Markov Chain MC

Marcin Chrząszcz mchrzasz@cern.ch

Experimental Methods in Particle Physics, 7 October, 2018

Trivial example

\Rightarrow Lets start with a TRIVIAL example: we want to calculate $S=A+B$. We can rewrite it in:

$$
S=p \frac{A}{p}+(1-p) \frac{B}{1-p}
$$

and one can interpret the sum as expected value of:

$$
W=\left\{\begin{array}{l}
\frac{A}{p} \text { with propability } p \\
\frac{A}{1-p} \text { with propability } 1-p
\end{array}\right.
$$

\Rightarrow The algorithm:

- We generate a random variable W and calculate:

$$
\hat{S}=\frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

\Rightarrow The \hat{S} is an unbias estimator of S.

Trivial example2

- Lets say we have a linear equation system:

$$
\begin{aligned}
& X=p Y+(1-p) A \\
& Y=q X+(1-q) B
\end{aligned}
$$

- We know $A, B, p, q ; X$ and Y are meant to be determined.
- Algorithm:

1. We choose first element of the first equation with probability p and second with probability $1-p$.
2. I we choose the second one, the outcome of this MCMC is $W=A$.
3. If we choose the first we go to second equation and choose the first element with probability q and the second with $1-q$.
4. We we choose the second one, the outcome of this MCMC is $W=B$.
5. If we choose the first we go to the first equation back again.
6. We repeat the procedure.

- We can estimate the solution of this system:

$$
\hat{X}=\frac{1}{N} \sum_{i=1} W_{i} \quad \hat{\sigma_{X}}=\frac{1}{\sqrt{N-1}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} W_{i}^{2}-\hat{X}^{2}}
$$

Random walk

\Rightarrow We are in the point x and we walk accordingly to the following rules:

- From point x we walk with probability p to point y or with $1-p$ to a.
- From point y we walk with probability q to point x and with $1-Q$ to b.
- The walks ends when you end up in a or b.
- You get a "reward" A if you end up in point a and B if you end up in b.
- X is expected "reward" when you start the walk from x, Y when you start from y.
\Rightarrow The algorithm above is so-called random walk on the set $\{a, x, y, b\}$
\Rightarrow The described walked can solve the linear equation system that we discussed above.

Markov Chain MC

- Consider a finite (or Countable set) possible states: S_{1}, S_{2}, \ldots
- The X_{t} is the state of the system in the time t
- We are looking at discrete time steps: $1,2,3, \ldots$
- The conditional probability is defined as:

$$
P\left(X_{t}=S_{j} \mid X_{t-1}=S_{j-1}, \ldots, X_{1}=S_{1}\right)
$$

- The Markov chain is then if the probability depends only on previous step.

$$
P\left(X_{t}=S_{j} \mid X_{t-1}=S_{j-1}, \ldots, X_{1}=S_{1}\right)=P\left(X_{t}=S_{j} \mid X_{t-1}=S_{j-1}\right)
$$

- For this reason MCMC is also knows as drunk sailor walk.
- Very powerful method. Used to solve linear eq. systems, invert matrix, solve differential equations, etc.
- Also used in physics problems: Brown motions, diffusion, etc.

Linear equations system

\Rightarrow Lets start from a linear equation system:

$$
\mathbf{A} \vec{x}=\vec{b}, \quad \operatorname{det} \mathbf{A} \neq 0
$$

where $\mathbf{A}=\left(a_{i j}, i, j=1,2, \ldots, n\right.$-matrix, $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$-vector, $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)-$ vector of unknowns.
\Rightarrow The solution we mark as $\vec{x}^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$
\Rightarrow The above system can be transformed into the iterative representation:

$$
\vec{x}=\vec{a}+\mathbf{H} \vec{x}
$$

where H is a matrix, \vec{a} is a vector.
\Rightarrow We assume that the matrix norm:

$$
\|H\|=\max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n}\left|h_{h_{i j}}\right|<1
$$

Linear equations system

\Rightarrow Lets start from a linear equation system:

$$
\mathbf{A} \vec{x}=\vec{b}, \quad \operatorname{det} \mathbf{A} \neq 0
$$

where $\mathbf{A}=\left(a_{i j}, i, j=1,2, \ldots, n\right.$-matrix, $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$-vector, $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ - vector of unknowns.
\Rightarrow The solution we mark as $\vec{x}^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$
\Rightarrow The above system can be transformed into the iterative representation:

$$
\vec{x}=\vec{a}+\mathbf{H} \vec{x}
$$

where H is a matrix, \vec{a} is a vector.
\Rightarrow We assume that the matrix norm:

$$
\|H\|=\max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n}\left|h_{h_{i j}}\right|<1
$$

\Rightarrow We can always change transform every system to the iteration form: $\mathrm{A}=\mathrm{V}-\mathrm{W}$.

$$
(\mathbf{V}-\mathbf{W}) \vec{x}=\vec{b} \quad \mapsto \quad \vec{x}=\mathbf{V}^{-1} \vec{b}+\mathbf{V}^{-1} \mathbf{W} \vec{x}
$$

Linear equations system

\Rightarrow Now we further modify the equation system:

$$
\vec{x}=\vec{a}+\mathbf{H} \vec{x} \Rightarrow(\mathbf{I}-\mathbf{H}) \vec{x}=\vec{a}
$$

where $\mathbf{I}=\delta_{i j}$ - unit matrix, $\delta_{i j}$ is the Kronecker delta.
\Rightarrow What one can do is to represent the solution in terns of Neumann series:

$$
\vec{x}^{0}=(\mathbf{I}-\mathbf{H})^{-1} \vec{a}=\vec{a}+\mathbf{H} \vec{a}+\mathbf{H}^{2} \vec{a}+\mathbf{H}^{3} \vec{a}+\ldots
$$

\Rightarrow So for the $i^{t h}$ component we have:

$$
\begin{aligned}
x_{i}^{0}=a_{i} & +\sum_{j=1}^{n} h_{i j} a_{j}+\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} h_{i j_{1}} h_{j_{1} j_{2}} a_{j_{2}} \\
& +\ldots+\sum_{j_{1}=1}^{n} \ldots \sum_{j_{n}=1}^{n} h_{i j_{1}} \ldots h_{j_{n-1} j_{n}} a_{j_{n}}
\end{aligned}
$$

\Rightarrow We will construct a probabilistic interpretation using MCMC and then we show that the expected value is equal to the above formula.

Neumann-Ulam method

- To do so we add to our matrix an additional column of the matrix:

$$
h_{i, 0}=1-\sum_{j=1}^{n} h_{i j}>0
$$

- The system has states: $\{0,1,2 \ldots, n\}$
- State at t time is denoted as $i_{t}\left(i_{t}=0,1,2, \ldots, n ; t=0,1, \ldots\right)$
- We make a random walk accordingly to to the following rules:
- At the beginning of the walk $(t=0)$ we are at i_{0}.
- In the t moment we are in the i_{t} position then in $t+1$ time stamp we move to state i_{t+1} with the probability $h_{i_{t} i_{t+1}}$.
- We stop walking if we are in state 0 .
- The path $\gamma=\left(i_{0}, i_{1}, i_{2}, \ldots, i_{k}, 0\right)$ is called trajectory.
- For each trajectory we assign a number:

$$
X(\gamma)=X\left(i_{0}, i_{1}, i_{2}, \ldots, i_{k}, 0\right)=\frac{a_{i_{k}}}{h_{i_{k} 0}}
$$

Neumann-Ulam method

\Rightarrow The $X(\gamma)$ variable is a random variable from: $\left\{a_{1} / h_{1,0}, a_{2} / h_{2,0}, \ldots, a_{n} / h_{n, 0}\right\}$. The probability that $X(\gamma)=a_{j} / h_{j, 0}$ is equal to the probability that the last non zero state of the γ trajectory is j.
\Rightarrow The expected value of the $X(\gamma)$ trajectory if the trajectory begins from $i_{0}=s$ is:

$$
E\left\{X(\gamma) \mid i_{0}=s\right\}=\sum_{k=0}^{\infty} \sum_{\left\{\gamma_{k}\right\}} X(\gamma) P(\gamma)
$$

where γ_{k} is a trajectory of length k, which starts in $i_{0}=s$ and $P(\gamma)$ is the probability of occurrence of this trajectory. \Rightarrow Yes you guest it lets do Taylor expansion:

$$
E\left\{X(\gamma) \mid i_{0}=s\right\}=\sum_{\gamma_{0}} X(\gamma) P(\gamma)+\sum_{\gamma_{1}} X(\gamma) P(\gamma)+\ldots+\sum_{\gamma_{k}} X(\gamma) P(\gamma)
$$

\Rightarrow Now let's examine the elements of the above series.

Neumann-Ulam method

$\left\{\gamma_{0}\right\}$: One trajectory: $\gamma_{0}=\left(i_{0}=s \mid 0\right), P\left(\gamma_{0}\right)=h_{s, 0}$ and $X\left(\gamma_{0}\right)=a_{s} / h_{s, 0}$. So:

$$
\sum_{\gamma_{0}} X(\gamma) P(\gamma)=\frac{a_{s}}{h_{s, 0}} h_{s, 0}=a_{s}
$$

$\left\{\gamma_{1}\right\}$: Trajectories: $\gamma_{1}=\left(i_{0}=s, i_{1} \mid 0\right), i_{1} \neq 0, P\left(\gamma_{1}\right)=P\left(s, i_{1}, 0\right)=h_{s, i_{1}} h_{i_{1}, 0}$ and $X\left(\gamma_{1}\right)=a_{i_{1}} / h_{i_{1}, 0}$. So:

$$
\sum_{\gamma_{1}} X(\gamma) P(\gamma)=\sum_{i_{1}=1}^{n} \frac{a_{i_{1}}}{h_{i_{1}, 0}} h_{s, i_{1}} h_{i_{1}, 0}=\sum_{i=1}^{n} h_{s, i_{1}} a_{i_{1}}
$$

$\left\{\gamma_{2}\right\}$: Trajectories: $\gamma_{2}=\left(i_{0}=s, i_{1}, i_{2} \mid 0\right), i_{1}, i_{2} \neq 0$,
$P\left(\gamma_{2}\right)=P\left(s, i_{1}, i_{2}, 0\right)=h_{s, i_{1}} h_{i_{1}, i_{2}} h_{i_{1}, 0}$ and $X\left(\gamma_{2}\right)=a_{i_{2}} / h_{i_{2}, 0}$. So:

$$
\sum_{\gamma_{2}} X(\gamma) P(\gamma)=\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \frac{a_{i_{2}}}{h_{i_{2}, 0}} h_{s, i_{1}} h_{i_{1}, i_{2}} h_{i_{2}, 0}=\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} h_{s, i_{1}} h_{i_{1}, i_{2}} a_{i_{2}}
$$

\Rightarrow etc...

Neumann-Ulam method

\Rightarrow After summing up:

$$
\begin{aligned}
E\left\{X(\gamma) \mid i_{0}=s\right\}=a_{s} & +\sum_{i_{1}=1}^{n} h_{s, i_{1}} a_{i_{1}}+\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} h_{s, i_{1}} h_{i_{1}, i_{2}} a_{i_{2}}+\ldots \\
& +\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \ldots \sum_{i_{k}=1}^{n} h_{s, i_{1}} h_{i_{1}, i_{2}} \ldots h_{i_{k-1}, i_{k}} a_{i_{k}}+\ldots
\end{aligned}
$$

\Rightarrow If you compare this expression with the Neumann series we will they are the same so:

$$
x_{i}^{0}=E\left\{X(\gamma) \mid i_{0}=i\right\}
$$

To sum up:

We have proven that solving a linear system can be represented by an expectation value of the random variable $X(\gamma)$. The error is computed using standard deviation equation.

Neumann-Ulam method

- For example lets try to solve this equation system:

$$
\vec{x}=\left(\begin{array}{c}
1.5 \\
-1.0 \\
0.7
\end{array}\right)+\left(\begin{array}{ccc}
0.2 & 0.3 & 0.1 \\
0.4 & 0.3 & 0.2 \\
0.3 & 0.1 & 0.1
\end{array}\right) \vec{x}
$$

- The solution is $\vec{x}_{0}=(2.154303,0.237389,1.522255)$.
- The propability matrix $h_{i j}$ has the shape:

i / j	1	2	3	0
1	0.2	0.3	0.1	0.4
2	0.4	0.3	0.2	0.1
3	0.3	0.1	0.1	0.5

- An example solution:
mchrzasz-ThinkPad-W530\% ./mark.x 11000000 2.15625

Neumann-Ulam dual method

- The problem with Neumann-Ulam method is that you need to repeat it for each of the coordinates of the \vec{x}_{0} vector.
- The dual method calculates the whole \vec{x}_{0} vector.
- The algorithm:
- On the indexes: $\{0,1, \ldots, n\}$ we set a probability distribution: $q_{1}, q_{2}, \ldots, q_{n}, q_{i}>0$ and $\sum_{i=1}^{n} q_{i}=1$.
- The starting point we select from q_{i} distribution.
- If in t time we are in i_{t} state then with probability $p\left(i_{t+1} \mid i_{t}\right)=h_{i_{t+1}, i_{t}}$ in $t+1$ we will be in state i_{t+1}. For $i_{t+1}=0$ we define the probability: $h_{0, i_{t}}=1-\sum_{j=1}^{n} h_{j, i_{t}}$. Here we also assume that $h_{j, i_{t}}>0$.
- NOTE: there the matrix is transposed compared to previous method: H^{T}.
- Again we end our walk when we are at state 0 .
- For the trajectory: $\gamma=\left(i_{0}, i_{1}, \ldots, i_{k}, 0\right)$, we assign the vector:

$$
\vec{Y}(\gamma)=\frac{a_{i_{0}}}{q_{i_{0}} p\left(0 \mid i_{k}\right)} \widehat{e}_{i_{k}} \in \mathcal{R}^{n}
$$

- The solution will be : $\vec{x}^{0}=\frac{1}{N} \sum \vec{Y}(\gamma)$

Neumann-Ulam dual method

- Let's try to solve the equation system:

$$
\vec{x}=\left(\begin{array}{c}
1.5 \\
-1.0 \\
0.7
\end{array}\right)+\left(\begin{array}{ccc}
0.2 & 0.3 & 0.1 \\
0.4 & 0.3 & 0.2 \\
0.1 & 0.1 & 0.1
\end{array}\right) \vec{x}
$$

- The solution is: $\vec{x}_{0}=(2.0,0.0,1.0)$.
- Let's put the initial probability as constant:

$$
q_{1}=q_{2}=q_{3}=\frac{1}{3}
$$

- The propability matrix $h_{i j}$ has the shape:

i / j	1	2	3	4
1	0.2	0.4	0.1	0.3
2	0.3	0.3	0.1	0.3
3	0.1	0.2	0.1	0.6

- An example solution:
mchrzasz-ThinkPad-W530\% ./mark2.x 1000000 99430001806100267

Generalization, the algorithm

\Rightarrow We set the P matrix in a arbitrary way.
\Rightarrow If in the t moment the point is in the i_{t} state, then with the probability $p_{i_{t}, i_{t+1}}$ he can go to i_{t+1} state.
\Rightarrow We stop the walk once we reach 0 .
\Rightarrow For the given trajectory we assign the value: $X\left(\gamma_{k}\right)$
\Rightarrow We repeat the procedure N times and take the mean and RMS.
\Rightarrow We repeat this also for every of the \vec{x}^{0} vector components.

Partial differential equations, intro

\Rightarrow Let's say we are want to describe a point that walks on the \mathbb{R} axis:

- At the beginning $(t=0)$ the particle is at $x=0$
- If in the t the particle is in the x then in the time $t+1$ it walks to $x+1$ with the known probability p and to the point $x-1$ with the probability $q=1-p$.
- The moves are independent.
\Rightarrow So let's try to described the motion of the particle.
\Rightarrow The solution is clearly a probabilistic problem. Let $\nu(x, t)$ be a probability that at time t particle is in position x. We get the following equation:

$$
\nu(x, t+1)=p \nu(x-1, t)+q \nu(x+1, t)
$$

with the initial conditions:

$$
\nu(0,0)=1, \quad \nu(x, 0)=0 \text { if } x \neq 0
$$

\Rightarrow The above functions describes the whole system (every (t, x) point).

Partial differential equations, intro

\Rightarrow Now in differential equation language we would say that the particle walks in steps of Δx in times: $k \Delta t, k=1,2,3 \ldots$:

$$
\nu(x, t+\Delta t)=p \nu(x-\Delta x, t)+q \nu(x+\Delta x, t)
$$

\Rightarrow To solve this equation we need to expand the $\nu(x, t)$ funciton in the Taylor series:

$$
\begin{aligned}
\nu(x, t)+\frac{\partial \nu(x, t)}{\partial t} \Delta t= & p \nu(x, t)-p \frac{\partial \nu(x, t)}{\partial x} \Delta x+\frac{1}{2} p \frac{\partial^{2} \nu(x, t)}{\partial x^{2}}(\Delta x)^{2} \\
& +q \nu(x, t)+q \frac{\partial \nu(x, t)}{\partial x} \Delta x+\frac{1}{2} q \frac{\partial^{2} \nu(x, t)}{\partial x^{2}}(\Delta x)^{2}
\end{aligned}
$$

\Rightarrow From which we get:

$$
\frac{\partial \nu(x, t)}{\partial t} \Delta t=-(p-q) \frac{\partial \nu(x, t)}{\partial x} \Delta x+\frac{1}{2} \frac{\partial^{2} \nu(x, t)}{\partial x^{2}}(\Delta x)^{2}
$$

\Rightarrow Now We divide the equation by Δt and take the $\Delta t \rightarrow 0$:

$$
(p-q) \frac{\Delta x}{\Delta t} \rightarrow 2 c, \quad \frac{(\Delta x)^{2}}{\Delta t} \rightarrow 2 D
$$

\Rightarrow We get the Fokker-Planck equation for the diffusion with current:

$$
\frac{\partial \nu(x, t)}{\partial t}=-2 c \frac{\partial \nu(x, t)}{\partial x}+D \frac{\partial^{2} \nu(x, t)}{\partial x^{2}}
$$

Laplace equation, Dirichlet boundary conditions

\Rightarrow The aforementioned example shows the way to solve the partial differential equation using Markov Chain MC.
\Rightarrow We will see how different classes of partial differential equations can be approximated with a Markov Chain MC, whose expectation value is the solution of the equation. \Rightarrow The Laplace equation:

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2} u}{\partial x_{k}^{2}}=0
$$

The $u\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ function that is a solution of above equation we call harmonic function. If one knows the values of the harmonic function on the edges $\Gamma(D)$ of the D domain one can solve the equation.

The Dirichlet boundary conditions:

Find the values of $u\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ inside the D domain knowing the values of the edge are given with a function:

$$
u\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \Gamma(D)
$$

\Rightarrow Now I am lazy so I put $k=2$ but it's the same for all k !

Laplace equation, Dirichlet boundary conditions

\Rightarrow We will put the Dirichlet boundary condition as a discrete condition:

- The domain D we put a lattice with distance h.
- Some points we treat as inside (denoted with circles). Their form a set denoted D^{*}.
- The other points we consider as the boundary points and they form a set $\Gamma(D)$.

\Rightarrow We express the second derivatives with the discrete form:

$$
\frac{\frac{u(x+h)-u(x)}{h}-\frac{u(x)-u(x-h)}{h}}{h}=\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}
$$

\Rightarrow Now we choose the units so $h=1$.

Laplace equation, Dirichlet boundary conditions

The Dirichlet condition in the discrete form:

Find the u^{*} function which obeys the differential equation:

$$
U^{*}(x, y)=\frac{1}{4}\left[u^{*}(x-1, y)+u^{*}(x+1, y)+u^{*}(x, y-1)+u^{*}(x, y+1)\right]
$$

in all points $(x, y) \in D^{*}$ with the condition:

$$
u^{*}(x, y)=f^{*}(x, y), \quad(x, y) \in \Gamma\left(D^{*}\right)
$$

where $f^{*}(x, y)$ is the discrete equivalent of $f(x, y)$ function.
\Rightarrow We consider a random walk over the lattice $D^{*} \cup \Gamma\left(D^{*}\right)$.

- In the $t=0$ we are in some point $\left.(\xi, \eta) \in D^{*}\right)$
- If at the t the particle is in (x, y) then at $t+1$ it can go with equal probability to any of the four neighbour lattices: $(x-1, y),(x+1, y),(x, y-1),(x, y+1)$.
- If the particle at some moment gets to the edge $\Gamma\left(D^{*}\right.$ then the walk is terminated.
- For the particle trajectory we assign the value of: $\nu(\xi, \eta)=f^{*}(x, y)$, where $(x, y) \in \Gamma\left(D^{*}\right)$.

Laplace equation, Dirichlet boundary conditions

\Rightarrow Let $p_{\xi, \eta}(x, y)$ be the probability of particle walk that starting in (ξ, η) to end the walk in (x, y).
\Rightarrow The possibilities:

1. The point $(\xi, \eta) \in \Gamma\left(D^{*}\right)$. Then:

$$
p_{\xi, \eta}(x, y)= \begin{cases}1, & (x, y)=\xi, \eta) \tag{1}\\ 0, & (x, y) \neq \xi, \eta)\end{cases}
$$

2. The point $(\xi, \eta) \in D^{*}$:

$$
\begin{equation*}
p_{\xi, \eta}(x, y)=\frac{1}{4}\left[p_{\xi-1, \eta}(x, y)+p_{\xi+1, \eta}(x, y)+p_{\xi, \eta-1}(x, y)+p_{\xi, \eta+1}(x, y)\right] \tag{2}
\end{equation*}
$$

this is because to get to (x, y) the particle has to walk through one of the neighbours: $(x-1, y),(x+1, y),(x, y-1),(x, y+1)$.
\Rightarrow The expected value of the $\nu(\xi, \eta)$ is given by equation:

$$
\begin{equation*}
E(\xi, \eta)=\sum_{(x, y) \in \Gamma^{*}} p_{\xi, \eta}(x, y) f^{*}(x, y) \tag{3}
\end{equation*}
$$

where the summing is over all boundary points

Laplace equation, Dirichlet boundary conditions

\Rightarrow Now multiplying the 2 by $f^{*}(x, y)$ and summing over all edge points (x, y) :

$$
E(\xi, \eta)=\frac{1}{4}[E(\xi-1, \eta)+E(\xi+1, \eta)+E(\xi, \eta-1)+E(\xi, \eta+1)]
$$

\Rightarrow Putting now 1 to 3 one gets:

$$
E(x, y)=f^{*}(x, y), \quad(\xi, \eta) \in \Gamma\left(D^{*}\right)
$$

\Rightarrow Now the expected value solves identical equation as our $u^{*}(x, y)$ function. From this we conclude:

$$
E(x, y)=u^{*}(x, y)
$$

\Rightarrow The algorithm:

- We put a particle in (x, y).
- We observe it's walk up to the moment when it's on the edge $\Gamma\left(D^{*}\right)$.
- We calculate the value of f^{*} function in the point where the particle stops.
- Repeat the walk N times taking the average afterwards.

Important:

One can show the the error does not depend on the dimensions!

Backup

23
22

