# Markov Chain MC

CERN

#### Marcin Chrząszcz mchrzasz@cern.ch

Experimental Methods in Particle Physics, 7 October, 2018

#### Trivial example

 $\Rightarrow$  Lets start with a TRIVIAL example: we want to calculate S=A+B. We can rewrite it in:

$$S = p\frac{A}{p} + (1-p)\frac{B}{1-p}$$

and one can interpret the sum as expected value of:

$$W = \begin{cases} \frac{A}{p} & \text{with propability } p \\ \frac{A}{1-p} & \text{with propability } 1-p \end{cases}$$

 $\Rightarrow$  The algorithm:

• We generate a random variable W and calculate:

$$\hat{S} = \frac{1}{N} \sum_{i=1}^{N} W_i$$

 $\Rightarrow$  The  $\hat{S}$  is an unbias estimator of S.

#### Trivial example2

Lets say we have a linear equation system:

$$X = pY + (1-p)A$$
  

$$Y = qX + (1-q)B$$

- We know A, B, p, q; X and Y are meant to be determined.
- Algorithm:
  - 1. We choose first element of the first equation with probability p and second with probability 1-p.
  - 2. I we choose the second one, the outcome of this MCMC is W = A.
  - 3. If we choose the first we go to second equation and choose the first element with probability q and the second with 1 q.
  - 4. We we choose the second one, the outcome of this MCMC is W = B.
  - 5. If we choose the first we go to the first equation back again.
  - 6. We repeat the procedure.
- We can estimate the solution of this system:

$$\hat{X} = \frac{1}{N} \sum_{i=1}^{N} W_i$$
  $\hat{\sigma}_X = \frac{1}{\sqrt{N-1}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} W_i^2 - \hat{X}^2}$ 

Marcin Chrząszcz (CERN)

#### Random walk



 $\Rightarrow$  We are in the point x and we walk accordingly to the following rules:

- From point x we walk with probability p to point y or with 1 p to a.
- From point y we walk with probability q to point x and with 1 Q to b.
- The walks ends when you end up in a or b.
- You get a "reward" A if you end up in point a and B if you end up in b.
- X is expected "reward" when you start the walk from x, Y when you start from y.
- $\Rightarrow$  The algorithm above is so-called random walk on the set  $\{a, x, y, b\}$
- $\Rightarrow$  The described walked can solve the linear equation system that we discussed above.

## Markov Chain MC

- Consider a finite (or Countable set) possible states:  $S_1$ ,  $S_2$ , ...
- The  $X_t$  is the state of the system in the time t
- We are looking at discrete time steps:  $1, 2, 3, \ldots$
- The conditional probability is defined as:

$$P(X_t = S_j | X_{t-1} = S_{j-1}, ..., X_1 = S_1)$$

- The Markov chain is then if the probability depends only on previous step.  $P(X_t = S_j | X_{t-1} = S_{j-1}, ..., X_1 = S_1) = P(X_t = S_j | X_{t-1} = S_{j-1})$
- For this reason MCMC is also knows as drunk sailor walk.
- Very powerful method. Used to solve linear eq. systems, invert matrix, solve differential equations, etc.
- Also used in physics problems: Brown motions, diffusion, etc.

#### Linear equations system

 $\Rightarrow$  Lets start from a linear equation system:

$$\mathbf{A}\overrightarrow{x}=\overrightarrow{b},\quad \det\mathbf{A}\neq 0,$$

where  $\mathbf{A} = (a_{ij}, i, j = 1, 2, ..., n \text{ -matrix}, \overrightarrow{b} = (b_1, b_2, ..., b_n)$ -vector,  $\overrightarrow{x} = (x_1, x_2, ..., x_n)$  - vector of unknowns.  $\Rightarrow$  The solution we mark as  $\overrightarrow{x}^0 = (x_1^0, x_2^0, ..., x_n^0)$  $\Rightarrow$  The above system can be transformed into the iterative representation:

$$\overrightarrow{x} = \overrightarrow{a} + \mathbf{H}\overrightarrow{x}$$

where **H** is a matrix,  $\overrightarrow{a}$  is a vector.  $\Rightarrow$  We assume that the matrix norm:

$$\|H\| = \max_{1\leqslant i\leqslant n} \sum_{j=1}^n |h_{h_{ij}}| < 1$$

#### Linear equations system

 $\Rightarrow$  Lets start from a linear equation system:

$$\mathbf{A}\overrightarrow{x}=\overrightarrow{b},\quad \det\mathbf{A}\neq 0,$$

where  $\mathbf{A} = (a_{ij}, i, j = 1, 2, ..., n \text{ -matrix}, \overrightarrow{b} = (b_1, b_2, ..., b_n)$ -vector,  $\overrightarrow{x} = (x_1, x_2, ..., x_n)$  - vector of unknowns.  $\Rightarrow$  The solution we mark as  $\overrightarrow{x}^0 = (x_1^0, x_2^0, ..., x_n^0)$  $\Rightarrow$  The above system can be transformed into the iterative representation:

$$\overrightarrow{x} = \overrightarrow{a} + \mathbf{H}\overrightarrow{x}$$

where **H** is a matrix,  $\overrightarrow{a}$  is a vector.  $\Rightarrow$  We assume that the matrix norm:

$$\|H\| = \max_{1\leqslant i\leqslant n} \sum_{j=1}^n |h_{h_{ij}}| < 1$$

 $\Rightarrow$  We can always change transform every system to the iteration form: A = V - W.

$$(\mathbf{V} - \mathbf{W})\overrightarrow{x} = \overrightarrow{b} \quad \mapsto \quad \overrightarrow{x} = \mathbf{V}^{-1}\overrightarrow{b} + \mathbf{V}^{-1}\mathbf{W}\overrightarrow{x}$$

#### Linear equations system

 $\Rightarrow$  Now we further modify the equation system:

$$\overrightarrow{x} = \overrightarrow{a} + \mathbf{H} \overrightarrow{x} \Rightarrow (\mathbf{I} - \mathbf{H}) \overrightarrow{x} = \overrightarrow{a}$$

where  $I = \delta_{ij}$  - unit matrix,  $\delta_{ij}$  is the Kronecker delta.  $\Rightarrow$  What one can do is to represent the solution in terns of Neumann series:

$$\overrightarrow{x}^{0} = (\mathbf{I} - \mathbf{H})^{-1} \overrightarrow{a} = \overrightarrow{a} + \mathbf{H} \overrightarrow{a} + \mathbf{H}^{2} \overrightarrow{a} + \mathbf{H}^{3} \overrightarrow{a} + \dots$$

 $\Rightarrow$  So for the  $i^{th}$  component we have:

$$\begin{aligned} x_i^0 &= a_i + \sum_{j=1}^n h_{ij} a_j + \sum_{j_1=1}^n \sum_{j_2=1}^n h_{ij_1} h_{j_1 j_2} a_{j_2} \\ &+ \ldots + \sum_{j_1=1}^n \ldots \sum_{j_n=1}^n h_{ij_1} \ldots h_{j_{n-1} j_n} a_{j_n} \end{aligned}$$

 $\Rightarrow$  We will construct a probabilistic interpretation using MCMC and then we show that the expected value is equal to the above formula.

• To do so we add to our matrix an additional column of the matrix:

$$h_{i,0} = 1 - \sum_{j=1}^{n} h_{ij} > 0$$

- The system has states:  $\{0, 1, 2..., n\}$
- State at t time is denoted as  $i_t(i_t = 0, 1, 2, ..., n; t = 0, 1, ....)$
- We make a random walk accordingly to to the following rules:
  - At the beginning of the walk (t = 0) we are at  $i_0$ .
  - $\circ$  In the *t* moment we are in the *i*<sub>t</sub> position then in *t* + 1 time stamp we move to state *i*<sub>t+1</sub> with the probability *h*<sub>*i*,*i*<sub>t+1</sub></sub>.
  - $\circ~$  We stop walking if we are in state 0.
- The path  $\gamma = (i_0, i_1, i_2, ..., i_k, 0)$  is called trajectory.
- For each trajectory we assign a number:

$$X(\gamma) = X(i_0, i_1, i_2, \dots, i_k, 0) = \frac{a_{i_k}}{h_{i_k, 0}}$$

⇒ The  $X(\gamma)$  variable is a random variable from:  $\{a_1/h_{1,0}, a_2/h_{2,0}, ..., a_n/h_{n,0}\}$ . The probability that  $X(\gamma) = a_j/h_{j,0}$  is equal to the probability that the last non zero state of the  $\gamma$  trajectory is j.

 $\Rightarrow$  The expected value of the  $X(\gamma)$  trajectory if the trajectory begins from  $i_0 = s$  is:

$$E\{X(\gamma)|i_0 = s\} = \sum_{k=0}^{\infty} \sum_{\{\gamma_k\}} X(\gamma)P(\gamma)$$

where  $\gamma_k$  is a trajectory of length k, which starts in  $i_0 = s$  and  $P(\gamma)$  is the probability of occurrence of this trajectory.  $\Rightarrow$  Yes you guest it lets do Taylor expansion:

$$E\{X(\gamma)|i_0=s\} = \sum_{\gamma_0} X(\gamma)P(\gamma) + \sum_{\gamma_1} X(\gamma)P(\gamma) + \ldots + \sum_{\gamma_k} X(\gamma)P(\gamma)$$

 $\Rightarrow$  Now let's examine the elements of the above series.

 $\{\gamma_0\}$ : One trajectory:  $\gamma_0 = (i_0 = s|0)$ ,  $P(\gamma_0) = h_{s,0}$  and  $X(\gamma_0) = a_s/h_{s,0}$ . So:  $\sum_{\gamma_0} X(\gamma)P(\gamma) = \frac{a_s}{h_{s,0}}h_{s,0} = a_s$ 

 $\{\gamma_1\}: \text{Trajectories: } \gamma_1 = (i_0 = s, i_1 | 0), \; i_1 \neq 0, \; P(\gamma_1) = P(s, i_1, 0) = h_{s, i_1} h_{i_1, 0} \; \text{and} \; X(\gamma_1) = a_{i_1} / h_{i_1, 0}. \; \text{So:}$ 

$$\sum_{\gamma_1} X(\gamma) P(\gamma) = \sum_{i_1=1}^n \frac{a_{i_1}}{h_{i_1,0}} h_{s,i_1} h_{i_1,0} = \sum_{i=1}^n h_{s,i_1} a_{i_1}$$

 $\begin{array}{l} \{\gamma_2\}: \text{Trajectories: } \gamma_2 = (i_0 = s, i_1, i_2 | 0), \ i_1, i_2 \neq 0, \\ P(\gamma_2) = P(s, i_1, i_2, 0) = h_{s, i_1} h_{i_1, i_2} h_{i_1, 0} \text{ and } X(\gamma_2) = a_{i_2} / h_{i_2, 0}. \text{ So:} \end{array}$ 

$$\sum_{\gamma_2} X(\gamma) P(\gamma) = \sum_{i_1=1}^n \sum_{i_2=1}^n \frac{a_{i_2}}{h_{i_2,0}} h_{s,i_1} h_{i_1,i_2} h_{i_2,0} = \sum_{i_1=1}^n \sum_{i_2=1}^n h_{s,i_1} h_{i_1,i_2} a_{i_2}$$

⇒ etc...

 $\Rightarrow$  After summing up:

$$\begin{split} E\{X(\gamma)|i_0=s\} &= a_s + \sum_{i_1=1}^n h_{s,i_1} a_{i_1} + \sum_{i_1=1}^n \sum_{i_2=1}^n h_{s,i_1} h_{i_1,i_2} a_{i_2} + \dots \\ &+ \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_k=1}^n h_{s,i_1} h_{i_1,i_2} \dots h_{i_{k-1},i_k} a_{i_k} + \dots \end{split}$$

 $\Rightarrow$  If you compare this expression with the Neumann series we will they are the same so:

$$x_i^0 = E\{X(\gamma)|i_0 = i\}$$

#### To sum up:

We have proven that solving a linear system can be represented by an expectation value of the random variable  $X(\gamma)$ . The error is computed using standard deviation equation.

• For example lets try to solve this equation system:

$$\overrightarrow{x} = \begin{pmatrix} 1.5 \\ -1.0 \\ 0.7 \end{pmatrix} + \begin{pmatrix} 0.2 & 0.3 & 0.1 \\ 0.4 & 0.3 & 0.2 \\ 0.3 & 0.1 & 0.1 \end{pmatrix} \overrightarrow{x}$$

- The solution is  $\overrightarrow{x}_0 = (2.154303, 0.237389, 1.522255).$
- The propability matrix  $h_{ij}$  has the shape:

| i/j | 1   | 2   | 3   | 0   |
|-----|-----|-----|-----|-----|
| 1   | 0.2 | 0.3 | 0.1 | 0.4 |
| 2   | 0.4 | 0.3 | 0.2 | 0.1 |
| 3   | 0.3 | 0.1 | 0.1 | 0.5 |

• An example solution:

mchrzasz-ThinkPad-W530% ./mark.x 1 1000000 2.15625

#### Neumann-Ulam dual method

- The problem with Neumann-Ulam method is that you need to repeat it for each of the coordinates of the  $\vec{x}_0$  vector.
- The dual method calculates the whole  $\overrightarrow{x}_0$  vector.
- The algorithm:
  - $\circ~$  On the indexes:  $\{0,1,...,n\}$  we set a probability distribution:  $q_1,q_2,...,q_n$  ,  $q_i>0$  and  $\sum_{i=1}^n q_i=1.$
  - $\circ~$  The starting point we select from  $q_i$  distribution.
  - If in t time we are in  $i_t$  state then with probability  $p(i_{t+1}|i_t) = h_{i_{t+1},i_t}$ in t+1 we will be in state  $i_{t+1}$ . For  $i_{t+1} = 0$  we define the probability:  $h_{0,i_t} = 1 - \sum_{j=1}^n h_{j,i_t}$ . Here we also assume that  $h_{j,i_t} > 0$ .
  - NOTE: there the matrix is transposed compared to previous method:  $H^{T}$ .
  - $\circ~$  Again we end our walk when we are at state 0.
  - $\circ~$  For the trajectory:  $\gamma=(i_0,i_1,...,i_k,0)$  , we assign the vector:

$$\overrightarrow{Y}(\gamma) = \frac{a_{i_0}}{q_{i_0} p(0|i_k)} \widehat{e}_{i_k} \in \mathcal{R}^n$$

• The solution will be :  $\overrightarrow{x}^0 = \frac{1}{N} \sum \overrightarrow{Y}(\gamma)$ 

## Neumann-Ulam dual method

• Let's try to solve the equation system:

$$\vec{x} = \begin{pmatrix} 1.5 \\ -1.0 \\ 0.7 \end{pmatrix} + \begin{pmatrix} 0.2 & 0.3 & 0.1 \\ 0.4 & 0.3 & 0.2 \\ 0.1 & 0.1 & 0.1 \end{pmatrix} \vec{x}$$

- The solution is:  $\overrightarrow{x}_0 = (2.0, 0.0, 1.0).$
- Let's put the initial probability as constant:

$$q_1 = q_2 = q_3 = \frac{1}{3}$$

• The propability matrix  $h_{ij}$  has the shape:

| i/j | 1   | 2   | 3   | 4   |
|-----|-----|-----|-----|-----|
| 1   | 0.2 | 0.4 | 0.1 | 0.3 |
| 2   | 0.3 | 0.3 | 0.1 | 0.3 |
| 3   | 0.1 | 0.2 | 0.1 | 0.6 |

An example solution:

mchrzasz-ThinkPad-W530% ./mark2.x 1000000 1.9943 0.001806 1.00267

Markov Chain MC

 $\Rightarrow$  We set the P matrix in a arbitrary way.

 $\Rightarrow$  If in the t moment the point is in the  $i_t$  state, then with the probability  $p_{i_t,i_{t+1}}$  he can go to  $i_{t+1}$  state.

- $\Rightarrow$  We stop the walk once we reach 0.
- $\Rightarrow$  For the given trajectory we assign the value:  $X(\gamma_k)$
- $\Rightarrow$  We repeat the procedure N times and take the mean and RMS.
- $\Rightarrow$  We repeat this also for every of the  $\overrightarrow{x}^0$  vector components.

#### Partial differential equations, intro

 $\Rightarrow$  Let's say we are want to describe a point that walks on the  $\mathbb R$  axis:

- At the beginning (t=0) the particle is at x=0
- If in the t the particle is in the x then in the time t + 1 it walks to x + 1 with the known probability p and to the point x 1 with the probability q = 1 p.
- The moves are independent.
- $\Rightarrow$  So let's try to described the motion of the particle.

 $\Rightarrow$  The solution is clearly a probabilistic problem. Let  $\nu(x,t)$  be a probability that at time t particle is in position x. We get the following equation:

$$\nu(x, t+1) = p\nu(x-1, t) + q\nu(x+1, t)$$

with the initial conditions:

$$\nu(0,0) = 1, \quad \nu(x,0) = 0 \text{ if } x \neq 0.$$

 $\Rightarrow$  The above functions describes the whole system (every (t, x) point).

# Partial differential equations, intro $\Rightarrow$ Now in differential equation language we would say that the particle walks in steps of $\Delta x$ in times: $k\Delta t$ , k = 1, 2, 3...

$$\nu(x, t + \Delta t) = p\nu(x - \Delta x, t) + q\nu(x + \Delta x, t).$$

 $\Rightarrow$  To solve this equation we need to expand the  $\nu(x,t)$  function in the Taylor series:

$$\begin{split} \nu(x,t) &+ \frac{\partial \nu(x,t)}{\partial t} \Delta t = p\nu(x,t) - p \frac{\partial \nu(x,t)}{\partial x} \Delta x + \frac{1}{2} p \frac{\partial^2 \nu(x,t)}{\partial x^2} (\Delta x)^2 \\ &+ q\nu(x,t) + q \frac{\partial \nu(x,t)}{\partial x} \Delta x + \frac{1}{2} q \frac{\partial^2 \nu(x,t)}{\partial x^2} (\Delta x)^2 \end{split}$$

⇒ From which we get:

$$\frac{\partial \nu(x,t)}{\partial t} \Delta t = -(p-q) \frac{\partial \nu(x,t)}{\partial x} \Delta x + \frac{1}{2} \frac{\partial^2 \nu(x,t)}{\partial x^2} (\Delta x)^2$$

 $\Rightarrow$  Now We divide the equation by  $\Delta t$  and take the  $\Delta t \rightarrow 0$ :

$$(p-q)\frac{\Delta x}{\Delta t} \to 2c, \qquad \frac{\left(\Delta x\right)^2}{\Delta t} \to 2D,$$

⇒ We get the Fokker-Planck equation for the diffusion with current:

$$\frac{\partial \nu(x,t)}{\partial t} = -2c \frac{\partial \nu(x,t)}{\partial x} + D \frac{\partial^2 \nu(x,t)}{\partial x^2}$$

Marcin Chrząszcz (CERN)

Markov Chain MC

 $\Rightarrow$  The aforementioned example shows the way to solve the partial differential equation using Markov Chain MC.

 $\Rightarrow$  We will see how different classes of partial differential equations can be approximated with a Markov Chain MC, whose expectation value is the solution of the equation.  $\Rightarrow$  The Laplace equation:

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \ldots + \frac{\partial^2 u}{\partial x_k^2} = 0$$

The  $u(x_1, x_2, ..., x_k)$  function that is a solution of above equation we call harmonic function. If one knows the values of the harmonic function on the edges  $\Gamma(D)$  of the D domain one can solve the equation.

#### The Dirichlet boundary conditions:

Find the values of  $u(x_1, x_2, ..., x_k)$  inside the D domain knowing the values of the edge are given with a function:

$$u(x_1, x_2, ..., x_k) = f(x_1, x_2, ..., x_k) \in \Gamma(D)$$

 $\Rightarrow$  Now I am lazy so I put k = 2 but it's the same for all k!

 $\Rightarrow$  We will put the Dirichlet boundary condition as a discrete condition:

- The domain *D* we put a lattice with distance *h*.
- Some points we treat as inside (denoted with circles). Their form a set denoted  $D^*$ .
- The other points we consider as the boundary points and they form a set Γ(D).



 $\Rightarrow$  We express the second derivatives with the discrete form:

$$\frac{\frac{u(x+h)-u(x)}{h} - \frac{u(x)-u(x-h)}{h}}{h} = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2}$$

 $\Rightarrow$  Now we choose the units so h = 1.

#### The Dirichlet condition in the discrete form:

Find the  $u^*$  function which obeys the differential equation:

$$U^{*}(x,y) = rac{1}{4} \left[ u^{*}(x-1,y) + u^{*}(x+1,y) + u^{*}(x,y-1) + u^{*}(x,y+1) 
ight]$$

in all points  $(x, y) \in D^*$  with the condition:

 $u^{*}(x,y) = f^{*}(x,y), \quad (x,y) \in \Gamma(D^{*})$ 

where  $f^*(x,y)$  is the discrete equivalent of f(x,y) function.

 $\Rightarrow$  We consider a random walk over the lattice  $D^* \cup \Gamma(D^*)$ .

• In the t = 0 we are in some point  $(\xi, \eta) \in D^*$ )

- If at the t the particle is in (x, y) then at t + 1 it can go with equal probability to any of the four neighbour lattices: (x 1, y), (x + 1, y), (x, y 1), (x, y + 1).
- If the particle at some moment gets to the edge  $\Gamma(D^*$  then the walk is terminated.
- For the particle trajectory we assign the value of:  $\nu(\xi,\eta) = f^*(x,y)$ , where  $(x,y) \in \Gamma(D^*)$ .

 $\Rightarrow$  Let  $p_{\xi,\eta}(x,y)$  be the probability of particle walk that starting in  $(\xi,\eta)$  to end the walk in (x,y).

 $\Rightarrow$  The possibilities:

1. The point  $(\xi,\eta)\in\Gamma(D^*).$  Then:

$$p_{\xi,\eta}(x,y) = \begin{cases} 1, & (x,y) = \xi, \eta \\ 0, & (x,y) \neq \xi, \eta \end{cases}$$
(1)

2. The point  $(\xi, \eta) \in D^*$ :

$$p_{\xi,\eta}(x,y) = \frac{1}{4} \left[ p_{\xi-1,\eta}(x,y) + p_{\xi+1,\eta}(x,y) + p_{\xi,\eta-1}(x,y) + p_{\xi,\eta+1}(x,y) \right]$$
(2)

this is because to get to (x, y) the particle has to walk through one of the neighbours: (x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1). $\Rightarrow$  The expected value of the  $\nu(\xi, \eta)$  is given by equation:

$$E(\xi,\eta) = \sum_{(x,y)\in\Gamma^*} p_{\xi,\eta}(x,y) f^*(x,y)$$
(3)

where the summing is over all boundary points

Laplace equation, Dirichlet boundary conditions  $\Rightarrow$  Now multiplying the 2 by  $f^*(x, y)$  and summing over all edge points (x, y):

$$E(\xi,\eta) = \frac{1}{4} \left[ E(\xi-1,\eta) + E(\xi+1,\eta) + E(\xi,\eta-1) + E(\xi,\eta+1) \right]$$

 $\Rightarrow$  Putting now 1 to 3 one gets:

$$E(x,y) = f^*(x,y), \ (\xi,\eta) \in \Gamma(D^*)$$

 $\Rightarrow$  Now the expected value solves identical equation as our  $u^{\ast}(x,y)$  function. From this we conclude:

$$E(x,y) = u^*(x,y)$$

 $\Rightarrow$  The algorithm:

- We put a particle in (x, y).
- We observe it's walk up to the moment when it's on the edge Γ(D<sup>\*</sup>).
- We calculate the value of  $f^*$  function in the point where the particle stops.
- Repeat the walk N times taking the average afterwards.

#### Important:

One can show the the error does not depend on the dimensions!

Marcin Chrząszcz (CERN)

Markov Chain MC



## Backup



