B(eautiful) Physics I

Marcin Chrzaszcz mchrzasz@cern.ch

Kern- und Teilchenphysik II, 10 May, 2017

A lesson from history - GIM mechanism

- Cabibbo angle was successful in explaining dozens of decay rates in the 1960s.
- There was, however, one that was not observed by experiments: $K^0 \rightarrow \mu^- \mu^+$.
- Glashow, Iliopoulos, Maiani (GIM) mechanism was proposed in the 1970 to fix this problem. The mechanism required the existence of a 4th quark.
- At that point most of the people were skeptical about that. Fortunately in 1974 the discovery of the J/ψ meson silenced the skeptics.

A lesson from history - CKM matrix

- Similarly, CP violation was discovered in 1960s in the neutral kaons decays.
- 2×2 Cabbibo matrix could not allow for any CP violation.
- For CP violation to be possible one needs at least a 3 × 3 unitary matrix
 → Cabibbo-Kobayashi-Maskawa matrix (1973).
- It predicts existence of b (1977) and t (1995) quarks.

A lesson from history - Weak neutral current

- Weak neutral currents were first introduced in 1958 by Buldman.
- Later on they were naturally incorporated into unification of weak and electromagnetic interactions.
- 't Hooft proved that the GWS models was renormalizable.
- Everything was there on theory side, only missing piece was the experiment, till 1973.

B-factories

- \Rightarrow There were many *B* factories: HERA-B, CLEO, ARGUS.
- \Rightarrow How ever in present when people talk about *B*-factories they mean BaBar and Belle experiments.

⇒ Both of them were asymmetric *B*-factories:

B-factories

Parameters			PEP-II	KEKB
Beam energy		(GeV)	$9.0 (e^{-}), 3.1 (e^{+})$	$8.0 (e^-), 3.5 (e^+)$
Beam current		(A)	$1.8 (e^-), 2.7 (e^+)$	$1.2 (e^-), 1.6 (e^+)$
Beam size at IP	\boldsymbol{x}	$(\mu \mathrm{m})$	140	80
	y	$(\mu \mathrm{m})$	3	1
	z	(mm)	8.5	5
Luminosity		$(cm^{-2} s^{-1})$	1.2×10^{34}	2.1×10^{34}
Number of beam bunches			1732	1584
Bunch spacing		(m)	1.25	1.84
Beam crossing angle		(mrad)	0 (head-on)	± 11 (crab-crossing)

B-factories

Parameters			PEP-II	KEKB
Beam energy		(GeV)	$9.0 (e^{-}), 3.1 (e^{+})$	$8.0 (e^-), 3.5 (e^+)$
Beam current		(A)	$1.8 (e^-), 2.7 (e^+)$	$1.2 (e^-), 1.6 (e^+)$
Beam size at IP	\boldsymbol{x}	$(\mu \mathrm{m})$	140	80
	y	$(\mu \mathrm{m})$	3	1
	z	(mm)	8.5	5
Luminosity		$(cm^{-2} s^{-1})$	1.2×10^{34}	2.1×10^{34}
Number of beam bunches			1732	1584
Bunch spacing		(m)	1.25	1.84
Beam crossing angle ((mrad)	0 (head-on)	± 11 (crab-crossing)

B-factories, detectors

B-factories, detectors

B-factories, Physics

- ⇒ The *B*-factories had enormous physics program:
- CKM matrix:
 - $\circ\ V_{ub}$ and V_{cb} from semi-leptonic be decays.
 - $\circ V_{td}$ and V_{ts} from $B_{s,d}$ mixing.
 - Charmless B decays.
 - B mixing.
 - Electro-weak penguin decays.
- Quarkonium physics
- Charm physics
- au physics

B-factories, V_{ub} , V_{cb}

 \Rightarrow The decays of B^0 and B^+ that process via leading order tree decay involving a lepton in the final state $\ell=e,\mu$ are free from non SM contributions.

 \Rightarrow They can be used to probe the CKM-matrix elements: V_{cb} and V_{ub} .

 \Rightarrow In addition the measurement of $\frac{|V_{ub}|}{|V_{cb}|}$ determines the angle ϕ_1 .

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{qb}^2|}{192\pi^3 m_B^3} \mathcal{K}(m_B^2, m_M^2, q^2) \times \mathcal{F}^{(2)}(q^2)$$

 \Rightarrow From theory point of view the only thing that is not well known are the from factors: $\mathcal{F}^{(2)}(q^2)$. There are now many theoretical ideas to calculate them and reduce the errors.

B-factories, V_{ub} , V_{cb}

- ⇒ Measurement of semi-leptonic decays are very challenging, because of missing neutrino!
- ⇒ We start from calculating the missing 4-momentum:

$$(E_{miss}, p_{miss}) = (E_0, p_0) - \sum_{i} (E_i, p_i)$$

- ⇒ In case that the only missing particle in the detector is a neutrino the missing mass should be close to zero!
- \Rightarrow We also use the:

$$\Delta E = E_B^* - E_{beam}^*, \quad M_{ES} = \sqrt{(E_{beam}^*)^2 - (p_B^*)^2}$$

$\overline{\textit{B}}$ -factories, V_{ub} , V_{cb}

 $\begin{array}{l} \hline \textit{B-factories, V_{ub}, V_{cb}} \\ \Rightarrow \text{ Also the } q^2 = \left[(E_\ell, p_\ell) + (E_{miss}, p_{miss})\right]^2 \text{ distribution was mea-} \end{array}$ sured.

 $\ensuremath{\textit{B-factories}},\ V_{ts},\ V_{tb}$ \Rightarrow The CKM elements $V_{ts},\ V_{tb}$ are problematic to determine. One can use:

decays

$$\Delta m_d = \frac{G_F^2}{6\pi^2} f_B^2 m_B m_W^2 \eta_B S_0 |V_{tb}^* V_{td}|^2 \hat{B}_B$$

Unfortunately the theory precision is limited by the QCD.

 $\ensuremath{\textit{B-factories}},\ V_{ts},\ V_{tb}$ \Rightarrow The CKM elements $V_{ts},\ V_{tb}$ are problematic to determine. One can use:

- Rare radiative K and B decays
- B^0 and B_s^0 oscilations:

$$\Delta m_d = \frac{G_F^2}{6\pi^2} f_B^2 m_B m_W^2 \eta_B S_0 |V_{tb}^* V_{td}|^2 \hat{B}_B$$

Unfortunately the theory precision is limited by the QCD.

Electroweak penguins

- Rare EWP decays are THE most sensitive probes of NP in flavour physics.
- They are described by the effective Hamiltonian (see next lecture for more details):

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \left[\lambda_q^t \sum_{i=1}^{10} C_i \mathcal{O}_i + \lambda_q^u \sum_{i=1}^2 C_i (\mathcal{O}_i - \mathcal{O}_i^u) \right]$$

Inclusive/Exclusive $b \rightarrow s \gamma$

⇒ Measurement of inclusive modes is difficult. First attempt was done using sum of exclusive modes.

⇒ Latter one used the leptonic tag.

au Physics

- \Rightarrow *B*-factories are also τ factories!
- $\Rightarrow \tau$ leptons are very nice objects. And allow 2 main things:
 - Test of QCD in the harmonic decays.
- Search for NP ex. LFV.

$$B(\tau^- \to K^- \nu_\tau) = \frac{G_F^2 f_K^2 |V_{us}|^2 m_\tau^3 \tau_\tau}{16 \pi \hbar} \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2 S_{EW}$$

Warp up

- \Rightarrow The Physics reach of *B*-factories was enormous.
- ⇒ They robustness of their measurements because a text-book procedures when analysing the data.
- ⇒ Fief anomalies remain (next lecture), which are beeing tackled by current *B*-factories.
- ⇒ If you want to know more please read the "Legacy" book: arxiv::1406.6311