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Trivial example
= Lets start with a TRIVIAL example: we want to calculate S = A+ B.

We can rewrite it in:

A B
S=p=+4(1—-p)——o
P ( ml_p

and one can interpret the sum as expected value of:

% with propability p
114%19 with propability 1 — p

W =

= The algorithm:
e We generate a random variable W and calculate:

N 1

= The S is an unbias estimator of S.
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Trivial example2
e Lets say we have a linear equation system:
X pY +(1—p)A
Y ¢ X+(1—-¢)B

e We know A, B,p,q; X and Y are meant to be determined.
e Algorithm:
1. We choose first element of the first equation with probability p and
second with probability 1 — p.
2. | we choose the second one, the outcome of this MCMCis W = A.
If we choose the first we go to second equation and choose the first
element with probability ¢ and the second with 1 — gq.
We we choose the second one, the outcome of this MCMC is W = B.
If we choose the first we go to the first equation back again.
We repeat the procedure.

)

s oua

e We can estimate the solution of this system:

; 1
X==SW, oy=——
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Random walk

11—
P P y |
1 1
a X ¢ q I—ql b

= We are in the point = and we walk accordingly to the following rules:

® From point = we walk with probability p to point y or with 1 — p to a.

® From point y we walk with probability ¢ to point x and with 1 — @ to b.

® The walks ends when you end up in a or b.

® You get a "reward” A if you end up in point a and B if you end up in b.

® X is expected "reward” when you start the walk from z, Y when you start from .

= The algorithm above is so-called random walk on the set {a, z,y, b}
= The described walked can solve the linear equation system that we discussed above.
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Markov Chain MC

® Consider a finite (or Countable set) possible states: S, S5, ...
® The X, is the state of the system in the time ¢
® We are looking at discrete time steps: 1,2, 3, ...

® The conditional probability is defined as:

P(X,=5;|X_1 =8;_1,...X; = 5)

® The Markov chain is then if the probability depends only on previous step.
P(Xt = Sj‘Xt—l = Sj—h Xy = 51) = P(Xt = Sj|Xt—1 = Sj—l)

® For this reason MCMC is also knows as drunk sailor walk.

® Very powerful method. Used to solve linear eq. systems, invert matrix, solve
differential equations, etc.

® Also used in physics problems: Brown motions, diffusion, etc.
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Linear equations system

= Lets start from a linear equation system:
—
A7 = b, detA#0,

where A = (a,;,4,j = 1,2, ...,n -matrix, b= (b1, bs, ..., b, )-vector,

T = (1,23, ..., Z,) - vector of unknowns.

= The solution we mark as 7° = (a:(f,xg, ...,x%)

= The above system can be transformed into the iterative representation:

— — —
r =a+HZT

where H is a matrix, @ is a vector.
= We assume that the matrix norm:

1<i<n 4

n
|H|| = max |k, | <1
J=1
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Linear equations system
= Lets start from a linear equation system:
AZ = b, detA#£0,

where A = (a,;,4,j = 1,2, ...,n -matrix, b= (b1, bs, ..., b, )-vector,

T = (1,23, ..., Z,) - vector of unknowns.

= The solution we mark as 7° = (a:?,xg, ...,x%)

= The above system can be transformed into the iterative representation:

— — —
r =a+HZT

where H is a matrix, @ is a vector.
= We assume that the matrix norm:

1<i<n 4

n
|H|| = max |k, | <1
J=1

= We can always change transform every system to the iteration form: A=V — W.

—

V-WZ=1b — T=V'0+V'Iwz
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Linear equations system

= Now we further modify the equation system:
T=4d+HZ = (1-H7 =17

where | = §;; - unit matrix, ¢,; is the Kronecker delta.
= What one can do is to represent the solution in terns of Neumann series:

=(-H)'"d =7 +HT +HT +HT

= So for the i"" component we have:

T =a; + Z hija; + Z Z higy Py,

]1:1]2:1
to. E : E :hm SLC MY L
1_1 ]n_l

= We will construct a probabilistic interpretation using MCMC and then we show that
the expected value is equal to the above formula.
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Neumann-Ulam method

® To do so we add to our matrix an additional column of the matrix:
n
hio :1—Zhij >0
j=1

The system has states: {0,1,2...,n}
State at ¢ time is denoted as i,(i; = 0,1,2,...,n;t =0,1,....)

® We make a random walk accordingly to to the following rules:

o At the beginning of the walk (t = 0) we are at i,.

o In the t moment we are in the 4, position then in ¢ 4+ 1 time stamp we
move to state 7, ; with the probability hmm-

o We stop walking if we are in state 0.

The path v = (ig, %1, %2, ..., ix, 0) is called trajectory.

® For each trajectory we assign a number:

a;
X(’Y):X(i07i17i27"’7ik70): .

140
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Neumann-Ulam method

= The X () variable is a random variable from: {a;/h1 o, a2/ha,0,..; @n/Ppn o}
The probability that X (v) = a;/h; o is equal to the probability that the last non zero
state of the -y trajectory is j.

= The expected value of the X () trajectory if the trajectory begins from iy = s is:

B{X(lip=s}=Y_ > X(H)P()

k=0 {7}

where v, is a trajectory of length k, which starts in io = s and P(7) is the probability
of occurrence of this trajectory. = Yes you guest it lets do Taylor expansion:

B{X(Mlio = s} =Y _ XMP) + > _XMPO) + .+ > _X()P(y)

Yo

= Now let’'s examine the elements of the above series.
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Neumann-Ulam method

{Y0}: One trajectory: vy = (ip = 5|0), P(vp) = hs,0 and X (vy) = as/hs - So:
aS
E X(’Y)P(’V) = h h’s,O = Qg
5,0

{71}: Trajectories: v, = (ip = 5,i1]0), 41 # 0, P(v1) = P(s,41,0) = hy;, by, o and
X(n) = ail/hil,o- So:

> X(P(y g Besa i, Zhszl
71

=1

{72}: Trajectories: v5 = (ig = 8, 41,1%2]0), 41,ip # 0,
P(v;2) = P(s,41,%2,0) = hy 5, by i, i, 0 and X(72) = ay, /hi, 0. SO

GGy ]

ZX(W) Z Z h 120 hs B2t 21’12 7'2’ Z Z hs )i 2177«2
T2

i1=1iy=1 ‘2> i1=1liy=1

= etc...
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Neumann-Ulam method

= After summing up:

B{X(lio =5} =ac+ Y hesas + 3 > hoihi iy, + o

=1 iy=1iy=1
n n n
+ E E g ho i hiy iy iy e iy, + o
ip=lin=1 ip=1

= If you compare this expression with the Neumann series we will they are the same
so:

z; = B{X(")lio = i}

To sum up:

We have proven that solving a linear system can be represented by an expectation
value of the random variable X (). The error is computed using standard deviation
equation.

n
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Neumann-Ulam method

e For example lets try to solve this equation system:

1.5 0.2 0.3 0.1
T=| -10|+] 04 03 02 |7
0.7 0.3 0.1 0.1

e The solution is 7' = (2.154303,0.237389, 1.522255).

* The propability matrix h;; has the
shape:

7 1 5 3 0 e An exampe inon:
1 |02 03 01 04

2 |04 03 02 01
3 103 01 01 05
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Neumann-Ulam dual method

e The problem with Neumann-Ulam method is that you need to
repeat it for each of the coordinates of the Z', vector.

e The dual method calculates the whole 7, vector.
e The algorithm:
o On the indexes: {0,1,...,n} we set a probability distribution:
41,925 -+, qn» G; > 0 and Z?:l q; = 1.
o The starting point we select from g; distribution.
o Ifin ¢t time we are in i; state then with probability p(i; 1 it) = h;,,, 4,
int + 1 we will be in state ¢; ;. For 7, ; = 0 we define the probability:
hos, =1— Z;’:l h;i,. Here we also assume that h;;, > 0.
o NOTE: there the matrix is transposed compared to previous method:
HT
o Again we end our walk when we are at state 0.
o For the trajectory: v = (ig, 41, -.., i1, 0), we assign the vector:
Y(y)=—2 5 eR"
=—20 &
Qiop(o‘zk) y

1
 The solution will be : 7 = 3~ Y (v)
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Marcin Chrzaszcz (CERN) Markov Chain MC /22 y



Neumann-Ulam dual method

e Let's try to solve the equation system:

1.5 0.2 0.3 0.1
T=| -10|+] 04 03 02 |7
0.7 0.1 0.1 0.1

e The solution is: @' = (2.0,0.0,1.0).
e Let's put the initial probability as constant:

=gy = &
@ =492 =43 = 3
¢ The propability matrix h;; has the
shape:
i/j 1 2 3 4 e An example solution:
1T 102 04 01 03 mehrzasz-ThinkPac % ./mark2

2 |03 03 01 03
3 101 02 01 06
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Generalization, the algorithm

= We set the P matrix in a arbitrary way.

= If in the t moment the point is in the i; state, then with the
probability Diyigsy he can go to ¢, state.

= We stop the walk once we reach 0.

= For the given trajectory we assign the value: X ()

= We repeat the procedure N times and take the mean and RMS.
= We repeat this also for every of the 7" vector components.
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Partial differential equations, intro

= Let's say we are want to describe a point that walks on the R axis:
® At the beginning (¢t = 0) the particle is at = 0

® [f in the ¢ the particle is in the x then in the time ¢ 4+ 1 it walks to = + 1 with the
known probability p and to the point © — 1 with the probability ¢ =1 — p.

® The moves are independent.

= So let’s try to described the motion of the particle.
= The solution is clearly a probabilistic problem. Let v(x,t) be a probability that at
time ¢ particle is in position z. We get the following equation:

v(z,t +1) =pv(z—1,t) + qu(z + 1,t)
with the initial conditions:
v(0,0)=1, v(z,0)=0 if z #0.

= The above functions describes the whole system (every (¢, z) point).
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Partial differential equations, intro

= Now in differential equation language we would say that the particle walks in steps of Az in times: kAt, k = 1,2,3....:

v(z,t+ At) = pv(z — Az, t) + qu(z + Az, t).

= To solve this equation we need to expand the v (x, t) funciton in the Taylor series:

( t)+8u(z,t)At (o0) lw,t) 1 BQU(w,t)(A )2
v(x, _— =pv(z,t) —p———Azx + —p—— (Ax
ot P P75 2’ o2

Ov(xz,t) 1 32u(z,t) 2
+av(z, t) + 1A+ 59— (&)
T

=> From which we get:

1 62u(:c, t)

ov(z,t) N .
2 812

ov(x,t
v(z,t)
ot 6]

~(—q) (ax)®

= Now We divide the equation by At and take the At — O:

(Az)®

( )Am 2 2D
p—q) — — 2, — 2D,
At

=> We get the Fokker-Planck equation for the diffusion with current:

ov(xz,t) _ 72681/(93, t) +D 821/(30, t)
ot ox 9a>
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Laplace equation, Dirichlet boundary conditions

= The aforementioned example shows the way to solve the partial differential equa-
tion using Markov Chain MC.

= We will see how different classes of partial differential equations can be approxi-
mated with a Markov Chain MC, whose expectation value is the solution of the equation.
= The Laplace equation:

Pu  0*u 8u
—t Sttt == 0
ox] Oz, oxy,

The u(zq, zo, ..., ) function that is a solution of above equation we call harmonic
function. If one knows the values of the harmonic function on the edges I'(D) of the
D domain one can solve the equation.

The Dirichlet boundary conditions:

Find the values of u(zy, xa, ..., z}) inside the D domain knowing the values of the
edge are given with a function:

u(zy, Tgy .oy ) = f(T1, T, ..., 1) € T(D)
= Now | am lazy so | put k = 2 but it's the same for all k!
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Laplace equation, Dirichlet boundary conditions

= We will put the Dirichlet boundary condition as a y

discrete condition:

— D
® The domain D we put a lattice with distance h. i
® Some points we treat as inside (denoted with circles). )
Their form a set denoted D™, / D (
® The other points we consider as the boundary points W \\
and they form a set I'(D). ( /
/'\
-
X
= We express the second derivatives with the discrete form:
weth)ou@) _ wlo)w@=h) 4 b — 2u(z) + u(z — h)
h B h?
= Now we choose the units so h = 1.
19
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Laplace equation, Dirichlet boundary conditions

The Dirichlet condition in the discrete form:

Find the «* function which obeys the differential equation:

U'(z,y) = - [u‘* (z—1,y)+u (z+1,y) +u" (z,y — 1) +u" (z,y + 1)}

in all points (z,y) € D™ with the condition:
u'(z,y) = [ (z,y), (z,y)e(D")

where f*(x,y) is the discrete equivalent of f(z,y) function.

= We consider a random walk over the lattice D" UT'(D™).
® |nthe t = 0 we are in some point (£,7) € D)

® |f at the ¢ the particle is in (z,y) then at ¢ 4+ 1 it can go with equal probability to
any of the four neighbour lattices: (z — 1,y), (z+ 1,y), (z,y — 1), (z,y + 1).

e |f the particle at some moment gets to the edge I'(D” then the walk is
terminated.

® For the particle trajectory we assign the value of: v(£,n) = f(z,y), where

*
(z,y) e I(D7).
20/
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Laplace equation, Dirichlet boundary conditions

= Let p¢ ,(x,y) be the probability of particle walk that starting in (£,7) to end the
walk in (z,y).
= The possibilities:

1. The point (&,n) € I'(D™). Then:

1, (z,y)=¢&m)

(1)
O? (a:’ y) # 67 T])

p&,n(m7 y) = {
2. The point (£,n) € D™

1
Pen(T,y) = 1 [Pe—1,0(, ) + Pes1,0(T, ) + Pey—1(2,y) + Pe g (z,9)] @

this is because to get to (z, y) the particle has to walk through one of the neighbours:

(z - Ly). (z+Ly) (z,y - 1), (z,y + 1).
= The expected value of the v(&, n) is given by equation:

BEm =Y peqy)f (@) 3)
(z,y)eT”

where the summing is over all boundary points

21
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Laplace equation, Dirichlet boundary conditions
= Now multiplying the 2 by f*(z,y) and summing over all edge points (z,y):

E(n) = i [E(€—1n)+EE+1Ln)+EEn—1)+E(n+1)]
= Putting now 1 to 3 one gets:

E(m,y) = f*(xvy)v (5777) € F(D*)

= Now the expected value solves identical equation as our u"(z,y) function. From
this we conclude:

E(z,y) = u(z,y)
= The algorithm:

® We put a particle in (z,y).

® We observe it's walk up to the moment when it's on the edge I'(D").

We calculate the value of f* function in the point where the particle stops.

Repeat the walk IV times taking the average afterwards.

Important:

One can show the the error does not depend on the dimensions!
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