of Cauchy functions
(Briet-Wigner), in which the peaks correspond to the local maxima of the
integration function. In order to do so one needs to study the eigen
functions in the neighbourhood of each peak (nasty thing...).

• The Briet-Wigner is chosen as it falls down to 0 slower then a Gauss
distribution.

• The integral and the standard deviation is calculated based on the
weighted averaged based on the probe function.

.
Disadvantage:
..

.
Cannot be applied to functions that cannot be approximated with small
number of Briet-Wigner functions.
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DIVIONNE2 algorithm

⇛ J.Friedmann (1977): adaptive algorithm for MC integration based on recursive
division of the integration area (available in the CERBLIB package).
⇛ The algorithm:

• Multidimensional division of the hipper-cube. We divide each of the initial sub
cubes to minimalise the spread of the function.

• After this the integral is calculated using Stratified Sampling.

• We can generate events accordingly to this function with this method.

⇛ Disadvantages:

• Hipper-cubes are always parallel to the coordinate axis.

⇛ Advantages:

• Because we divide only one hipper-cube at the time, the procedure doesn’t get
bias as easily the RIWID does.
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VEGAS algorithm
⇛ J. G. P. Lepage (1978): adaptive algorithm for MC integration based on iterative
division of the integration area (similar to RIWID).
⇛ Let’s calculate:

∫ 1
0
f(x)dx.

• We generate M random points from U(0, 1). We calculate from them the integral
and standard deviation.

• Now we divide the integration region in N equal subdivisions:

0 = x0 < x1 < x2 < ... < XN = 1, ∆x = xi − xi−1

• Now each of this subdivisions we divide further into m1 + 1 subsubdivisions.

mi = K
f i∆xi∑
j
f j∆xj

, K = const. typically = 1000

and

f i ≡
∑

x∈[xi−1,xi)

|f(x)| ∼ 1
∆xi

∫ xi
xi−1

|f(x)|dx

⇛ The new subsubareas will be ”denser” where the function is greater and less
dens where the function is smaller.
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VEGAS algorithm
• We are are retrieving back the original number (N) of the subdivisions by glueing

together equal amount subsubdivisions.
⇛ The new subdivisions will be larger where the function is larger and vice versa.
• We generate the M points accordingly to the stop function probability:

p(x) =
1
N∆xi

and calculate the integral Stratified sampling.
• We repeat the procedure until we find an optimum division:

mi ≈ mj i, j = 1, ..., N.

• In each iteration we calculate the weighted average:∑
k

Ik
σ2k
,

where Ik and σk are the integral and error in the k interaction.
• After the procedure stop we calculate the final results:

Î = σ2I
∑
k

Ik
σ2k

σI =

[∑
k

1
σ2k

]− 12
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VEGAS algorithm - futher improvements

⇛ In order to make the integrating area more stable(can happen that the division
jumps around very rapidity). We can modify the algorithm:

mi = K

[ f∆xi∑
j
f j∆xj

− 1

]
1

log
[
f i∆xi/

∑
j
f j∆xj

]
α ,

where α ∈ [1, 2] sets the convergence speed. ⇛ When function has narrow peaks the
Ik and σk might be wrongly calculated in early stages of iteraction. To fix this we can:

I =

[∑
k

I2k
σ2k

]−1∑
k

Ik

(
I2k
σ2k

)
, σI = I

[∑
k

I2k
σ2k

]−0.5
⇛ If the number of interactions is to large then you cannot trust the algorithm!
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VEGAS algorithm - 2D case

⇛ Lets take for example
∫ 1
0
dx
∫ 1
0
dyf(x, y).

⇛ We can do a trick:

p(x, y) = px(x)py(y)

⇛ One can show that using Lagrange multipliers that the optimum density has the
form of:

px(x) =

√∫ 1
0
dy f

2(x,y)
py(y)∫ 1

0
dx

√∫ 1
0
dy
f2(x, y)
py(y)

⇛ So our 1D algorithm can be used to each of the axis (ex. for x axis):

(fi)
2 =

∑
x∈[xi−1,xi)

∑
y

f2(x, y)
py(y)

∼ 1
∆xi

∫ xi
xi−1

dx

∫ 1
0

dy
f2(x, y)
py(y)

⇛ In analogous you do it for y axis.
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VEGAS algorithm - an example

⇛ An example of usage: let’s calculate:

In =

(
1
a
√
π

)n ∫ 1
0

exp

[
(xn − 0.5)2

a2

]
dnx = 1

⇛ For the n = 9, a = 0.1 and α = 1
Iteration Ik σk I σ(I) Number of calculations
1 0.007 0.005 0.007 0.005 104

3 0.643 0.070 0.612 0.064 3 · 104
5 1.009 0.041 0.963 0.034 5 · 104
10 1.003 0.041 1.003 0.005 105

Crude MC method 0.843 0.360 105
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VEGAS algorithm - comparison to numerical methods

⇛ An example of usage; let’s calculate:

In =
(
1
a
√
π

)n ∫ 1
0
exp
[
(xn − 0.5)2

a2

]
dnx

⇛ For the n = 9, a = 0.1 and α = 1.

Number of points on axis Integral value Number of calculations
5 71.364 2 · 106
6 0.017 107

10 0.774 109

15 1.002 3.8 · 109
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FOAM algorithm

⇛ S.Jadach (2000), arXiv:physics/9910004, Comp. Phys. Commun. 152 (2003) 55.
Adaptive method with recursive division of the integration domain in cells.
⇛ There are two algorithms in dividing the integration domain:

• Symplectic: Cells are sympleces(hiper-triangles). This method can be applied to
not so large number of dimensions. (¬ 5).
• Qubic: Cells are hiper-cubes. This might be applied in higher number dimensions.
(¬ 20).

⇛ The algorithm:

• Exploration phase:
The integration domain (hipper-cube) is divided recursively into cells. In each step
only one cell is split. The splitting is not event! The procedure is stop when the
number of cells reach a certain number that is set by us. One constructs an
approximation function and based on this the integral is calculated.

• Generation/Calculation Phase:
We generate random points accordingly to the distribution of approximation
function and the integral is calculated using the Importance sampling based on
the approximation function.
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FOAM algorithm
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FOAM algorithm

⇛ E3.1 Using ROOT implementation of the FOAM algorithm calculate the integrals
from exercise E2.3.
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Monte Carlo vs numerical methods

⇛ All numerical methods are based on evaluating the integral using linear
combination of function:

IQ =∼mi=1 ωif(xi)

⇛ Different methods have different weights ωi and lattice point xi.
⇛ Efficiency of Monte Carlo methods compared to the numerical ones:

Standard deviation 1D nD
Monte Carlo n−1/2 n−1/2

Trapezoidal Rule n−2 n−2/d

Simpson Rule n−2 n−2/d

m-point Gauss rule n−2m n−2m/d
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Sum up

⇛ In one dimension the Monte Carlo method is substantially slower then the
numerical methods! Even the most simple ones.
⇛ In many dimensions the Monte Carlo methods rapidity gain the advantages!
⇛ For d > 4 the MC method if faster then the Trapezoidal Rule.
⇛ For d > 8 the MC method if faster then the Simpson Rule.
⇛ The disadvantages of the numerical methods:

• Hard to apply in multi dimensions.

• Hard to apply in complex integration domains.

• The integration uncertainties are hard to evaluate.
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Method of Moments
⇛ Now real cool things!
⇛ Let’s consider we want to study a rare decay: B± → K±µµ. The decay is
described by the following PDF:

1
Γ

d2Γ
dq2d cos θl

=
3
4
(1− FH)(1− cos2 θl) + FH/2 +AFB cos θl

⇛ PDF by construction is normalized:
∫ 1
−1
1
Γ

d2Γ
dq2d cos θl

= 1

• Normally we do a likelihood fit and
we are done.

• There is a second way!
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Method of Moments
⇛ Let’s calculate the integrals:∫ 1

−1

1
Γ

d2Γ
dq2d cos θl

· cos θl =
2
3
AFB

∫ 1
−1

1
Γ

d2Γ
dq2d cos θl

· cos2 θl =
1
5
+
2FH
15

⇛ So we can get our parameters that we searched for by doing a integration. So now
what?
⇛ Well nature is the best random number generator so let’s take the data and treat
and calculate the integral estimates:∫ 1

−1

1
Γ

d2Γ
dq2d cos θl

· cos θl =
2
3
AFB =

1
N

N∑
i=1

cos θl,i

∫ 1
−1

1
Γ

d2Γ
dq2d cos θl

· cos2 θl =
1
5
+
2FH
15
=
1
N

N∑
i=1

cos2θl,i

⇛ E3.2 Calculate the AFB and FH using Method of moments. The events to be used
to calculate them are here:LINK
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Backup
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