- \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
-
- \usepackage[english]{babel}
- \usepackage{polski}
-
-
- \usetheme[
- bullet=circle, % Other option: square
- bigpagenumber, % circled page number on lower right
- topline=true, % colored bar at the top of the frame
- shadow=false, % Shading for beamer blocks
- watermark=BG_lower, % png file for the watermark
- ]{Flip}
-
- %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
-
-
- \usepackage[lf]{berenis}
- \usepackage[LY1]{fontenc}
- \usepackage[utf8]{inputenc}
-
- \usepackage{emerald}
- \usefonttheme{professionalfonts}
- \usepackage[no-math]{fontspec}
- \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
-
- \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
- \setsansfont{Gillius ADF} % This is the font that beamer will use by default
- % \setmainfont{Gill Sans Light} % Prettier, but harder to read
-
- \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
-
- \input t1augie.fd
-
- %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
- %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
- % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
-
- %% Gill Sans doesn't look very nice when boldfaced
- %% This is a hack to use Helvetica instead
- %% Usage: \textbf{\forbold some stuff}
- %\newcommand{\forbold}{\fontspec{Arial}}
-
- \usepackage{graphicx}
- \usepackage[export]{adjustbox}
-
- \usepackage{amsmath}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{bm}
- \usepackage{colortbl}
- \usepackage{mathrsfs} % For Weinberg-esque letters
- \usepackage{cancel} % For "SUSY-breaking" symbol
- \usepackage{slashed} % for slashed characters in math mode
- \usepackage{bbm} % for \mathbbm{1} (unit matrix)
- \usepackage{amsthm} % For theorem environment
- \usepackage{multirow} % For multi row cells in table
- \usepackage{arydshln} % For dashed lines in arrays and tables
- \usepackage{siunitx}
- \usepackage{xhfill}
- \usepackage{grffile}
- \usepackage{textpos}
- \usepackage{subfigure}
- \usepackage{tikz}
-
- %\usepackage{hepparticles}
- \usepackage[italic]{hepparticles}
-
- \usepackage{hepnicenames}
-
- % Drawing a line
- \tikzstyle{lw} = [line width=20pt]
- \newcommand{\topline}{%
- \tikz[remember picture,overlay] {%
- \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
- -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
-
-
-
- % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
- \usepackage{tikzfeynman} % For Feynman diagrams
- \usetikzlibrary{arrows,shapes}
- \usetikzlibrary{trees}
- \usetikzlibrary{matrix,arrows} % For commutative diagram
- % http://www.felixl.de/commu.pdf
- \usetikzlibrary{positioning} % For "above of=" commands
- \usetikzlibrary{calc,through} % For coordinates
- \usetikzlibrary{decorations.pathreplacing} % For curly braces
- % http://www.math.ucla.edu/~getreuer/tikz.html
- \usepackage{pgffor} % For repeating patterns
-
- \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
- \usetikzlibrary{decorations.markings}
- \tikzset{
- % >=stealth', %% Uncomment for more conventional arrows
- vector/.style={decorate, decoration={snake}, draw},
- provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
- antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
- fermion/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
- fermionbar/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
- fermionnoarrow/.style={draw=gray},
- gluon/.style={decorate, draw=black,
- decoration={coil,amplitude=4pt, segment length=5pt}},
- scalar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- scalarbar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
- scalarnoarrow/.style={dashed,draw=black},
- electron/.style={draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
- }
-
- % TIKZ - for block diagrams,
- % from http://www.texample.net/tikz/examples/control-system-principles/
- % \usetikzlibrary{shapes,arrows}
- \tikzstyle{block} = [draw, rectangle,
- minimum height=3em, minimum width=6em]
-
-
-
-
- \usetikzlibrary{backgrounds}
- \usetikzlibrary{mindmap,trees} % For mind map
- \newcommand{\degree}{\ensuremath{^\circ}}
- \newcommand{\E}{\mathrm{E}}
- \newcommand{\Var}{\mathrm{Var}}
- \newcommand{\Cov}{\mathrm{Cov}}
- \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
- \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
-
- \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
-
- % SOME COMMANDS THAT I FIND HANDY
- % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
- \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
- \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
- \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
- \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
- \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
- %% "\alert" is already a beamer pre-defined
- \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
- \newcommand{\thetal}{\theta_l}
- \newcommand{\thetak}{\theta_k}
-
- \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
-
- \usepackage{gmp}
- \usepackage[final]{feynmp-auto}
-
- \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
- \bibliography{bib}
- \setbeamertemplate{bibliography item}[text]
-
- \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
-
- % suppress frame numbering for backup slides
- % you always need the appendix for this!
- \newcommand{\backupbegin}{
- \newcounter{framenumberappendix}
- \setcounter{framenumberappendix}{\value{framenumber}}
- }
- \newcommand{\backupend}{
- \addtocounter{framenumberappendix}{-\value{framenumber}}
- \addtocounter{framenumber}{\value{framenumberappendix}}
- }
-
-
- \definecolor{links}{HTML}{2A1B81}
- %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
-
- % For shapo's formulas:
- \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \newcommand{\lsim}{\mathop{\lsi}}
- \newcommand{\gsim}{\mathop{\gsi}}
- \newcommand{\wt}{\widetilde}
- %\newcommand{\ol}{\overline}
- \newcommand{\Tr}{\rm{Tr}}
- \newcommand{\tr}{\rm{tr}}
- \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
- \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
- \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
- \newcommand{\eV}{\rm{eV}}
- \newcommand{\keV}{\rm{keV}}
- \newcommand{\GeV}{\rm{GeV}}
- \newcommand{\im}{\rm{Im}}
- \newcommand{\disp}{\displaystyle}
- \def\be{\begin{equation}}
- \def\ee{\end{equation}}
- \def\ba{\begin{eqnarray}}
- \def\ea{\end{eqnarray}}
- \def\d{\partial}
- \def\l{\left(}
- \def\r{\right)}
- \def\la{\langle}
- \def\ra{\rangle}
- \def\e{{\rm e}}
- \def\Br{{\rm Br}}
-
-
-
- \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
- \institute{UZH}
- \title[Electroweak penguin decays to leptons and Radiative decays at LHCb]{Electroweak penguin decays to leptons and Radiative decays at LHCb}
- \date{25 September 2014}
-
-
- \begin{document}
- \tikzstyle{every picture}+=[remember picture]
-
- {
- \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
- \begin{frame}[c]%{\phantom{title page}}
- \begin{center}
- \begin{center}
- \begin{columns}
- \begin{column}{0.75\textwidth}
- \flushright\fontspec{Trebuchet MS}\bfseries \LARGE {Electroweak penguin decays to leptons and Radiative decays at LHCb}
- \end{column}
- \begin{column}{0.02\textwidth}
- {~}
- \end{column}
- \begin{column}{0.23\textwidth}
- % \hspace*{-1.cm}
- \vspace*{-3mm}
- \includegraphics[width=0.6\textwidth]{lhcb-logo}
- \end{column}
-
- \end{columns}
- \end{center}
- \quad
- \vspace{3em}
- \begin{columns}
- \begin{column}{0.44\textwidth}
- \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin Chrząszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}
-
- \end{column}
- \begin{column}{0.53\textwidth}
- \includegraphics[height=1.3cm]{uzh-transp}
- \end{column}
- \end{columns}
-
- \vspace{1em}
- % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
- \vspace{0.5em}
-
- \textcolor{normal text.fg!50!Comment}{Zurich meeting, CERN\\September 24, 2014}
- \end{center}
- \end{frame}
- }
-
-
- \section[Outline]{}
- \begin{frame}
- %\tableofcontents
- %FIXME!
- \begin{enumerate}
- \item Rare $\PB$ decays:
- \begin{itemize}
- \item $\PB^+ \to \PK^+ \Ppi^- \Ppi^+ \Pphoton$
- \item $\PBs/\PBzero \to \mu^- \mu^+$.
- \item $\PBzero \to \PKstar \Pmuon \APmuon$.
- \end{itemize}
-
- \end{enumerate}
-
- \end{frame}
-
- %-------------------------------------------------------------------
- % Introduction
- %-------------------------------------------------------------------
- %
- % Set the background for the rest of the slides.
- % Insert infoline
- %\setbeamertemplate{background}
- % {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
- %\setbeamertemplate{footline}[bunsentheme]
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- %\setbeamertemplate{background}
- % {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
- %\setbeamertemplate{footline}[bunsentheme]
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %\section{LHCb detector}
-
- %\begin{frame}\frametitle{LHCb detector}
- %\begin{columns}
- %\column{3.in}
- %\begin{center}
- %\includegraphics[width=0.98\textwidth]{det.jpg}
- %\end{center}
-
- %\column{2.0in}
- %\begin{footnotesize}
-
-
- % LHCb is a forward spectrometer:
- % \begin{itemize}
- % \item Excellent vertex resolution.
- % \item Efficient trigger.
- % \item High acceptance for $\Ptau$ and $\PB$.
- % \item Great Particle ID
- % \end{itemize}
-
-
-
- %\end{footnotesize}
- %\end{columns}
-
- %\end{frame}
-
- \section{Introduction}
-
- \begin{frame}\frametitle{Why rare decays?}
- \begin{columns}
- \column{4in}
- \begin{itemize}
- \item In SM allows only the charged interactions to change flavour.
- \begin{itemize}
- \item Other interactions are flavour conserving.
- \end{itemize}
- \item One can escape this constrain and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level.
- \begin{itemize}
- \item This kind of processes are suppressed in SM $\to$~Rare decays.
- \item New Physics can enter in the loops.
- \end{itemize}
- \end{itemize}
- \begin{center}
- \includegraphics[scale=0.3]{susy/lupa.png}
- \includegraphics[scale=0.3]{susy/example.png}
- \end{center}
- \column{1.5in}
- \includegraphics[width=0.61\textwidth]{susy/couplings.png}
- \end{columns}
-
- \end{frame}
-
- \begin{frame}\frametitle{Tools}
- \begin{itemize}
- \item \textbf{Operator Product Expansion and Effective Field Theory}
- \end{itemize}
- \begin{columns}
- \column{0.1in}{~}
- \column{3.2in}
- \begin{align*}
- H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
- \end{align*}
-
- \column{2in}
- \begin{tiny}
- \begin{description}
- \item[i=1,2] Tree
- \item[i=3-6,8] Gluon penguin
- \item[i=7] Photon penguin
- \item[i=9.10] EW penguin
- \item[i=S] Scalar penguin
- \item[i=P] Pseudoscalar penguin
- \end{description}
-
- \end{tiny}
- \end{columns}
- where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
- \begin{center}
- \includegraphics[width=0.85\textwidth,height=3cm]{susy/all.png}
-
- \end{center}
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Radiative decays}
-
- \begin{columns}
- \column{5in}
-
- \begin{itemize}
- \item $\PBzero \to \PKstar \Pphoton$ - first observed penguin!
- \begin{itemize}
- \item CLEO, [\href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.674}{\color{blue}PRL, 71 (1993) 674}]
- \end{itemize}
- \item B-factories probed NP measuring, inclusively/ semi-inclusively $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$
- \end{itemize}
- \column{0.1in}{~}
-
- \end{columns}
-
-
-
- \begin{columns}
- \column{3in}
- \begin{itemize}
- \item Is there any way LHCb can contribute?
- \begin{itemize}
- \item Measurements of $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$ very difficult.
- \item Can probe the photon polarization!
- \end{itemize}
- \end{itemize}
- \column{2in}
- \includegraphics[width=0.85\textwidth]{susy/btosgamma.png}
- \end{columns}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
-
- \begin{columns}
- \column{5in}
-
- \begin{itemize}
- \item In SM, photons form $\Pbeauty \to \Pstrange \Pphoton$ decays are left handed.
- \begin{itemize}
- \item Charged current interactions: $C_7/C'_7\sim m_{\Pbeauty}/m_{\Pstrange}$
- \end{itemize}
- \item Can test $C_7/C'_7$ using:
- \begin{itemize}
- \item Mixing induced CP violation: \href{http://arxiv.org/abs/hep-ph/9704272}{\color{blue}Atwood et. al. PRL 79 (1997) 185-188}
- \item $\PLambdab$ baryons: \href{http://arxiv.org/abs/hep-ph/0108074}{\color{blue}Hiller \& kagan PRD 65 (2002) 074038}
- \end{itemize}
- \end{itemize}
- \column{0.1in}{~}
-
- \end{columns}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
- \begin{frame}\frametitle{Photon polarization from $\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$}
-
-
- \begin{columns}
- \column{3.5in}
-
- \begin{itemize}
- \item OR: Study $\PB \to \PK^{\ast \ast} \Pphoton$ decays like $\PBplus \to \PK_1(1270) \Pphoton$
- \begin{itemize}
- \item \href{http://arxiv.org/abs/hep-ph/0205065}{\color{blue}Gronau \& Pirjol PRD 66 (2002) 054008}
- \end{itemize}
- \item The trick is to get the photon polarization from the up-down asymmetry of photon direction in the $\PK \Ppi \Ppi$ rest frame.
- \begin{itemize}
- \item No asymmetry $\rightarrow$ Unpolarised photons.
- \end{itemize}
- \item Conceptionally this measurement is similar to the Wu experiment, which first observed parity violation.
-
-
- \end{itemize}
- \column{1.5in}
-
- \includegraphics[width=0.95\textwidth]{susy/polarization.png}
-
- \end{columns}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$ at LHCb}
-
-
- \begin{columns}
- \column{3.in}
-
- \begin{itemize}
- \item LHCb looked at $\PBplus \to \PKplus \Ppiminus \Ppiplus \Pphoton$, using un-converted photons.
- \item Got over 13.000 candidates in $3~fb^{-1}$!
- \item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.161801}{\color{blue} Phys. Rev. Lett. 112, 161801 }
- \item $\PKplus \Ppiminus \Ppiplus$ system has variety of resonances.
- \begin{itemize}
- \item $\PK \Ppi \Ppi$ system studied inclusively.
- \item Bin the $m_{K\pi\pi}$ mass and look for polarization there.
- \end{itemize}
- \end{itemize}
- \column{2in}
- {~}
- \includegraphics[width=0.95\textwidth]{susy/plotspolarization.png}
-
- \end{columns}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}%\frametitle{$\color{white} B^+ \to K^{+} \pi^- \pi^+ \gamma$ at LHCb}
- \begin{center}
- {\color{red} Fit with $\color{red}(C_7'-C_7)/(C_7'+C_7)=0$}, {\color{blue} Best fit}
- \includegraphics[width=0.93\textwidth]{susy/photonfit.png}
- \end{center}
-
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Up-down asymmetry}
-
- \begin{columns}
- \column{3.in}
-
- \begin{itemize}
- \item Combining the 4 bins, the hypothesis of non photon polarisation can be excluded with $5.2~\sigma$ significance.
- \item Unfortunately without understanding the hadron system it is impossible to tell if the photon is left or right -handed.
-
- \end{itemize}
-
- \column{2in}
- {~}
- \includegraphics[width=0.95\textwidth]{susy/aud.png}
-
- \end{columns}
- \begin{center}
- $\rightarrow$~ First observation of photon polarization in $\Pbeauty \to \Pstrange \Pphoton$!
- \begin{itemize}
- \item Ideal solution would be to leave photon polarization free in the fit.
- \item No general description exist $\rightarrow$ input from theory community needed.
- \end{itemize}
-
-
- \end{center}
-
-
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$}
- \begin{columns}
- \column{3.2in}
-
- \begin{itemize}
- \item Clean theoretical prediction, GIM and helicity suppressed in the SM:
- \begin{itemize}
- \item $\mathcal{B}(\PBs \to \Pmuon \APmuon) = (3.66 \pm 0.23)\times 10^{-9}$
- \item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) = (1.06 \pm 0.09)\times 10^{-10}$
- \end{itemize}
- \item $50\%$ of the error comes from lattice.
- \item SM predictions from \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.101801}{\color{blue}{Phys. Rev. Lett. 112, 101801 (2014)}}.
- \item Sensitive to contributions from scalar and pesudoscalar couplings.
- \item Probing: MSSM, higgs sector, etc.
- \item In MSSM: $\mathcal{B}(\PBs \to \Pmuon \APmuon) \sim \tan^6 \beta /m_A^4$
- \end{itemize}
-
- \column{1.5in}
- {~}
- \includegraphics[width=0.95\textwidth]{susy/bs2mumu1.png}\\
- \includegraphics[width=0.95\textwidth]{susy/bs2mumu2.png}\\
- \includegraphics[width=0.6\textwidth]{susy/higgspen.png}
- \end{columns}
-
-
- \end{frame}
- \iffalse
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ searches}
-
-
- \begin{columns}
- \column{5in}
-
- \begin{itemize}
- \item Background rejection power is a key feature of rare decays $\rightarrow$ use multivariate classifiers (BDT) and strong PID.
- \end{itemize}
- \column{0.1in}{~}
-
- \end{columns}
- \begin{columns}
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{susy/BDT.png}
-
- \column{2.5in}
-
- \includegraphics[width=0.95\textwidth]{susy/mass.png}
-
- \end{columns}
-
- \begin{itemize}
- \item Normalize the BF to $\PBplus \to \PJpsi(\mu\mu) \PKplus$ and $\PBzero \to \PK \Ppi$.
- \end{itemize}
- \end{frame}
-
- \fi
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ Results}
-
-
-
- \begin{columns}
- \column{2.in}
- \begin{itemize}
- \item Nov. 2012:
- \begin{itemize}
- \item First evidence $3.5\sigma$ for $\PB_s \rightarrow \mu^+ \mu^-$. with $2.1~fb^{-1}$.
- \end{itemize}
- \item Summer 2013:
- \begin{itemize}
- \item Full data sample: $3~fb^{-1}$.
- \end{itemize}
- \end{itemize}
- \column{3.0in}
-
- \includegraphics[width=0.95\textwidth]{susy/mass2.png}
-
- \end{columns}
- \begin{itemize}
- \item Measured BF:\\ $\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.9^{+1.1}_{-1.0}(stat.)^{+0.3}_{-0.1}(syst.))\times 10^{-9}$
- \item $4.0 \sigma$ significance!
- \item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) < 7 \times 10^{-10}$ at $95\%$ CL
- \item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.021801}{\color{blue} PRL 110 (2013) 021801 }
- \item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.101805}{\color{blue} CMS result: PRL 111 (2013) 101805}
- \end{itemize}
-
-
- \end{frame}
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{LHCb+CMS combined analysis}
- \begin{Large}
-
-
- \begin{center}
- $\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.8^{+0.7}_{-0.6} )\times 10^{-9}$\\
- $\mathcal{B}(\PBzero \to \Pmuon \APmuon) =(3.9^{+1.6}_{-1.4} )\times 10^{-10}$
- \end{center}
- \end{Large}
-
- \includegraphics[width=0.95\textwidth]{susy/bs2mumu_comb.png}
-
- \begin{itemize}
- \item \href{http://arxiv.org/pdf/1411.4413v1.pdf}{\color{blue}Nature 522, 7554}
- %\item See Daniele Fasanella talk for CMS side.
- \end{itemize}
-
- \end{frame}
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions}
- \begin{columns}
- \column{2.5in}{~}
- \begin{itemize}
- \item $\Pbeauty \to \Pstrange \Plepton \Plepton$ decays poses large spectrum of observables.
- \item LHCb favourite: $\PBzero \to \PKstar \Pmuon \APmuon$.
- \item Sensitive to lot of new physics models.
- \item Decay described by three angles $\theta_l, \theta_K, \phi$ and dimuon invariant mass $q^2$.
- \item Analysis is performed in bins of $q^2$.
- \end{itemize}
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{susy/angles.png}
-
- \end{columns}
- \end{frame}
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ selection}
- \begin{center}
- \includegraphics[width=0.65\textwidth]{images/Fig1.pdf}
- \end{center}
- \begin{itemize}
- \item BDT to suppress combinatorial background.\\ Input variables: PID, kinematics and geometric quantities, isolations.
- \item Veto the $\PJpsi$ and $\Psi(2S)$ resonances.
- \item \href{http://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-CONF-2015-002.pdf}{\color{blue}{CONF-2015-002}}
- \end{itemize}
-
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ mass modeling}
- \begin{columns}
- \column{0.05in}
- {~}
- \column{2.5in}
-
- \column{2.5in}
-
- \end{columns}
-
-
-
- \end{frame}
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions}
- \begin{itemize}
- \item Angular distributions depends on 11 angular terms:
- %\includegraphics[width=0.95\textwidth]{susy/eq.png}
- \tiny{
- \begin{align*}
- \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi} \right|_{\rm P} =
- \tfrac{9}{32\pi}\bigl[
- &\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \\[-0.75em]
- &+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\
- &- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\
- &+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\
- &+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\
- &+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber
- \bigr].
- %\end{split}
- %\bigr],
- \end{align*}
- }
- \end{itemize}
- where the $S_i$ are bilinear combinations of helicity amplitudes.
- \begin{itemize}
- \item We assume no scalar and tensor contribution and massless leptons.
- \end{itemize}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{S-wave pollution}
- \begin{itemize}
- \item S-wave: $\PK^+ \Ppi^-$ in spin $0$ configuration
- \item Introduced by additional two decay amplitudes $\rightarrow$ six observables.
- \end{itemize}
- {\tiny{
- \begin{align*}
- \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{{\rm S}+{\rm P}} =
- (1-F_S)&\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P}\label{eq:pdfswave}\\
- +\tfrac{3}{16\pi} &\bigl[F_S \sin^2\thetal + S-P~\rm{interefence} \bigr].\nonumber
- \end{align*}
- }}
- \begin{columns}
- \column{2.5in}
- \begin{itemize}
- \item $F_S$ dilutes the P-wave observables by a factor $1-F_S$.
- \item Needs to be taken into account \\ $\rightarrow$ fit the $m_{K\pi}$.
- \item Rel. BW for P-wave.
- \item LASS model for S-wave\\{~}\\{~}\\{~}
- \end{itemize}
- \column{2in}
- \includegraphics[angle=-90,width=0.85\textwidth]{images/mkpi4sig.pdf}
-
- \end{columns}
-
-
- \end{frame}
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results}
- \begin{columns}
- \column{2.5in}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5a.pdf}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5c.pdf}
- \column{2.5in}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5b.pdf}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5d.pdf}
- \end{columns}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results}
- \begin{center}
- \includegraphics[angle=-90,width=0.65\textwidth]{images/Fig17.pdf}\\
- \end{center}
- \begin{itemize}
- \item Tension in $P_5^{\prime}$ confirmed!
- \item $[4.0,6.0]$ and $[6.0, 8.0]~\GeV^2/c^4$ show $2.9 \sigma$ deviation each.
- \item Naive combination shows $3.7\sigma$ discrepancy.
- \item Result compatible with previous result.
- \end{itemize}
-
-
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Understanding the $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly}
- \begin{columns}
- \column{3.in}
- \begin{itemize}
- \item Matias, Decotes-Genon \& Virto performed a fit to our preliminary result.s
- \item Found $\sim 4 \sigma$ discrepancy from SM.
- \item Fit favours $C_9^{NP}=-1.1$
- \item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/14/material/slides/0.pdf}{\color{Blue}{Moriond 2015 slides}}
- \end{itemize}
- \begin{itemize}
- \item Straub performed the same analysis as Matias et. al.
- \item Found the same solution:\\ $\rightarrow$ $C_9$ modification.
- \item Data can be explained by introducing a flavour changing $\PZprime$ boson, with mass $\mathcal{O}(10~TeV)$
- \item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/87/material/slides/0.pdf}{\color{blue}{Moriond 2015 slides}}
- \end{itemize}
-
- \column{2.in}
- \includegraphics[width=0.95\textwidth]{images/quim.png}\\
- \includegraphics[width=0.95\textwidth]{images/straub.png}
- \end{columns}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %\begin{frame}\frametitle{Understanding the $\color{white}B^{0} \rightarrow K^{\ast} \mu \mu$ anomaly 2/2}
- %\begin{columns}
- %\column{3in}
-
- %\includegraphics[width=0.99\textwidth]{susy/c9.png}
- %\column{2in}
- %\begin{itemize}
- %\item High $q^2$ differential BF suggests are all below SM.
- %\item Better consistency with $C_9^{NP}=-1.5$
- %\end{itemize}
-
- %\end{columns}
-
-
- %\end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Lepton universality}
- \begin{columns}
- \column{3.0in}
- \begin{itemize}
- \item If $\PZprime$ is responsible for the $P'_5$ anomaly, does it couple equally to all flavours?
- \includegraphics[width=0.9\textwidth]{susy/uni2.png}
- \item Challenging analysis due to bremsstrahlung.
- \item Migration of events modeled by MC.
- \item Correct bremsstrahlung.
- \item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics.
- \item In $3fb^{-1}$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
- \item Consistent with SM at $2.6\sigma$.
-
- \end{itemize}
- \column{2.0in}
- \includegraphics[width=0.99\textwidth]{images/RK.png}\\
- \begin{itemize}
- \item \href{http://arxiv.org/abs/1406.6482}{Phys. Rev. Lett. 113, 151601 (2014)}
- \end{itemize}
- \end{columns}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Lepton universality with $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly}
- \begin{columns}
- \column{3in}
- \begin{itemize}
- \item Lepton flavour universality cannot be explained by any QCD effect!
- \item This effect is consistent with anomaly (non universal $\PZ'$)
- \item Global fit to $\Pbeauty \rightarrow \Pstrange \Pmuon \APmuon$ and $\Pbeauty \rightarrow \Pstrange \Pelectron \APelectron$ seems to favour $\PZ'$ with non lepton universal couplings.
- \end{itemize}
-
-
- \column{2in}
- \includegraphics[width=0.9\textwidth]{images/LU.png}
- \end{columns}
- \href{http://arxiv.org/pdf/1408.4097v3.pdf}{\color{blue}{JHEP (2014) 131}}
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Conclusions}
- \begin{columns}
- \column{3.3in}
- \begin{itemize}
- \item Rare decays play important role in hutting NP.
- \item Can access NP scales beyond reach of GPD.
- \item Tension in $\Pbeauty \to \Pstrange \Plepton \Plepton$, theory correct?
- \item List of decays presented in this talk is just a tip of iceberg:
- \begin{itemize}
- \item Please look at ours: isospin, $A_{CP}$.
- \item More results are on their way.
- \end{itemize}
- \item Many results really on SM prediction, QCD improved calculations would be highly appreciated.
-
- \end{itemize}
- \column{2in}
- \includegraphics[width=0.9\textwidth]{susy/higgs_boring.png}
- \end{columns}
-
- \end{frame}
-
-
-
- \backupbegin
-
- \begin{frame}\frametitle{Backup}
- \topline
-
- \end{frame}
-
- \backupend
-
- \end{document}